概率高考试题汇编

合集下载

高考数学试卷概率题

高考数学试卷概率题

一、选择题(本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 从装有5个红球、4个黄球、3个蓝球的袋中,随机取出3个球,取出的3个球都是红球的概率是:A. 1/50B. 1/15C. 1/10D. 1/62. 一个密码锁由3个数字组成,每个数字可以是0到9中的任意一个,那么正确的密码有:A. 100种B. 900种C. 81种D. 729种3. 抛掷一枚公平的六面骰子,得到偶数的概率是:A. 1/2B. 1/3C. 2/3D. 1/64. 一个班级有30名学生,其中有18名女生和12名男生。

随机抽取一名学生,抽到女生的概率是:A. 3/5B. 2/5C. 3/10D. 1/55. 一个口袋里有5个红球和3个蓝球,随机取出2个球,取出的2个球都是红球的概率是:A. 1/4B. 1/3C. 3/7D. 1/76. 从一副52张的标准扑克牌中,随机抽取4张牌,其中抽到4张都是同花色的概率是:A. 1/4165B. 1/1326C. 1/416D. 1/267. 一个箱子里有10个白球和15个黑球,随机取出2个球,取出的2个球都是黑球的概率是:A. 3/7B. 1/7C. 2/7D. 1/48. 一个班级有40名学生,其中有20名喜欢数学、15名喜欢物理、10名两者都喜欢。

那么至少有一名学生既喜欢数学又喜欢物理的概率是:A. 1/4B. 1/2C. 3/8D. 5/89. 抛掷一枚公平的硬币,连续抛掷两次,至少有一次出现正面的概率是:A. 3/4B. 1/2C. 1/4D. 1/310. 一个袋子里有3个红球、2个黄球和4个蓝球,随机取出3个球,取出的3个球颜色各不相同的概率是:A. 1/5B. 1/3C. 3/10D. 1/2二、填空题(本大题共5小题,每小题5分,共25分。

)11. 抛掷一枚公平的硬币,连续抛掷3次,得到至少一次正面的概率是________。

2024高考数学精选概率统计真题历年汇编

2024高考数学精选概率统计真题历年汇编

2024高考数学精选概率统计真题历年汇编2024年高考数学考试,概率统计部分是考生们关注的重点。

为了帮助大家更好地复习备考,本文将汇编2024年高考数学概率统计部分的精选真题。

以下是真题内容及解析。

一、选择题1. 设随机变量X的概率分布列为X 0 1 2 3 4P(X) a 2a 4a 6a 8a则a的取值范围是:A. [0, 1/20]B. [0, 1/8]C. [0, 1/6]D. [0, 1/4]解析:根据概率分布列的性质,各事件的概率之和应为1,即a + 2a + 4a + 6a + 8a = 1。

解得a = 1/42。

所以,a的取值范围是[0, 1/42],选项A与答案一致。

2. 设事件A、B相互独立,已知P(A) = 1/3,P(B) = 1/4,P(A∪B) = 5/12,那么P(A∩B)的值为:A. 1/12B. 1/16C. 1/18D. 5/12解析:由概率的加法定理,有P(A∪B) = P(A) + P(B) - P(A∩B)。

代入已知条件,得5/12 = 1/3 + 1/4 - P(A∩B)。

解得P(A∩B) = 1/12,选项A与答案一致。

3. 甲、乙两个工人分别负责两台机器的维修,他们各自独立地对机器进行维修,设甲在任意一天修好机器的概率为0.7,乙在任意一天修好机器的概率为0.6,那么工作两天后,有且仅有一台机器被修好的概率是:A. 0.39B. 0.42C. 0.45D. 0.48解析:根据题意,只有甲在第一天修好乙在第二天修好或甲在第二天修好乙在第一天修好这两种情况满足条件。

所以,设事件A表示甲在第一天修好,事件B表示乙在第一天修好,则所求概率为P(A)×P(B') + P(A')×P(B),计算得0.7×0.4 + 0.3×0.6 = 0.42,选项B与答案一致。

二、解答题4. 某家超市进行促销活动,消费者购买该超市某种商品的概率为0.3。

高考概率考试题及答案

高考概率考试题及答案

高考概率考试题及答案一、选择题1. 某次考试中,学生A和学生B独立地答对一道题的概率分别为0.7和0.6,那么他们两人至少有一人答对这道题的概率是多少?A. 0.32B. 0.54C. 0.86D. 0.94答案:C2. 一个袋子里有5个红球和3个蓝球,随机抽取一个球,抽到红球的概率是多少?A. 0.6B. 0.4C. 0.33D. 0.67答案:A二、填空题3. 一个骰子连续掷两次,两次都掷出偶数的概率是______。

答案:1/34. 从一副去掉大小王的扑克牌中随机抽取一张牌,抽到黑桃的概率是______。

答案:1/4三、解答题5. 已知某工厂生产的一批产品中,次品率为2%,现随机抽取100件产品进行检查。

求至少有3件次品的概率。

解答:设X为100件产品中次品的数量,X服从二项分布B(100,0.02)。

要求至少有3件次品的概率,即P(X≥3)。

根据二项分布的性质,我们有:P(X≥3) = 1 - P(X<3) = 1 - [P(X=0) + P(X=1) + P(X=2)]计算得:P(X=0) = C(100, 0) * (0.02)^0 * (0.98)^100P(X=1) = C(100, 1) * (0.02)^1 * (0.98)^99P(X=2) = C(100, 2) * (0.02)^2 * (0.98)^98将上述概率值代入公式计算,得到P(X≥3)的值。

答案:根据上述计算过程,得出P(X≥3)的具体数值。

6. 甲乙两人进行射击比赛,甲击中目标的概率为0.8,乙击中目标的概率为0.9。

若两人同时射击,求至少有一人击中目标的概率。

解答:设A为甲击中目标的事件,B为乙击中目标的事件。

要求至少有一人击中目标的概率,即P(A∪B)。

根据概率的加法公式,我们有:P(A∪B) = P(A) + P(B) - P(A∩B)由于甲乙两人射击是相互独立的事件,所以P(A∩B) = P(A) * P(B)。

2021-2023年高考数学真题分类汇编专题15概率与统计理

2021-2023年高考数学真题分类汇编专题15概率与统计理

专题15概率与统计(理)近三年高考真题1.(2023•北京)为了研究某种农产品价格变化的规律,收集到了该农产品连续40天的价格变化数据,如表所示,在描述价格变化时,用“ ”表示“上涨”;即当天价格比前一天价格高,用“ ”表示“下跌”,即当天价格比前一天价格低:用“0”表示“不变”,即当天价格与前一天价格相同.时段价格变化第1天到第20天0 0 00第21天到第40天0 0 0 0用频率估计概率.(Ⅰ)试估计该农产品“上涨”的概率;(Ⅱ)假设该农产品每天的价格变化是相互独立的,在未来的日子里任取4天,试估计该农产品价格在这4天中2天“上涨”、1天“下跌”、1天“不变”的概率;(Ⅲ)假设该农产品每天的价格变化只受前一天价格的影响,判断第41天该农产品价格“上涨”、“下跌”和“不变”的概率估计值哪个最大.(结论不要求证明)【解析】(Ⅰ)由表可知,40天中“上涨”的有16天,则该农产品“上涨”的概率为160.440.(Ⅱ)由表可知,40天中“上涨”的有16天,则该农产品“下降”的概率为140.3540,40天中“不变”的有10天,则该农产品“上涨”的概率为100.2540,则该农产品价格在这4天中2天“上涨”、1天“下跌”、1天“不变”的概率2211421040.350.250.168C C C .(Ⅲ)由于第40天处于“上涨”状态,从前39天中15次“上涨”进行分析,“上涨”后下一次仍“上涨”的有4次,概率为415,“上涨”后下一次“不变”的有9次,概率为35,“上涨”后下一次“下降”的有2次,概率为215,故第41天该农产品价格“不变”的概率估值最大.2.(2023•甲卷(理))一项试验旨在研究臭氧效应,试验方案如下:选40只小白鼠,随机地将其中20只分配到试验组,另外20只分配到对照组,试验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:)g .(1)设X 表示指定的两只小鼠中分配到对照组的只数,求X 的分布列和数学期望;(2)试验结果如下:对照组的小白鼠体重的增加量从小到大排序为18.820.221.322.523.225.826.527.530.134.334.835.635.635.836.237.340.543.2试验组的小白鼠体重的增加量从小到大排序为9.211.412.413.215.516.518.018.819.220.221.622.823.623.925.128.232.336.5()i 求40只小白鼠体重的增加量的中位数m ,再分别统计两样本中小于m 与不小于m 的数据的个数,完成如下列联表:mm对照组实验组()ii 根据()i 中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?附:22()()()()()n ad bc K a b c d a c b d ,2()P K k 0.1000.0500.010k2.7063.8416.635【解析】(1)根据题意可得0X ,1,2,又02202024019(0)78C C P X C ,11202024020(1)39C C P X C ,20202024019(2)78C C P X C ,X 的分布列为:X 012P197820391978192019()0121783978E X;(2)()40i 个数据从小到大排列后,中位数m 即为第20位和第21位数的平均数,第20位数为23.2,第21位数为23.6,23.223.623.42m, 补全列联表为:mm 合计对照组61420实验组14620合计202040()ii 由()i 可知2240(661414) 6.400 3.84120202020K, 能有95%的把握认为药物对小鼠生长有抑制作用.3.(2022•新高考Ⅰ)一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:不够良好良好病例组4060对照组1090(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?(2)从该地的人群中任选一人,A 表示事件“选到的人卫生习惯不够良好”,B 表示事件“选到的人患有该疾病”,(|)(|)P B A P B A 与(|)(|)P B A P B A 的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R .(ⅰ)证明:(|)(|)(|)(|)P A B P A B R P A B P A B;(ⅱ)利用该调查数据,给出(|)P A B ,(|P A B 的估计值,并利用(ⅰ)的结果给出R 的估计值.附:22()()()()()n ad bc K a b c d a c b d .2()P K k 0.0500.0100.001k3.8416.63510.828【解析】(1)补充列联表为:不够良好良好合计病例组4060100对照组1090100合计50150200计算22200(40901060)24 6.63510010050150K,所以有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异.(2)()i 证明:()()()()(|)(|)(|)(|)()()(|)(|)()()()():()()()()(|)(|)(|)(|)()()(|)(|)()()()()P AB P AB P AB P AB P B A P B A P B A P B A P AB P AB P A B P A B P A P A P B P B R P AB P AB P AB P AB P B A P B A P B A P B A P AB P AB P A B P A B P A P B P A P B;(ⅱ)利用调查数据,402(|)1005P A B ,101(|)10010P A B,3(|)1(|)5P A B P A B ,9(|1(|10P A B P A B ,所以29510631510R .4.(2023•新高考Ⅱ)某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该指标的频率分布直方图:利用该指标制定一个检测标准,需要确定临界值c ,将该指标大于c 的人判定为阳性,小于或等于c 的人判定为阴性,此检测标准的漏诊率是将患病者判定为阴性的概率,记为p (c);误诊率是将未患病者判定为阳性的概率,记为q (c).假设数据在组内均匀分布,以事件发生的频率作为相应事件发生的概率.(1)当漏诊率p (c)0.5% 时,求临界值c 和误诊率q (c);(2)设函数f(c)p(c)q (c).当[95c ,105],求f(c)的解析式,并求f(c)在区间[95,105]的最小值.【解析】(1)当漏诊率p(c)0.5%时,则(95)0.0020.5%c ,解得97.5c ;q(c)0.01 2.550.0020.035 3.5%;(2)当[95c ,100]时,f(c)p(c)q (c)(95)0.002(100)0.0150.0020.0080.820.02c c c,当(100c ,105]时,f(c)p(c)q (c)50.002(100)0.012(105)0.0020.010.980.02c c c,故f(c)0.0080.82,951000.010.98,100105c cc c,所以f(c)的最小值为0.02.5.(2022•新高考Ⅱ)在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表);(2)估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率;(3)已知该地区这种疾病患者的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%.从该地区中任选一人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001).【解析】(1)由频率分布直方图得该地区这种疾病患者的平均年龄为:50.00110150.00210250.01210350.01710450.02310550.02010650.01710750.00610850.0021047.9x 岁.(2)该地区一位这种疾病患者的年龄位于区间[20,70)的频率为:(0.0120.0170.0230.0200.017)100.89,估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率为0.89.(3)设从该地区中任选一人,此人的年龄位于区间[40,50)为事件B,此人患这种疾病为事件C,则()0.1%0.02310(|)0.0014()16%P BCP C BP B.6.(2023•上海)2023年6月7日,21世纪汽车博览会在上海举行,已知某汽车模型公司共有25个汽车模型,其外观和内饰的颜色分布如下表所示:红色外观蓝色外观棕色内饰128米色内饰23(1)若小明从这些模型中随机拿一个模型,记事件A 为小明取到红色外观的模型,事件B 为小明取到棕色内饰的模型,求P (B)和(|)P B A ,并判断事件A 和事件B 是否独立;(2)该公司举行了一个抽奖活动,规定在一次抽奖中,每人可以一次性从这些模型中拿两个汽车模型,给出以下假设:假设1:拿到的两个模型会出现三种结果,即外观和内饰均为同色、外观和内饰都异色、以及仅外观或仅内饰同色;假设2:按结果的可能性大小,概率越小奖项越高;假设3:该抽奖活动的奖金额为:一等奖600元,二等奖300元、三等奖150元;请你分析奖项对应的结果,设X 为奖金额,写出X 的分布列并求出X 的数学期望.【解析】(1)若红色外观的模型,则分棕色内饰12个,米色内饰2个,则对应的概率P (A)122142525,若小明取到棕色内饰,分红色外观12,蓝色外观8,则对应的概率P (B)12820425255.取到红色外观的模型同时是棕色内饰的有12个,即12()25P AB ,则12()12625(|)14()14725P AB P B A P A.P ∵(A)P (B)144561225512525,P (A)P (B)()P AB ,即事件A 和事件B 不独立.(2)由题意知600X ,300,150,则外观和内饰均为同色的概率2222128322256628319849300300150C C C C P C ,外观和内饰都异色的概率1111232822552300C C C C P C ,仅外观或仅内饰同色的概率49521501150300300P,∵1504952300150300,150(150)300P X,9849(300)300150P X ,52(600)300P X ,则X 的分布列为:X 150300600P1503004915052300则1504952150300600277300150300EX(元).7.(2022•甲卷(理))甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.(1)求甲学校获得冠军的概率;(2)用X 表示乙学校的总得分,求X 的分布列与期望.【解析】(1)甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,可以得到两个学校每场比赛获胜的概率如下表:第一场比赛第二场比赛第三场比赛甲学校获胜概率0.50.40.8乙学校获胜概率0.50.60.2甲学校要获得冠军,需要在3场比赛中至少获胜2场,①甲学校3场全胜,概率为:10.50.40.80.16P ,②甲学校3场获胜2场败1场,概率为:20.50.40.20.50.60.80.50.40.80.44P ,所以甲学校获得冠军的概率为:120.6P P P ;(2)乙学校的总得分X 的可能取值为:0,10,20,30,其概率分别为:(0)0.50.40.80.16P X ,(10)0.50.40.20.50.60.80.50.40.80.44P X ,(20)0.50.60.80.50.40.20.50.60.20.34P X ,(30)0.50.60.20.06P X ,则X 的分布列为:X 0102030P0.160.440.340.06X 的期望00.16100.44200.34300.0613EX .8.(2022•北京)在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到9.50m 以上(含9.50)m 的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:):m 甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,9.35,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16.假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.(Ⅰ)估计甲在校运动会铅球比赛中获得优秀奖的概率;(Ⅱ)设X 是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X 的数学期望EX ;(Ⅲ)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)【解析】(Ⅰ)甲以往的10次成绩中有4次获得优秀奖,用频率估计概率,则甲在校运动会铅球比赛中获得优秀奖的概率42105.(Ⅱ)用频率估计概率,则乙在校运动会铅球比赛中获得优秀奖的概率为3162,丙在校运动会铅球比赛中获得优秀奖的概率为2142,X 的所有可能取值为0,1,2,3,则3113(0)52220P X ,21131131182(1)522522522205P X ,2112113117(2)52252252220P X ,21121(3)5222010P X,387270123202020205EX.(Ⅲ)由题中数据可知,乙与丙获得优秀奖的概率较大,均为12,且丙投出过三人成绩中的最大值9.85m ,在三人中有一定优势,故如果发挥较好的话丙获得的概率估计值最大.9.(2021•北京)在核酸检测中,“k 合1”混采核酸检测是指:先将k 个人的样本混合在一起进行1次检测,如果这k 个人都没有感染新冠病毒,则检测结果为阴性,得到每人的检测结果都为阴性,检测结束;如果这k 个人中有人感染新冠病毒,则检测结果为阳性,此时需对每人再进行1次检测,得到每人的检测结果,检测结束.现对100人进行核酸检测,假设其中只有2人感染新冠病毒,并假设每次检测结果准确.(Ⅰ)将这100人随机分成10组,每组10人,且对每组都采用“10合1”混采核酸检测.(ⅰ)如果感染新冠病毒的2人在同一组,求检测的总次数:(ⅱ)已知感染新冠病毒的2人分在同一组的概率为111.设X 是检测的总次数,求X 的分布列与数学期望()E X .(Ⅱ)将这100人随机分成20组,每组5人,且对每组都采用“5合1”混采核酸检测.设Y 是检测的总次数,试判断数学期望()E Y 与(Ⅰ)中()E X 的大小.(结论不要求证明)【解析】(Ⅰ)(ⅰ)若采用“10合1检测法”,每组检查一次,共10次;又两名患者在同一组,需要再检查10次,因此一共需要检查20次.(ⅱ)由题意可得:20X ,30.1(20)11P X,10(30)11P X .可得分布列:X 2030P1111011110320()2030111111E X.(Ⅱ)由题意可得:25Y ,30.2329851004(25)2099C C P Y C,95(30)99P Y .可得分布列:Y 2530P499959949529502880320()25309999999911E Y.()()E X E Y .另设“10合1”混采核酸检测两名感染患者在同一组的概率为1p ,“5合1”混采核酸检测两名感染患者在同一组的概率为2p ,则12p p ,此时有111()2030(1)3010E X p p p ;而22211()2530(1)3053053010()E Y p p p p p E X ,()()E X E Y .10.(2021•新高考Ⅰ)某学校组织“一带一路”知识竞赛,有A ,B 两类问题.每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A 类问题中的每个问题回答正确得20分,否则得0分;B 类问题中的每个问题回答正确得80分,否则得0分.已知小明能正确回答A 类问题的概率为0.8,能正确回答B 类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A 类问题,记X 为小明的累计得分,求X 的分布列;(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.【解析】(1)由已知可得,X 的所有可能取值为0,20,100,则(0)10.80.2P X ,(20)0.8(10.6)0.32P X (100)0.80.60.48P X ,所以X 的分布列为:X 020100P0.20.320.48(2)由(1)可知小明先回答A 类问题累计得分的期望为()00.2200.321000.4854.4E X ,若小明先回答B 类问题,记Y 为小明的累计得分,则Y 的所有可能取值为0,80,100,(0)10.60.4P Y ,(80)0.6(10.8)0.12P Y ,(100)0.60.80.48P Y ,则Y 的期望为()00.4800.121000.4857.6E Y ,因为()()E Y E X ,所以为使累计得分的期望最大,小明应选择先回答B 类问题.11.(2023•新高考Ⅰ)甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若未命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5.(1)求第2次投篮的人是乙的概率;(2)求第i 次投篮的人是甲的概率;(3)已知:若随机变量i X 服从两点分布,且(1)1(0)i i i P X P X q ,1i ,2, ,n ,则11()nni i i i E X q .记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()E Y .【解析】(1)设第2次投篮的人是乙的概率为P ,由题意得0.50.40.50.80.6P ;(2)由题意设n P 为第n 次投篮的是甲,则10.60.2(1)0.40.2n n n n P P P P ,1110.4(33n n P P ,又1111103236P,则1{}3n P 是首项为16,公比为0.4的等比数列,1112()365n n P ,即1112()365n n P , 第i 次投篮的人是甲的概率为1112()365i i P;(3)由(2)得1112(365i i P ,由题意得甲第i 次投篮次数i Y 服从两点分布,且(1)1(0)i i i P Y P Y P ,11()()n ni i i i E Y E Y P ,当1n 时,11112[1()]125265()([1(]26533185315n n ni n i i i n n n E Y P ;当0n 时,0520()0[1()]1853E Y,综上所述,52()[1(]1853n n E Y ,n N .12.(2021•新高考Ⅱ)一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代, ,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X 表示1个微生物个体繁殖下一代的个数,()(0i P X i p i ,1,2,3).(Ⅰ)已知00.4p ,10.3p ,20.2p ,30.1p ,求()E X ;(Ⅱ)设p 表示该种微生物经过多代繁殖后临近灭绝的概率,p 是关于x 的方程:230123p p x p x p x x 的一个最小正实根,求证:当()1E X 时,1p ,当()1E X 时,1p ;(Ⅲ)根据你的理解说明(2)问结论的实际含义.【解析】(Ⅰ)由题意,00.4p ,10.3p ,20.2p ,30.1p ,故()00.410.320.230.11E X ;(Ⅱ)证明:由题意可知,01231p p p p ,则123()23E X p p p ,所以230123p p x p x p x x ,变形为230123(1)0p p x p x p x ,所以23023023()0p p x p x p p p x ,即023(1)(1)(1)(1)0p x p x x p x x x ,即23230(1)[()]0x p x p p x p ,令23230()()f x p x p p x p ,若30p 时,则()f x 的对称轴为23302p p x p ,注意到0(0)0f p ,f (1)3201232231()1p p p p p p E X ,若30p 时,f (1)()1E X ,当()1E X 时,f (1)0,()0f x 的正实根01x ,原方程的最小正实根1p ,当()1E X 时,f (1)1232310p p p ,()0f x 的正实根01x ,原方程的最小正实根1p ,(Ⅲ)当1个微生物个体繁殖下一代的期望小于等于1时,这种微生物经过多代繁殖后临近灭绝;。

高考数学2024概率与统计历年题目全集

高考数学2024概率与统计历年题目全集

高考数学2024概率与统计历年题目全集概率与统计是高中数学中一门重要的学科,也是高考数学考试的一部分。

在概率与统计中,我们需要通过概率的计算和统计的方法来分析和解决实际问题。

为了帮助同学们复习和准备高考数学考试,本文整理了高考数学2024概率与统计历年题目全集,希望能对同学们有所帮助。

1. 单项选择题1) 已知概率为P(A) = 0.2,P(B) = 0.4,事件A、B相互独立,求P(A并B)的值。

2) 一次抛掷一硬币,设正面向上的概率为p,反面向上的概率为q。

连续抛掷3次硬币,求正面朝上的次数不超过2次的概率。

3) 某音乐社有男生40人,女生60人。

从中随机抽取一人,求抽到女生的概率。

2. 典型案例题1) 某超市中购买了100个某品牌产品,其中有5个是次品。

现从中不放回地连续抽取3个产品,求至少有一个次品的概率。

2) 某餐厅的饭菜有4个主食和6个副食。

现从中选择2个饭菜,求至少有一个主食的概率。

3. 解答题1) 设事件A与事件B相互独立,且P(A) = 0.3,P(B) = 0.5。

求下列事件的概率:a) P(A并B)b) P(A或B)c) P(A的对立事件)2) 设P(A) = 0.4,P(B) = 0.3,P(A并B) = 0.1,求下列事件的概率:a) P(A的对立事件)b) P(B的对立事件)c) P(A或B)3) 有一批产品,其中20%是次品。

现从中不放回地连续抽取3个产品,求以下事件的概率:a) 已抽出的3个产品都是次品;b) 至少有一个次品。

(提示:利用组合数学中的排列、组合知识进行计算)本文仅列举了一部分高考数学2024概率与统计历年题目,希望能给同学们提供一些复习和备考的参考。

在备考过程中,同学们还需结合教材和课堂上的知识,多进行习题训练和模拟考试,提高解题能力和应试技巧。

祝同学们取得优异的高考成绩!。

历年(2020-2023)全国高考数学真题分类(概率统计)汇编(附答案)

历年(2020-2023)全国高考数学真题分类(概率统计)汇编(附答案)

历年(2020‐2023)全国高考数学真题分类(概率统计)汇编【2023年真题】1.(2023·新课标II 卷 第3题)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400和200名学生,则不同的抽样结果共有 A. 4515400200C C ⋅种B. 2040400200C C ⋅种C. 3030400200C C ⋅种D. 4020400200C C ⋅种2. (2023·新课标I 卷 第9题)(多选)一组样本数据126,,,x x x ⋅⋅⋅,其中1x 是最小值,6x 是最大值,则( ) A. 2345,,,x x x x 的平均数等于126,,,x x x ⋅⋅⋅的平均数 B. 2345,,,x x x x 的中位数等于126,,,x x x ⋅⋅⋅的中位数 C. 2345,,,x x x x 的标准差不小于126,,,x x x ⋅⋅⋅的标准差 D. 2345,,,x x x x 的极差不大于126,,,x x x ⋅⋅⋅的极差3.(2023·新课标II 卷 第12题)(多选)在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为(01)αα<<,收到0的概率为1;α-发送1时,收到0的概率为(01)ββ<<,收到1的概率为1.β-考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次;三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).A. 采用单次传输方案,若依次发送1,0,1,则依次收到1,0,1的概率为2(1)(1)αβ--B. 采用三次传输方案,若发送1,则依次收到1,0,1的概率为2(1)ββ-C. 采用三次传输方案,若发送1,则译码为1的概率为23(1)(1)βββ-+-D. 当00.5α<<时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率4. (2023·新课标I 卷 第21题)甲乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若未命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8,由抽签确定第1次投篮的人选,第一次投篮的人是甲,乙的概率各为0.5.(1)求第2次投篮的人是乙的概率. (2)求第i 次投篮的人是甲的概率.(3)已知:若随机变量i X 服从两点分布,且111(1)1(0)P X P X q ==-==,1i =,2, ,n ,则11().nni i i i E X q ===∑∑记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求().E Y5.(2023·新课标II 卷 第19题)某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该指标的频率分布直方图:利用该指标制定一个检测标准,需要确定临界值c ,将该指标大于c 的人判定为阳性,小于或等于c 的人判定为阴性,此检测标准的漏诊率是将患病者判定为阴性的概率,记为()p c ;误诊率是将未患病者判定为阳性的概率,记为().q c 假设数据在组内均匀分布.以事件发生的频率作为相应事件发生的概率.(1)当漏诊率()0.5%p c =时,求临界值c 和误诊率()q c ;(2)设函数()()().f c p c q c =+当[95,105]c ∈时,求()f c 的解析式,并求()f c 在区间[95,105]的最小值.【2022年真题】6.(2022·新高考I 卷 第5题)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( )A.16B.13C.12D.237.(2022·新高考II 卷 第13题)随机变量X 服从正态分布2(2,)N σ,若(2 2.5)0.36P x <=…,则( 2.5)P X >=__________.8.(2022·新高考I 卷 第20题)一支医疗团队研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:不够良好良好 病例组 40 60 对照组1090(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?(2)从该地的人群中任选一人,A 表示事件“选到的人卫生习惯不够良好”,B 表示事件“选到的人患有该疾病”,(|)(|)P B A P B A 与(|)(|)P B A P B A 的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为.R()i 证明:(|)(|.;(|)(|)P A B P A B R P A B P A B =()ii 利用该调查数据,给出(|)P A B ,(|)P A B 的估计值,并利用()i 的结果给出R 的估计值.附:22()()()()()n ad bc K a b c d a c b d -=++++,2()P K k …0.050 0.010 0.001 k 3.8416.63510.8289.(2022·新高考II 卷 第19题)在某地区进行某种疾病调查,随机调查了100位这种疾病患者的年龄,得到如下样本数据频率分布直方图.(1)估计该地区这种疾病患者的平均年龄;(同一组数据用该区间的中点值作代表) (2)估计该地区以为这种疾病患者年龄位于区间[20,70)的概率;(3)已知该地区这种疾病患者的患病率为0.1%,该地区年龄位于区间[40,50)的人口数占该地区总人口数的16%,从该地区选出1人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率(精确到0.0001).【2021年真题】10.(2021·新高考I 卷 第8题)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球、甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( ) A. 甲与丙相互独立B. 甲与丁相互独立C. 乙与丙相互独立D. 丙与丁相互独立11.(2021·新高考II 卷 第6题)某物理量的测量结果服从正态分布,下列结论中不正确的是( )A. σ越小,该物理量在一次测量中在(9.9,10.1)的概率越大B. σ越小,该物理量在一次测量中大于10的概率为0.5C. σ越小,该物理量在一次测量中小于9.99与大于10.01的概率相等D. σ越小,该物理量在一次测量中落在(9.9,10.2)与落在(10,10.3)的概率相等12.(2021·新高考I 卷 第9题)(多选)有一组样本数据12,,,n x x x ,由这组数据得到新样本数据12,,,n y y y ,其中(1,2,,)i i y x c i n =+= ,c 为非零常数,则A. 两组样本数据的样本平均数相同B. 两组样本数据的样本中位数相同C. 两组样本数据的样本标准差相同D. 两组样本数据的样本极差相同13.(2021·新高考II 卷 第9题)(多选)下列统计量中,能度量样本12,,,n x x x 的离散程度的是( ) A. 样本12,,,n x x x 的标准差 B. 样本12,,,n x x x 的中位数 C. 样本12,,,n x x x 的极差D. 样本12,,,n x x x 的平均数14.(2021·新高考I 卷 第18题)某学校组织“一带一路”知识竞赛,有A ,B 两类问题.每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A 类问题中的每个问题回答正确得20分,否则得0分;B 类问题中的每个问题回答正确得80分,否则得0分。

历年(2019-2023)高考数学真题专项(概率与统计解答题)汇编(附答案)

历年(2019-2023)高考数学真题专项(概率与统计解答题)汇编(附答案)

历年(2019-2023)高考数学真题专项(概率与统计解答题)汇编考点01:统计案例及应用1 (2021年全国高考乙卷文科)某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:122S .(1)求x ,y ,21S ,22S ;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x -≥则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).2 (2020年高考数学课标Ⅰ卷文科)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A ,B ,C ,D 四个等级.加工业务约定:对于A 级品、B 级品、C 级品,厂家每件分别收取加工费90元,50元,20元;对于D 级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下: 甲分厂产品等级的频数分布表等级 ABCD频数40202020乙分厂产品等级的频数分布表等级 ABCD频数28173421(1)分别估计甲、乙两分厂加工出来的一件产品为A 级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?3 (2019年高考数学课标Ⅲ卷文科)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下实验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据实验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70. (1)求乙离子残留百分比直方图中的a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用改组区间的中点值为代表).4 (2019年高考数学课标Ⅱ卷文科)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.y 的分组[0.20,0)-[0,0.20)[0.20,0.40)[0.40,0.60)[0.60,0.80)企业数 2 24 53 147 (1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602≈.5.(2022新高考全国II 卷·)在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表); (2)估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率;(3)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%.从该地区中任选一人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001).考点02相关关系与回归分析1.(2022年高考全国乙卷(文)·)某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:2m )和材积量(单位:3m ),得到如下数据:样本号i 12345678910总和根部横截面积i x0.04 0.06 0.04 0.08 0.08 0050050.07 0.07 0.06 0.6材积0.25 0.40 0.22 0.54 0.51 0.34 0.36 0.46 0.42 0.40 3.9..量i y并计算得10101022i i i ii=1i=1i=10.038, 1.6158,0.2474x y x y===∑∑∑.(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;(2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为2186m.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.附:相关系数i i(1.377)()nx x y yr--=≈∑.2.(2020年高考数学课标Ⅱ卷文科·)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i,y i)(i=1,2,…,20),其中x i和y i分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160iix==∑,2011200iiy==∑,202180iixx=-=∑(,2021)9000iiy y=-=∑(,201)800iiix yx y=--=∑((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i,y i)(i=1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r)ni ix yx y--∑((≈1.414.考点03 独立性检验1.(2022年全国高考甲卷(文)·)甲、乙两城之间的长途客车均由A 和B 两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:准点班次数 未准点班次数 A 240 20 B21030(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有0090的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,()2P K k …0.100 0.050 0.010 k2.7063.8416.6352.(2020年新高考I 卷(山东卷)·)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和2SO 浓度(单位:3μg/m ),得下表: 2SOPM2.5[0,50](50,150] (150,475][0,35]32 18 4 (35,75]6 8 12 (75,115]3710(1)估计事件“该市一天空气中PM2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表: 2SOPM2.5[0,150](150,475][0,75](75,115](3)根据(2)中列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,2()P K k ≥ 0.050 0.010 0.001 k3.841 6.63510.8283 .(2020新高考II 卷(海南卷)·)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM 2.5和2SO 浓度(单位:3μg/m ),得下表:(1)估计事件“该市一天空气中PM 2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM 2.5浓度与2SO 浓度有关?的附:22()()()()()n ad bc K a b c d a c b d -=++++,4.(2021年高考全国甲卷文科·)甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:一级品 二级品 合计 甲机床 150 50 200 乙机床 120 80 200 合计270130400(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%把握认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++ ()2P K k ≥ 0.050 0.0100.001k 3.841 6.635 10.8285.(2020年高考数学课标Ⅲ卷文科·)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天): 锻炼人次 空气质量等级 [0,200](200,400](400,600]1(优) 2 16 25 2(良)51012的3(轻度污染) 67 84(中度污染) 72 0(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400人次>400空气质量好空气质量不好附:22()()()()()n ad bcKa b c d a c b d-=++++,P(K2≥k)0.050 0.010 0.001k 3.841 6.635 10.8286.(2019年高考数学课标Ⅰ卷文科·)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:满意不满意男顾客40 10女顾客30 20(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.2()P K k…0.050 0.010 0.001 k 3.841 6.635 10.828参考答案考点01:统计案例及应用1 (2021年全国高考乙卷文科)某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:122S .(1)求x ,y ,21S ,22S ;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x -≥则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).【答案】(1)221210,10.3,0.036,0.04x yS S ====;(2)新设备生产产品的该项指标的均值较旧设备有显著提高. 【答案解析】:(1)9.810.31010.29.99.81010.110.29.71010x +++++++++==,10.110.410.11010.110.310.610.510.410.510.310y +++++++++==,22222222210.20.300.20.10.200.10.20.30.03610S +++++++++==,222222222220.20.10.20.30.200.30.20.10.20.0410S +++++++++==(2)依题意,0.320.15y x -==⨯==,=y x -≥,所以新设备生产产品的该项指标的均值较旧设备有显著提高.2 (2020年高考数学课标Ⅰ卷文科)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A ,B ,C ,D 四个等级.加工业务约定:对于A 级品、B 级品、C 级品,厂家每件分别收取加工费90元,50元,20元;对于D 级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲.分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表等级 A B C D频数 4020 20 20乙分厂产品等级的频数分布表等级 A B C D频数 2817 34 21(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?【答案】(1)甲分厂加工出来的A级品的概率为0.4,乙分厂加工出来的A级品的概率为0.28;(2)选甲分厂,理由见答案解析.【答案解析】(1)由表可知,甲厂加工出来的一件产品为A级品的概率为400.4100=,乙厂加工出来的一件产品为A级品的概率为280.28 100=;(2)甲分厂加工100件产品总利润为()()()()4090252050252020252050251500⨯-+⨯-+⨯--⨯+=元,所以甲分厂加工100件产品的平均利润为15元每件;乙分厂加工100件产品的总利润为()()()()2890201750203420202150201000⨯-+⨯-+⨯--⨯+=元,所以乙分厂加工100件产品的平均利润为10元每件.故厂家选择甲分厂承接加工任务.3 (2019年高考数学课标Ⅲ卷文科)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下实验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据实验数据分别得到如下直方图:的记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70. (1)求乙离子残留百分比直方图中的a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用改组区间的中点值为代表). 【答案】【答案解析】:(1)C 为事件:“乙离子残留在体内的百分比不低于5.5”, 根据直方图得到P (C )的估计值为0.70. 则由频率分布直方图得: 0.200.150.70.050.1510.7a b ++=⎧⎨++=-⎩, 解得乙离子残留百分比直方图中0.35a =,0.10b =. (2)估计甲离子残留百分比的平均值为:20.1530.2040.3050.2060.1070.05 4.05x =⨯+⨯+⨯+⨯+⨯+⨯=甲.乙离子残留百分比的平均值为:30.0540.150.1560.3570.280.156x =⨯+⨯+⨯+⨯+⨯+⨯=乙.4 (2019年高考数学课标Ⅱ卷文科)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.y 的分组[0.20,0)-[0,0.20)[0.20,0.40)[0.40,0.60)[0.60,0.80)企业数 2 24 53 147 (1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602≈. 【答案】【答案解析】:(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为1470.21100+=.产值负增长的企业频率为20.02100=. 用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%.(2)1(0.1020.10240.30530.50140.707)0.30100y =-⨯+⨯+⨯+⨯+⨯=,()52211100i i i s n y y ==-∑222221(0.40)2(0.20)240530.20140.407100⎡⎤=-⨯+-⨯+⨯+⨯+⨯⎣⎦ =0.0296,0.020.17s ==≈,所以,这类企业产值增长率的平均数与标准差的估计值分别为30%,17%.5.(2022新高考全国II 卷·)在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表); (2)估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率;(3)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%.从该地区中任选一人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001). 【答案】(1)47.9岁; (2)0.89; (3)0.0014.【答案解析】:(1)平均年龄(50.001150.002250.012350.017450.023x =⨯+⨯+⨯+⨯+⨯ 550.020650.017750.006850.002)1047.9+⨯+⨯+⨯+⨯⨯=(岁). (2)设A ={一人患这种疾病的年龄在区间[20,70)},所以()1()1(0.0010.0020.0060.002)1010.110.89P A P A =-=-+++⨯=-=.(3)设{B =任选一人年龄位于区间}[40,50),{C =任选一人患这种疾病}, 则由条件概率公式可得 ()0.1%0.023100.0010.23(|)0.00143750.0014()16%0.16P BC P C B P B ⨯⨯⨯====≈.考点02相关关系与回归分析1.(2022年高考全国乙卷(文)·)某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:2m )和材积量(单位:3m ),得到如下数据: 样本号i 12345678910总和根部横截面积i x0.04 0.06 0.04 0.08 0.08 0050050.07 0.07 0.06 0.6材积量i y0.25 0.40 0.22 0.54 0.51 0.34 0.36 0.46 0.42 0.40 3.9并计算得10101022ii i i i=1i=1i=10.038, 1.6158,0.2474xy x y ===∑∑∑.(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量; (2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为2186m .已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.附:相关系数ii( 1.377)()nx x y y r --=≈∑.【答案】(1)20.06m ;30.39m (2)0.97..(3)31209m【答案解析】:【小问1详解】样本中10棵这种树木的根部横截面积的平均值0.60.0610x == 样本中10棵这种树木的材积量的平均值 3.90.3910y == 据此可估计该林区这种树木平均一棵的根部横截面积为20.06m , 平均一棵的材积量为30.39m 【小问2详解】()()1010iii i10x x y y x y xyr ---==∑∑0.01340.970.01377==≈≈则0.97r ≈ 【小问3详解】设该林区这种树木的总材积量的估计值为3m Y , 又已知树木的材积量与其根部横截面积近似成正比, 可得0.06186=0.39Y,解之得3=1209m Y . 则该林区这种树木总材积量估计为31209m2.(2020年高考数学课标Ⅱ卷文科·)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i i y ==∑,202180i ix x =-=∑(,2021)9000i i y y =-=∑(,201)800i i i x y x y =--=∑((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.的附:相关系数r)niix y x y --∑((≈1.414.【答案】(1)12000;(2)0.94;(3)详见答案解析【答案解析】(1)样区野生动物平均数为201111200602020ii y ==⨯=∑, 地块数为200,该地区这种野生动物的估计值为2006012000⨯= (2)样本(,)i i x y (i =1,2,…,20)的相关系数为20()()0.943iix x y y r --===≈∑(3)由(2)知各样区的这种野生动物的数量与植物覆盖面积有很强的正相关性, 由于各地块间植物覆盖面积差异很大,从俄各地块间这种野生动物的数量差异很大, 采用分层抽样的方法较好地保持了样本结构与总体结构得以执行,提高了样本的代表性, 从而可以获得该地区这种野生动物数量更准确的估计.【点晴】本题主要考查平均数的估计值、相关系数的计算以及抽样方法的选取,考查学生数学运算能力,是一道容易题.考点03 独立性检验1.(2022年全国高考甲卷(文)·)甲、乙两城之间的长途客车均由A 和B 两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:准点班次数 未准点班次数 A 240 20 B21030(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有0090的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,()2P K k …0.100 0.050 0.010 k2.7063.8416.635【答案】(1)A ,B 两家公司长途客车准点的概率分别为1213,78(2)有 【答案解析】根据表中数据,A 共有班次260次,准点班次有240次, 设A 家公司长途客车准点事件为M ,则24012()26013P M ==; B 共有班次240次,准点班次有210次, 设B 家公司长途客车准点事件为N , 则210()28074P N ==. A 家公司长途客车准点的概率为1213; B 家公司长途客车准点的概率为78. (2)列联表准点班次数未准点班次数 合计A 240 20 260B 210 30 240 合计4505050022()()()()()n ad bc K a b c d a c b d -=++++=2500(2403021020) 3.205 2.70626024045050⨯⨯-⨯≈>⨯⨯⨯,根据临界值表可知,有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关. 2.(2020年新高考I 卷(山东卷)·)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和2SO 浓度(单位:3μg/m ),得下表: 2SOPM2.5[0,50](50,150] (150,475][0,35]32 18 4 (35,75]6812(75,115]3 7 10(1)估计事件“该市一天空气中PM2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表: 2SOPM2.5[0,150](150,475][0,75](75,115](3)根据(2)中列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,2()P K k ≥ 0.050 0.010 0.001 k3.841 6.63510.828【答案】(1)0.64;(2)答案见答案解析;(3)有.【答案解析】:(1)由表格可知,该市100天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的天数有32618864+++=天,所以该市一天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的概率为640.64100=; (2)由所给数据,可得22⨯列联表为:2SO2.5PM[]0,150(]150,475合计[]0,7564 16 80 (]75,11510 10 20 合计 7426100(3)根据22⨯列联表中的数据可得的222()100(64101610)()()()()80207426n ad bc K a b c d a c b d -⨯⨯-⨯==++++⨯⨯⨯36007.4844 6.635481=≈>, 因为根据临界值表可知,有99%的把握认为该市一天空气中 2.5PM 浓度与2SO 浓度有关. 3 .(2020新高考II 卷(海南卷)·)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM 2.5和2SO 浓度(单位:3μg/m ),得下表:(1)估计事件“该市一天空气中PM 2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM 2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,【答案】(1)0.64;(2)答案见答案解析;(3)有.【答案解析】:(1)由表格可知,该市100天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的天数有32618864+++=天,所以该市一天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的概率为640.64100=; (2)由所给数据,可得22⨯列联表为:2SO2.5PM[]0,150(]150,475合计[]0,7564 16 80 (]75,11510 10 20 合计 7426100(3)根据22⨯列联表中的数据可得222()100(64101610)()()()()80207426n ad bc K a b c d a c b d -⨯⨯-⨯==++++⨯⨯⨯36007.4844 6.635481=≈>, 因为根据临界值表可知,有99%的把握认为该市一天空气中 2.5PM 浓度与2SO 浓度有关. 【题目栏目】统计\相关关系、回归分析与独立性检验\独立性检验4.(2021年高考全国甲卷文科·)甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:一级品 二级品 合计 甲机床 150 50 200 乙机床 120 80 200 合计270130400(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%把握认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++ ()2P K k ≥ 0.050 0.0100.001k 3.841 6.635 10.828【答案】(1)75%;60%;的(2)能.答案解析:(1)甲机床生产的产品中的一级品的频率为15075% 200=,乙机床生产的产品中的一级品的频率为12060% 200=.(2)()22400150801205040010 6.63527013020020039K⨯-⨯==>>⨯⨯⨯,故能有99%的把握认为甲机床的产品与乙机床的产品质量有差异.5.(2020年高考数学课标Ⅲ卷文科·)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次空气质量等级[0,200](200,400] (400,600]1(优) 216 252(良) 510 123(轻度污染) 67 84(中度污染) 72 0(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400人次>400空气质量好空气质量不好附:22()()()()()n ad bcKa b c d a c b d-=++++,P(K2≥k)0.050 0.010 0.001 k 3.841 6.635 10.828【答案】(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09;(2)350;(3)有,理由见答案解析.【答案解析】(1)由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43100++=,等级为2的概率为510120.27100++=,等级为3的概率为6780.21100++=,等级为4的概率为7200.09100++=;(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100⨯+⨯+⨯=(3)22⨯列联表如下:人次400≤人次400>空气质量不好 3337 空气质量好 228()221003383722 5.820 3.84155457030K ⨯⨯-⨯=≈>⨯⨯⨯,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.6.(2019年高考数学课标Ⅰ卷文科·)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:满意 不满意 男顾客 40 10 女顾客3020(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异? 附:22()()()()()n ad bc K a b c d a c b d -=++++.2()P K k …0.050 0.010 0.001 k3.8416.63510.828【答案】【答案解析】(1)由调查数据,男顾客中对该商场服务满意的比率为400.850=,因此男顾客对该商场服务满意的概率的估计值为0.8.女顾客中对该商场服务满意的比率为300.650=,因此女顾客对该商场服务满意的概率的估计值为0.6.(2)22100(40203010)4.76250507030K⨯⨯-⨯=≈⨯⨯⨯.由于4.762 3.841>,故有95%的把握认为男、女顾客对该商场服务的评价有差异.。

2023年概率专题历年高考真题汇总小题解析版

2023年概率专题历年高考真题汇总小题解析版

概率专题历年高考真题汇总(小题)1.(·新课标Ⅰ, 3)为理解某地区旳中小学生旳视力状况, 拟从该地区旳中小学生中抽取部分学生进行调查, 事先已理解到该地区小学、初中、高中三个学段学生旳视力状况有较大差异, 而男女生视力状况差异不大. 在下面旳抽样措施中, 最合理旳抽样措施是().A. 简朴随机抽样B. 按性别分层抽样C. 按学段分层抽样D. 系统抽样解析:由于学段层次差异较大, 因此在不一样学段中抽取宜用分层抽样.故选C.2.(·新课标Ⅱ, 6)安排3名志愿者完毕4项工作, 每人至少完毕1项, 每项工作由1人完毕, 则不一样旳安排方式共有..)A. 12种B. 18种C. 24种D. 36种【答案】D 解析: 解法一: 将三人提成两组, 一组为三个人, 有种也许, 此外一组从三人在选调一人, 有种也许;两组前后在排序, 在对位找工作即可, 有种也许;合计有36种也许.解法二:工作提成三份有种也许, 在把三组工作分给3个人有也许, 合计有36种也许.3.(·新课标Ⅱ, 理8)我国数学家陈景润在哥德巴赫猜测旳研究中获得了世界领先旳成果. 哥德巴赫猜测是“每个不小于2旳偶数可以表达为两个素数旳和”, 如. 在不超过30旳素数中, 随机选用两个不一样旳数, 其和等于30旳概率是..)A. B. C. D.【答案】C 解析:30以内旳素数有10个, 满足和为30旳素数对有3对, 概率为, 选C.4.(·新课标Ⅰ, 2)如图, 正方形ABCD内旳图形来自中国古代旳太极图, 正方形内切圆中旳黑色部分和白色部分有关正方形旳中心成中心对称. 在正方形内随机取一点, 则此点取自黑色部分旳概率是()A. B. C. D.【答案】B 解析: 设正方形边长为, 则圆半径为, 则正方形旳面积为, 圆旳面积为, 图中黑色部分旳概率为, 则此点取自黑色部分旳概率为, 故选B;【解题技巧】解几何概型旳试题, 一般先求出试验旳基本领件构成旳区域长度(面积或体积), 再求出事件构成旳区域长度(面积或体积), 最终裔入几何概型旳概率公式即可.几何概型计算公式:P(A)=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率高考试题汇编课标理数13.K1[2011·福建卷] 盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率等于________.课标理数13.K1[2011·福建卷] 【答案】 35【解析】 从盒中随机取出2个球,有C 25种取法;所取出的2个球颜色不同,有C 13C 12种取法,则所取出的2个球颜色不同的概率是p=C 13C 12C 25=610=35.课标文数19.I2,K1[2011·福建卷] 某日用品按行业质量标准分成五个等级,等级系数X 依次为1,2,3,4,5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:(1)若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a ,b ,c 的值;(2)在(1)的条件下,将等级系数为4的3件日用品记为x 1,x 2,x 3,等级系数为5的2件日用品记为y 1,y 2,现从x 1,x 2,x 3,y 1,y 2这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率.课标文数19.I2、K1[2011·福建卷] 【解答】(1)由频率分布表得a+0.2+0.45+b+c=1,即a+b+c=0.35.因为抽取的20件日用品中,等级系数为4的恰有3件,所以b=320=0.15.等级系数为5的恰有2件,所以c=220=0.1.从而a=0.35-b-c=0.1.所以a=0.1,b=0.15,c=0.1.(2)从日用品x1,x2,x3,y1,y2中任取两件,所有可能的结果为:{x1,x2},{x1,x3},{x1,y1},{x1,y2},{x2,x3},{x2,y1},{x2,y2},{x3,y1},{x3,y2},{y1,y2}.设事件A表示“从日用品x1,x2,x3,y1,y2中任取两件,其等级系数相等”,则A包含的基本事件为:{x1,x2},{x1,x3},{x2,x3},{y1,y2},共4个.又基本事件的总数为10,故所求的概率P(A)=410=0.4.课标数学5.K1[2011·江苏卷] 从1,2,3,4这四个数中一次随机地取两个数,则其中一个数是另一个数的两倍的概率是________.课标数学5.K1[2011·江苏卷] 13【解析】一次随机抽取两个数共有1,2;1,3;1,4;2,3;2,4;3,4,一个数是另一个数的2倍的有2种,故所求概率为13.课标文数9.K2[2011·安徽卷] 从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于( )A.110B.18C.16D.15课标文数9.K2[2011·安徽卷] D 【解析】 假设正六边形的六个顶点分别为A 、B 、C 、D 、E 、F ,则从6个顶点中任取4个共有15种基本结果,所取四个点构成矩形四个顶点的结果数为3,所以概率为15.课标文数16.I2,K2[2011·北京卷] 以下茎叶图记录了甲、乙两组各四名同学的植树棵数,乙组记录中有一个数据模糊,无法确认,在图中以X 表示.甲组 乙组9 9 1 1⎪⎪⎪⎪⎪⎪01 X 8 9 0K (1)如果X =8,求乙组同学植树棵数的平均数和方差;(2)如果X =9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.(注:方差s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 为x 1,x 2,…,x n 的平均数)课标文数16.I2,K2[2011·北京卷] 【解答】 (1)当X =8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10,所以平均数为x =8+8+9+104=354; 方差为s 2=14⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫8-3542+⎝ ⎛⎭⎪⎫8-3542+⎝ ⎛⎭⎪⎫9-3542+⎝ ⎛⎭⎪⎫10-3542 =1116.(2)记甲组四名同学分别为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11;乙组四名同学分别为B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10.分别从甲、乙两组中随机选取一名同学,所有可能的结果有16个,它们是:(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,B 4),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,B 4),(A 3,B 1),(A 3,B 2),(A 3,B 3),(A 3,B 4),(A 4,B 1),(A 4,B 2),(A 4,B 3),(A 4,B 4).用C 表示:“选出的两名同学的植树总棵数为19”这一事件,则C 中的结果有4个,它们是:(A 1,B 4),(A 2,B 4),(A 3,B 2),(A 4,B 2),故所求概率为P (C )=416=14.课标文数17.I2,K2[2011·广东卷]在某次测验中,有6位同学的平均成绩为75分.用x n 表示编号为n (n =1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:(1)求第6位同学的成绩x 6,及这6位同学成绩的标准差s ;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.课标文数17.I2,K2[2011·广东卷] 【解答】(1)∵x =16∑6x n =75,∴x 6=6x -∑5x n =6×75-70-76-72-70-72=90,s 2=16∑6 (x n -x )2=16(52+12+32+52+32+152)=49, ∴s =7.(2)从5位同学中随机选取2位同学,共有如下10种不同的取法: {1,2},{1,3},{1,4},{1,5},{2,3},{2,4},{2,5},{3,4},{3,5},{4,5}.选出的2位同学中,恰有1位同学的成绩位于(68,75)的取法共有如下4种:{1,2},{2,3},{2,4},{2,5},故所求概率为25.课标理数4.K2[2011·课标全国卷] 有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A.13B.12C.23D.34课标理数4.K2[2011·课标全国卷] A 【解析】 甲、乙两名同学参加小组的情况共有9种,参加同一小组的情况有3种,所以参加同一小组的概率为39=13.课标文数19.K2,I2[2011·辽宁卷] 某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n 小块地,在总共2n 小块地中,随机选n 小块地种植品种甲,另外n 小块地种植品种乙.(1)假设n =2,求第一大块地都种植品种甲的概率;(2)试验时每大块地分成8小块,即n =8,试验结束后得到品种甲和品种乙在各小块地上的每公顷产量(单位:kg/hm 2)如下表:分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?附:样本数据x 1,x 2,…,x n 的样本方差s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 为样本平均数.课标文数19.K2,I2[2011·辽宁卷] 【解答】 (1)设第一大块地中的两小块地编号为1,2,第二大块地中的两小块地编号为3,4,令事件A =“第一大块地都种品种甲”.从4小块地中任选2小块地种植品种甲的基本事件共6个: (1,2),(1,3),(1,4),(2,3),(2,4),(3,4).而事件A 包含1个基本事件:(1,2).所以P (A )=16.(2)品种甲的每公顷产量的样本平均数和样本方差分别为:x 甲=18(403+397+390+404+388+400+412+406)=400,s 2甲=18[32+(-3)2+(-10)2+42+(-12)2+02+122+62]=57.25. 品种乙的每公顷产量的样本平均数和样本方差分别为:x 乙=18(419+403+412+418+408+423+400+413)=412,S 2乙=18[72+(-9)2+02+62+(-4)2+112+(-12)2+12]=56. 由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且两品种的样本方差差异不大,故应该选择种植品种乙.课标文数6.K2[2011·课标全国卷] 有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A.13B.12C.23D.34课标文数6.K2[2011·课标全国卷] A 【解析】 甲、乙两名同学参加小组的情况共有9种,参加同一小组的情况有3种,所以参加同一小组的概率为39=13.课标文数18.K2[2011·山东卷] 甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.课标文数18.K2[2011·山东卷] 【解答】 (1)甲校两名男教师分别用A 、B 表示,女教师用C 表示;乙校男教师用D 表示,两名女教师分别用E 、F 表示.从甲校和乙校报名的教师中各任选1名的所有可能的结果为:(A,D),(A,E),(A,F),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F)共9种.从中选出两名教师性别相同的结果有:(A,D),(B,D),(C,E),(C,F)共4种.选出的两名教师性别相同的概率为P=49.(2)从甲校和乙校报名的教师中任选2名的所有可能的结果为:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F)共15种.从中选出两名教师来自同一学校的结果有:(A,B),(A,C),(B,C),(D,E),(D,F),(E,F)共6种,选出的两名教师来自同一学校的概率为P=615=25.课标理数10.K2[2011·陕西卷] 甲乙两人一起去游“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是()A.136 B.19 C.536 D.16课标理数10.K2[2011·陕西卷] D【解析】对本题我们只看甲乙二人游览的最后一个景点,最后一个景点的选法有C16×C16=36(种),若两个人最后选同一个景点共有C16=6(种)选法,所以最后一小时他们在同一个景点游览的概率为P =C 16C 16×C 16=16.大纲文数12.K2[2011·四川卷] 在集合{1,2,3,4,5}中任取一个偶数a 和一个奇数b 构成以原点为起点的向量α=(a ,b ).从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形,记所有作成的平行四边形的个数为n ,其中面积等于2的平行四边形的个数为m ,则mn =( )A.215B.15C.415D.13大纲文数12.K2[2011·四川卷] B 【解析】 因为当OP →=(a 1,a 2),OQ →=(b 1,b 2),则以OP →,OQ →为邻边的平行四边形的面积S =|OP →||OQ →|sin ∠POQ =|OP→||OQ →|·1-cos 2∠POQ =|OP →|2|OQ →|2-(OP →·OQ→)2=(a 21+a 22)(b 21+b 22)-(a 1b 1+a 2b 2)2=|a 1b 2-a 2b 1|.根据条件知平行四边形面积等于2可转化为|a 1b 2-a 2b 1|=2(※).由条件知,满足条件的向量有6个,即α1=(2,1),α2=(2,3),α3=(2,5),α4=(4,1),α5=(4,3),α6=(4,5),易知n =C 26=15.而满足(※)式的有向量α1和α4、α1和α5、α2和α6共3个,即m n =15.大纲理数12.K2[2011·四川卷] 在集合{1,2,3,4,5}中任取一个偶数a 和一个奇数b 构成以原点为起点的向量α=(a ,b ),从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形.记所有作成的平行四边形的个数为n ,其中面积不超过...4的平行四边形的个数为m ,则mn =( )A.415B.13C.25D.23大纲理数12.K2[2011·四川卷] B 【解析】 因为当OP →=(a 1,a 2),OQ →=(b 1,b 2),则以OP →,OQ →为邻边的四边形的面积S =|OP →||OQ →|sin ∠POQ =|OP→||OQ →|·1-cos 2∠POQ =|OP →|2|OQ →|2-(OP →·OQ→)2=(a 21+a 22)(b 21+b 22)-(a 1b 1+a 2b 2)2=|a 1b 2-a 2b 1|.根据条件知平行四边形面积不超过4可转化为|a 1b 2-a 2b 1|≤4(※).由条件知,满足条件的向量有6个,即α1=(2,1),α2=(2,3),α3=(2,5),α4=(4,1),α5=(4,3),α6=(4,5),易知n =C 26=15.而满足(※)式的有向量α1和α2、α1和α4、α1和α5、α2和α3、α2和α6共5个,即m n =13.课标理数16.K2,K6[2011·天津卷] 学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球.这些球除颜色外完全相同.每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)(1)求在1次游戏中, (i)摸出3个白球的概率;(ii)获奖的概率;(2)求在2次游戏中获奖次数X 的分布列及数学期望E (X ). 课标理数16.K2,K6[2011·天津卷] 【解答】 (1)(i)设“在1次游戏中摸出i 个白球”为事件A i (i =0,1,2,3),则P (A 3)=C 23C 25·C 12C 23=15.(ii)设“在1次游戏中获奖”为事件B ,则B =A 2∪A 3,又P (A 2)=C 23C 25·C 22C 23+C 13C 12C 25·C 12C 23=12,且A 2,A 3互斥,所以P (B )=P (A 2)+P (A 3)=12+15=710.(2)由题意可知X 的所有可能取值为0,1,2. P (X =0)=⎝ ⎛⎭⎪⎫1-7102=9100,P (X =1)=C 12710⎝ ⎛⎭⎪⎫1-710=2150,P (X =2)=⎝ ⎛⎭⎪⎫7102=49100.所以X 的分布列是X 的数学期望E (X )=0×9100+1×2150+2×49100=75.课标文数15.K2[2011·天津卷] 编号分别为A1,A2,…,A16的16名篮球运动员在某次训练比赛中的得分记录如下:(1)将得分在对应区间内的人数填入相应的空格:(2)从得分在区间[20,30)内的运动员中随机抽取2人,①用运动员编号列出所有可能的抽取结果;②求这2人得分之和大于50的概率.课标文数15.K2[2011·天津卷] 【解答】(1)4,6,6.(2)①得分在区间[20,30)内的运动员编号为A3,A4,A5,A10,A11,A13,从中随机抽取2人,所有可能的抽取结果有:{A3,A4},{A3,A5},{A3,A10},{A3,A11},{A3,A13},{A4,A5},{A4,A10},{A4,A11},{A4,A13},{A5,A10},{A5,A11},{A5,A13},{A10,A11},{A10,A13},{A11,A13},共15种.②“从得分在区间[20,30)内的运动员中随机抽取2人,这2个得分之和大于50”(记为事件B )的所有可能结果有:{A 4,A 5},{A 4,A 10},{A 4,A 11},{A 5,A 10},{A 10,A 11},共5种.所以P (B )=515=13.课标理数9.K2[2011·浙江卷] 有5本不同的书,其中语文书2本,数学书2本,物理书1本,若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率是( )A.15B.25C.35D.45课标理数9.K2[2011·浙江卷] B 【解析】 由古典概型的概率公式得P =1-2A 22A 22A 23+A 33A 22A 22A 55=25.课标文数8.K2[2011·浙江卷] 从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是( )A.110B.310C.35D.910课标文数8.K2[2011·浙江卷] D 【解析】 由古典概型的概率公式得P =1-C 33C 35=910.大纲文数14.K2[2011·重庆卷] 从甲、乙等10位同学中任选3位去参加某项活动,则所选3位中有甲但没有乙的概率为________.大纲文数14.K2[2011·重庆卷] 730【解析】从10位同学中选3位的选法有C310种,其中有甲无乙的选法有C28种,故所求的概率为C28 C310=730.课标理数4.K3[2011·福建卷] 如图1-1,矩形ABCD 中,点E 为边CD 的中点.若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于( )图1-1A.14B.13C.12D.23课标理数4.K3[2011·福建卷] C 【解析】 因为S △ABE =12|AB |·|BC |,S 矩形=|AB |·|BC |,则点Q 取自△ABE 内部的概率p =S △ABES 矩形=12,故选C.课标文数7.K3[2011·福建卷] 如图1-2,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于( )图1-2A.14B.13C.12D.23课标文数7.K3[2011·福建卷] C 【解析】 因为S △ABE =12|AB |·|BC |,S 矩形=|AB |·|BC |,则点Q 取自△ABE 内部的概率p =S △ABES 矩形=12,故选C.图1-5课标理数15.K3[2011·湖南卷] 如图1-5,EFGH 是以O 为圆心、半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则(1)P (A )=________;(2)P (B |A )=________.课标理数15.K3[2011·湖南卷] (1) 2π (2)14 【解析】 (1)S 圆=π,S 正方形=(2)2=2,根据几何概型的求法有:P (A )=S 正方形S 圆=2π;(2)由∠EOH =90°,S △EOH =14S 正方形=12,故P ( |B A )=S △EOHS 正方形=122=14.课标文数15.H4,K3[2011·湖南卷] 已知圆C :x 2+y 2=12,直线l :4x +3y =25.(1)圆C 的圆心到直线l 的距离为________;(2)圆C 上任意一点A 到直线l 的距离小于2的概率为________. 课标文数15.H4,K3[2011·湖南卷] (1)5 (2)16 【解析】 (1)圆心到直线的距离为:d =||-2532+42=5;图1-4(2)当圆C 上的点到直线l 的距离是2时有两个点为点B 与点D ,设过这两点的直线方程为4x +3y +c =0,同时可得到的圆心到直线4x +3y +c =0的距离为OC =3,又圆的半径为r =23,可得∠BOD =60°,由图1-2可知点A 在弧BD 上移动,弧长lBD =16×c =c 6,圆周长c ,故P (A )=l BD c =16.课标理数12.K3[2011·江西卷] 小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为________.课标理数12.K3[2011·江西卷] 【答案】 1316图1-5【解析】 设A ={小波周末去看电影},B ={小波周末去打篮球},C ={小波周末在家看书},D ={小波周末不在家看书},如图1-5所示,则P (D )=1-P (C )=1-⎝ ⎛⎭⎪⎫122π-⎝ ⎛⎭⎪⎫142ππ=1316.大纲理数18.K4,K6[2011·全国卷] 根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立.(1)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(2)X表示该地的100位车主中,甲、乙两种保险都不购买的车主数,求X的期望.大纲理数18.K4,K6[2011·全国卷] 【解答】记A表示事件:该地的1位车主购买甲种保险;B表示事件:该地的1位车主购买乙种保险但不购买甲种保险;C表示事件:该地的1位车主至少购买甲、乙两种保险中的1种;D表示事件:该地的1位车主甲、乙两种保险都不购买.(1)P(A)=0.5,P(B)=0.3,C=A+B,P(C)=P(A+B)=P(A)+P(B)=0.8.(2)D=C,P(D)=1-P(C)=1-0.8=0.2,X~B(100,0.2),即X服从二项分布,所以期望EX=100×0.2=20.大纲文数19.K4,K5[2011·全国卷] 根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立.(1)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(2)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率.大纲文数19.K4,K5[2011·全国卷] 【解答】记A表示事件:该地的1位车主购买甲种保险;B表示事件:该地的1位车主购买乙种保险但不购买甲种保险;C表示事件:该地的1位车主至少购买甲、乙两种保险中的1种;D表示事件:该地的1位车主甲、乙两种保险都不购买;E表示事件:该地的3位车主中恰有1位车主甲、乙两种保险都不购买.(1)P(A)=0.5,P(B)=0.3,C=A+B,P(C)=P(A+B)=P(A)+P(B)=0.8.(2)D=C,P(D)=1-P(C)=1-0.8=0.2,P(E)=C13×0.2×0.82=0.384.课标理数18.K4,K6[2011·湖南卷] 某商店试销某种商品20天,获得如下数据:试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充....将频率视为概率...至3件,否则不进货(1)求当天商店不进货...的概率; (2)记X 为第二天开始营业时该商品的件数,求X 的分布列和数学期望.课标理数18.K4,K6[2011·湖南卷] 【解答】 (1)P (“当天商店不进货”)=P (“当天商品销售量为0件”)+P (“当天商品销售量为1件”)=120+520=310.(2)由题意知,X 的可能取值为2,3.P (X =2)=P (“当天商品销售量为1件”)=520=14;P (X =3)=P (“当天商品销售量为0件”)+P (“当天商品销售量为2件”)+P (“当天商品销售量为3件”)=120+920+520=34.故X 的分布列为X 的数学期望为EX =2×14+3×34=114.课标文数18.I2,K4[2011·湖南卷] 某河流上的一座水力发电站,每年六月份的发电量Y (单位:万千瓦时)与该河上游在六月份的降雨量X(单位:毫米)有关.据统计,当X=70时,Y=460;X每增加10,Y 增加5.已知近20年X的值为:140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160.(1)完成如下的频率分布表:近20年六月份降雨量频率分布表(2)假定今年六月份的降雨量与近20年六月份降雨量的分布规律相同,并将频率视为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.课标文数18.I2,K4[2011·湖南卷] 【解答】(1)在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个.故近20年六月份降雨量频率分布表为(2)P(“发电量低于490万千瓦时或超过530万千瓦时”)=P(Y<490或Y>530)=P(X<130或X>210)=P(X=70)+P(X=110)+P(X=220)=120+320+220=310.故今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率为310.课标文数16.K4[2011·江西卷] 某饮料公司对一名员工进行测试以便确定其考评级别,公司准备了两种不同的饮料共5杯,其颜色完全相同,并且其中3杯为A 饮料,另外2杯为B 饮料,公司要求此员工一一品尝后,从5杯饮料中选出3杯A 饮料.若该员工3杯都选对,则评为优秀;若3杯选对2杯,则评为良好;否则评为合格.假设此人对A 和B 两种饮料没有鉴别能力.(1)求此人被评为优秀的概率; (2)求此人被评为良好及以上的概率.课标文数16.K4[2011·江西卷] 【解答】 将5杯饮料编号为:1,2,3,4,5,编号1,2,3表示A 饮料,编号4,5表示B 饮料,则从5杯饮料中选出3杯的所有可能情况为:(123),(124),(125),(134),(135),(145),(234),(235),(245),(345),可见,共有10种.令D 表示此人被评为优秀的事件,E 表示此人被评为良好的事件,F 表示此人被评为良好及以上的事件,则(1)P (D )=110.(2)P (E )=35,P (F )=P (D )+P (E )=710.课标理数20.K4,K6[2011·陕西卷]图1-12如图1-12,A地到火车站共有两条路径L1和L2,据统计,通过两条路径所用的时间互不影响,所用时间落在各时间段内的频率如下表:时间(分钟)10~2020~3030~4040~5050~60L1的频率0.10.20.30.20.2L2的频率00.10.40.40.1 现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站.(1)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径?(2)用X表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对(1)的选择方案,求X的分布列和数学期望.课标理数20.K4,K6[2011·陕西卷] 【解答】(1)A i表示事件“甲选择路径L i时,40分钟内赶到火车站”,B i表示事件“乙选择路径L i时,50分钟内赶到火车站”,i=1,2.用频率估计相应的概率可得P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5,∵P(A1)>P(A2),∴甲应选择L1;P(B1)=0.1+0.2+0.3+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,∵P(B2)>P(B1),∴乙应选择L2.(2)A,B分别表示针对(1)的选择方案,甲、乙在各自允许的时间内赶到火车站,由(1)知P(A)=0.6,P(B)=0.9,又由题意知,A,B独立,∴P(X=0)=P(A B)=P(A)P(B)=0.4×0.1=0.04,P(X=1)=P(AB+AB)=P(A)P(B)+P(A)P(B)=0.4×0.9+0.6×0.1=0.42,P(X=2)=P(AB)=P(A)P(B)=0.6×0.9=0.54.∴X的分布列为∴EX=0×0.04+1×0.42+2×0.54=1.5.课标文数20.K1[2011·陕西卷] 如图1-13,A地到火车站共有两条路径L1和L2,现随机抽取100位从A地到达火车站的人进行调查,调查结果如下:所用时间(分钟)10~2020~3030~4040~5050~60选择L1的人数612181212选择L2的人数041616 4图1-13(1)试估计40分钟内不能..赶到火车站的概率;(2)分别求通过路径L1和L2所用时间落在上表中各时间段内的频率;(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.课标文数20.K1[2011·陕西卷] 【解答】(1)由已知共调查了100人,其中40分钟内不能赶到火车站的有12+12+16+4=44人,用频率估计相应的概率为0.44.(2)选择L1的有60人,选择L2的有40人,故由调查结果得频率为:所用时间(分10~20~30~40~50~(3)A1、A2分别表示甲选择L1和L2时,在40分钟内赶到火车站;B1、B2分别表示乙选择L1和L2时,在50分钟内赶到火车站.由(2)知P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5,P(A1)>P(A2),∴甲应选择L1.P(B1)=0.1+0.2+0.3+0.2=0.8.P(B2)=0.1+0.4+0.4=0.9,P(B2)>P(B1).∴乙应选择L2.大纲文数19.K4,K5[2011·全国卷] 根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立.(1)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(2)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率.大纲文数19.K4,K5[2011·全国卷] 【解答】记A表示事件:该地的1位车主购买甲种保险;B表示事件:该地的1位车主购买乙种保险但不购买甲种保险;C表示事件:该地的1位车主至少购买甲、乙两种保险中的1种;D表示事件:该地的1位车主甲、乙两种保险都不购买;E表示事件:该地的3位车主中恰有1位车主甲、乙两种保险都不购买.(1)P(A)=0.5,P(B)=0.3,C=A+B,P(C)=P(A+B)=P(A)+P(B)=0.8.(2)D=C,P(D)=1-P(C)=1-0.8=0.2,P(E)=C13×0.2×0.82=0.384.课标理数12.K5[2011·湖北卷] 在30瓶饮料中,有3瓶已过了保质期,从这30瓶饮料中任取2瓶,则至少取到1瓶已过保质期饮料的概率为________.(结果用最简分数表示)课标理数12.K5[2011·湖北卷] 28145【解析】所取2瓶全没有过保质期的概率为C 227C 230=117145,所以至少取到1瓶已过保质期的概率为1-117145=28145.课标文数13.K5[2011·湖北卷] 在30瓶饮料中,有3瓶已过了保质期,从这30瓶饮料中任取2瓶,则至少取到1瓶已过保质期饮料的概率为________.(结果用最简分数表示)课标文数13.K5[2011·湖北卷] 28145 【解析】 所取2瓶全没有过保质期的概率为C 227C 230=117145,所以至少取到1瓶已过保质期的概率为1-117145=28145.大纲理数18.K5、K6[2011·四川卷] 本着健康、低碳的生活理念,租自行车骑游的人越来越多,某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费2元(不足1小时的部分按1小时计算).有甲、乙两人相互独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为14,12;两小时以上且不超过三小时还车的概率分别为12,14;两人租车时间都不会超过四小时.(1)求甲、乙两人所付的租车费用相同的概率;(2)设甲、乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列及数学期望Eξ.大纲理数18.K5、K6[2011·四川卷] 【解答】 (1)由题意得,甲、乙在三小时以上且不超过四小时还车的概率分别为14,14.记甲、乙两人所付的租车费用相同为事件A ,则P (A )=14×12+12×14+14×14=516.答:甲、乙两人所付的租车费用相同的概率为516.(2)ξ可能取的值有0,2,4,6,8,P (ξ=0)=14×12=18;P (ξ=2)=14×14+12×12=516;P (ξ=4)=12×14+14×12+14×14=516;P (ξ=6)=12×14+14×14=316;P (ξ=8)=14×14=116.甲、乙两人所付的租车费用之和ξ的分布列为所以Eξ=0×18+2×516+4×516+6×316+8×116=72.大纲理数13.K5[2011·重庆卷] 将一枚均匀的硬币抛掷6次,则正面出现的次数比反面出现的次数多的概率为________.大纲理数13.K5[2011·重庆卷] 1132 【解析】 将一枚均匀的硬币投掷6次,可视作6次独立重复试验.正面出现的次数比反面出现的次数多的情况就是出现了4次、5次、6次正面,所以所求概率为C 46⎝ ⎛⎭⎪⎫124⎝ ⎛⎭⎪⎫122+C 56⎝ ⎛⎭⎪⎫125⎝ ⎛⎭⎪⎫12+C 66⎝ ⎛⎭⎪⎫126=1132.课标理数20.K6,K7[2011·安徽卷]工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超过10分钟,如果有一个人10分钟内不能完成任务则撤出,再派下一个人.现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别p 1,p 2,p 3,假设p 1,p 2,p 3互不相等,且假定各人能否完成任务的事件相互独立.(1)如果按甲在先,乙次之,丙最后的顺序派人,求任务能被完成的概率.若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化?(2)若按某指定顺序派人,这三个人各自能完成任务的概率依次为q 1,q 2,q 3,其中q 1,q 2,q 3是p 1,p 2,p 3的一个排列,求所需派出人员数目X的分布列和均值(数学期望)EX;(3)假定1>p1>p2>p3,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的均值(数学期望)达到最小.课标理数20.K6,K7[2011·安徽卷] 【解析】本题考查相互独立事件的概率计算,考查离散型随机变量及其分布列、均值等基本知识,考查在复杂情境下处理问题的能力以及抽象概括能力、合情推理与演绎推理,分类讨论思想,应用意识与创新意识.【解答】(1)无论以怎样的顺序派出人员,任务不能被完成的概率都是(1-p1)(1-p2)(1-p3),所以任务能被完成的概率与三个人被派出的先后顺序无关,并等于1-(1-p1)(1-p2)(1-p3)=p1+p2+p3-p1p2-p2p3-p3p1+p1p2p3.(2)当依次派出的三个人各自完成任务的概率分别为q1,q2,q3时,随机变量X的分布列为所需派出的人员数目的均值(数学期望)EX是EX=q1+2(1-q1)q2+3(1-q1)(1-q2)=3-2q1-q2+q1q2.(3)(方法一)由(2)的结论知,当以甲最先、乙次之、丙最后的顺序派人时,EX=3-2p1-p2+p1p2.根据常理,优先派出完成任务概率大的人,可减少所需派出的人员数目的均值.下面证明:对于p1,p2,p3的任意排列q1,q2,q3,都有3-2q1-q2+q1q2≥3-2p1-p2+p1p2,(*)事实上,Δ=(3-2q1-q2+q1q2)-(3-2p1-p2+p1p2)=2(p1-q1)+(p2-q2)-p1p2+q1q2=2(p1-q1)+(p2-q2)-(p1-q1)p2-q1(p2-q2)=(2-p2)(p1-q1)+(1-q1)(p2-q2)≥(1-q1) [(p1+p2)-(q1+q2)]≥0.即(*)成立.(方法二)(i)可将(2)中所求的EX改写为3-(q1+q2)+q1q2-q1,若交换前两人的派出顺序,则变为3-(q1+q2)+q1q2-q2,由此可见,当q2>q1时,交换前两人的派出顺序可减小均值.(ii)也可将(2)中所求的EX改写为3-2q1-(1-q1)q2,若交换后两人的派出顺序,则变为3-2q1-(1-q1)q3,由此可见,若保持第一个派出的人选不变,当q3>q2时,交换后两人的派出顺序也可减小均值.综合(i)(ii)可知,当(q1,q2,q3)=(p1,p2,p3)时,EX达到最小,即完成任务概率大的人优先派出,可减小所需派出人员数目的均值,这一结论是合乎常理的.课标理数17.I2,K6,K8[2011·北京卷] 以下茎叶图记录了甲、乙两组各四名同学的植树棵数,乙组记录中有一个数据模糊,无法确认,在图中以X 表示.图1-8(1)如果X =8,求乙组同学植树棵数的平均数和方差;(2)如果X =9,分别从甲,乙两组中随机选取一名同学,求这两名同学的植树总棵数Y 的分布列和数学期望.(注:方差s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 为x 1,x 2,…,x n 的平均数)课标理数17.I2,K6,K8[2011·北京卷] 【解答】 (1)当X =8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10.所以平均数为x =8+8+9+104=354; 方差为s 2=14⎣⎢⎡⎝ ⎛⎭⎪⎫8-3542+⎝ ⎛⎭⎪⎫8-3542+⎝ ⎛⎭⎪⎫9-3542+ ⎦⎥⎤⎝⎛⎭⎪⎫10-3542=1116. (2)当X =9时,由茎叶图可知,甲组同学的植树棵树是:9,9,11,11;乙组同学的植树棵数是:9,8,9,10.分别从甲、乙两组中随机选取1名同学,共有4×4=16种可能的。

相关文档
最新文档