浙大概率统计试卷(含答案)

浙大概率统计试卷(含答案)

2010–2011学年 秋冬 学期

《 概率论与数理统计》试卷

注:

~(0,1),(){}:(1)0.84,(1.645)0.95,(1.96)0.975,(2)0.98

X N x P X x Φ=≤Φ=Φ=Φ=Φ=212(),(),(,)t n n F n n αααχ分别表示服从具有相应自由度的t 分布,2χ分布和F 分布的上α分位点: 2

2

2

2

0.9750.950.050.025(9) 2.70,(9) 3.32,(9)16.92,(9)19.02χχχχ====,

==0.050.025(9) 1.83,(9) 2.26t t ,0.050.05(2,9) 4.26,(9,2)19.4F F ==。

一、填空题 (每小格3分,共42分,每个分布均要写出参数)

1.设,A B 为两随机事件,已知()0.6,()0.5,()0.3P A P B P AB === ,则()P A B ?= _(1)__,()P A A B ?=_(2)_。

2.一批产品的寿命X (小时)具有概率密度2,800()0,800

a x f x x x ?≥?=??

随机取一件产品,其寿命大于1000小时的概率为_(4)_;若随机独立抽取6件产品,则至少有两件寿命大于1000小时的概率为_(5)_;若随机独立抽取100件产品,则多于76件产品的寿命大于1000小时的概率近似值为_(6)_。

3.设随机变量221212(,)~(,,,,)X Y N μμσσρ,已知~(0,1),~(1,4)X N Y N ,

0.5ρ=-。设123,74Z X Y Z X Y =-=+,则1Z 服从_(7)__分布,12Z Z 与的相关系数12Z Z ρ=__(8)___,12Z Z 与独立吗?为什么?答: (9) 。

4.设总体2~(,),,(0)X N μσμσ>是未知参数,110,,X X 为来自X 的简单随机样本,记2X S 与为样本均值和样本方差,则22X μ是的无偏估计吗?答:__(10)__;若22{}0.95P S b σ≤=,则b =_(11)__; 22{}P S σ==_(12)__;μ的置信度为95%的单侧置信下限为_(13)__;对于假设2201:1,:1H H σσ≥<的显著性水平为5%的拒绝域为_(14)__。

二.(12分)某路段在长度为t (以分计)的时间段内,在天气好时发生交通事故数1~()480t X π(泊松分布),天气不好时事故数2~()120

t X π。设在不重叠时间段发生交通事故的次数相互独立。(1)若6:00-10:00天气是好的,求这一时段该路段没有发生交通事故的概率;(2)设明天6:00-10:00天气好的概率为 70%,求这一时段该路段至少发生一次交通事故的概率;(3)若6:00-10:00天气是好的,求该路段在6:00-10:00至少发生一次交通事故的条件下,6:00-8:00没有发生交通事故的概率。

三.(12分)设二维随机变量(,)X Y 的联合概率密度

,01,03(,)0,x x y x f x y <<<

其它 (1)问X Y 与是否独立?说明理由;(2)求条件概率密度()Y X f y x ;(3)设

Z X Y =+,求Z 的概率密度()Z f z 。

概率论与数理统计及其应用第二版课后答案浙江大学

第1章 随机变量及其概率 1,写出下列试验的样本空间: (1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录 投掷的次数。 (2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次, 记录投掷的次数。 (3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。 (4) 抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰 子,观察出现的各种结果。 解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{ =S ;(3)},,,,{ TTTH TTH TH H S =; (4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。 2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(___ ___AB B A P AB P B A P B A P ??。 解:625.0)()()()(=-+=?AB P B P A P B A P , 375.0)()(])[()(=-=-=AB P B P B A S P B A P , 875.0)(1)(___ --=AB P AB P , 5.0)(625.0)])([()()])([()])([(___=-=?-?=-?=?AB P AB B A P B A P AB S B A P AB B A P 3,在100,101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。

解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=??,所以所求得概率为 72.0900 648= 4,在仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。(1)求该数是奇数的概率;(2)求该数大于330的概率。 解:仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数的个数有100455=??个。(1)该数是奇数的可能个数为48344=??个,所以出现奇数的概率为 48.0100 48= (2)该数大于330的可能个数为48454542=?+?+?,所以该数大于330的概率为 48.0100 48= 5,袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的概率。 (1)4只中恰有2只白球,1只红球,1只黑球。 (2)4只中至少有2只红球。 (3)4只中没有白球。 解: (1)所求概率为338412 131425=C C C C ;

概率论与数理统计与其应用第二版课后答案浙江大学

概率论与数理统计及其应用习题解答 第 1 章随机变量及其概率 1,写出下列试验的样本空间: (1)连续投掷一颗骰子直至 6 个结果中有一个结果出现两次,记录 投掷的次数。 (2)连续投掷一颗骰子直至 6 个结果中有一个结果接连出现两次, 记录投掷的次数。 (3)连续投掷一枚硬币直至正面出现,观察正反面出现的情况。 (4)抛一枚硬币,若出现 H 则再抛一次;若出现 T,则再抛一颗骰 子,观察出现的各种结果。 解:(1)S{ 2,3,4,5,6,7} ;(2)S { 2,3,4, } ;(3)S { H ,TH ,TTH ,TTTH , } ; (4)S { HH , HT ,T1, T2, T3,T 4,T 5,T 6}。 2,设A, B是两个事件,已知P(A) 0.25, P(B) 0.5, P( AB) 0.125, ,求 ______ P( A B), P( AB), P( AB), P[( A B)( AB)] 。 解: P( A B) P( A) P(B) P( AB)0.625 , P( A B) P[( S A) B] P( B) P( AB)0.375 , ___ P( AB) 1 P( AB)0.875 , ___ P[( A B)( AB)] P[( A B)(S AB )] P( A B) P[( A B)( AB)] 0.625 P( AB )0.5 3,在 100,101,?,999 这 900 个 3 位数中,任取一个 3 位数,求 不包含数字 1 个概率。

解:在 100,101,?,999 这 900 个 3 位数中不包含数字 1 的 3 位数 的个数为 8 9 9648 ,所以所求得概率为 648 0.72 900 4,在仅由数字 0,1,2,3,4,5 组成且每个数字之多出现一次的全 体三位数中,任取一个三位数。(1)求该数是奇数的概率;(2)求该数大于 330 的概率。 解:仅由数字 0,1,2,3,4,5 组成且每个数字之多出现一次的全 体三位数的个数有 5 5 4100 个。(1)该数是奇数的可能个数为 4 4 348 个,所以出现奇数的概率为 48 0.48 100 (2)该数大于 330 的可能个数为2 4 5 4 5 4 48,所以该数大于330的概率为 48 0.48 100 5,袋中有 5 只白球, 4 只红球, 3 只黑球,在其中任取 4 只,求下列事件的概率。 (1)4 只中恰有 2 只白球, 1 只红球, 1 只黑球。 (2)4 只中至少有 2 只红球。 (3)4 只中没有白球。 解:(1)所求概率为C52C41C318 ; C12433

浙大《概率论》习题

习题 第一讲 1. 由盛有号码为N ,,2,1 的球的箱子中有放回的摸了n 次, 依次记其号码, 求这些号码按严格上升次序排列的概率. 2. 对任意凑在一起的40人, 求他们中没有两人生日相同的概率. 3. 从n 双不同的鞋子中任取)2(2n r r 只, 求下列事件的概率: (1) (1)没有成双的鞋子; (2)只有一双鞋子; (3) 恰有二双鞋子; (4) 有r 双鞋子. 4. 从52张的一副扑克牌中, 任取5张, 求下列事件的概率: (1) (1)取得以A 为打头的顺次同花色5张; (2) (2)有4张同花色; (3) (3)5张同花色; (4) (4)3张同点数且另2张也同点数. 思考题: 1.(分房、占位问题)把n 个球随机地放入N 个不同的格子中,每个球落入各格子内的概率相同(设格子足够大,可以容纳任意多个球)。 I. I.若这n 个球是可以区分的,求(1)指定的n 个格子各有一球的概率;(2)有n 个格子各有一球的概率; 若这n 个球是不可以区分的,求(1)某一指定的盒子中恰有k 个球的概率;(2)恰好有m 个空盒的概率。 2.取数问题)从1-9这九个数中有放回地依次取出五个数,求下列各事件的概率: (1) (1)五个数全不同;(2)1恰好出现二次;(3)总和为10. 第二讲 1. 在一张打方格的纸上投一枚直径为1的硬币, 问方格要多小时才能使硬币与线不相交的概率小于 2. 在某城市中共发行三种报纸:甲、乙、丙。在这个城市的居民中,订甲报(记为A)的有45%,订乙报(记为B)的有35%,订丙报(记为C)的有30%,同时订甲、乙两报(记为D)的有10%,同时订甲、丙两报(记为E)的有8%,同时订乙、丙两报(记为F)的有5%,同时订三中报纸(记为G)的有3%. 试表示下列事件, 并求下述百分比:(1)只订甲报的;(2)只订甲、乙两报的;(3)只订一种报纸的;(4)正好订两种报纸的;(5)至少订一种报纸的;(6)不

概率论浙大第四版答案

概率论浙大第四版答案 【篇一:概率论(浙大第四版)课后答案】 p> 浙大第四版(高等教育出版社) 第一章概率论的基本概念 1.[一] 写出下列随机试验的样本空间 (1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1) o1n?100?s???,???,n表小班人数 n??nn (3)生产产品直到得到10件正品,记录生产产品的总件数。([一] 2) s={10,11,12,???,n,???} (4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的 盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就 停止检查,记录检查的结果。 查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。([一] (3)) s={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,} 2.[二] 设a,b,c为三事件,用a,b,c的运算关系表示下列事件。(1)a发生,b与c不发生。 表示为: a或a- (ab+ac)或a- (b∪c) (2)a,b都发生,而c不发生。 表示为: ab或ab-abc或ab-c 表示为:a+b+c (3)a,b,c中至少有一个发生 (4)a,b,c都发生,表示为:abc (5)a,b,c都不发生,表示为:或s- (a+b+c)或a?b?c (6)a,b,c中不多于一个发生,即a,b,c中至少有两个同时 不发生相当于,,中至少有一个发生。故表示为:??。 (7)a,b,c中不多于二个发生。相当于:,,中至少有一个发生。 故表示为:??abc (8)a,b,c中至少有二个发生。 相当于:ab,bc,ac中至少有一个发生。故表示为:ab+bc+ac

概率论与数理统计浙大四版习题答案第七章

第七章参数估计 1.[ 一] 随机地取8只活塞环,测得它们的直径为(以 求总体均值卩及方差b 2的矩估计,并求样本方差 S 2。 n 2 6 (X i x) 6 10 i 1 S 2 6.86 10 6。 ln L(e ) nln(e ) n e inc (1 e ) In d 寫⑹ (1) f (x) e c e x (e 1},x c 0,其它 其中c >0为已知, e >1, e 为未知参数。 (2) f(x) 、e x e 1,0 x 1 0,其它. 其中e >0, e 为未知参数。 (5) P(X x) m p x (1 p)m x ,x 0,1,2, ,m,0 p 1, p 为未知参数。 解: ( 1) E(X) xf(x)dx c e c e x e dx e c e c e 1 e 1 e c 令 e c X e 1, 令 e 1 X X c (2) E(X) xf (x)dx e x e dx - 丄匚,令- '-e X ,We ( X )2 2.[二]设X , X ,…,X n 为准总体的一个样本。求下列各总体的密度函数或分布律 中的未知参数的矩估计量。 得e 1 e (5) -e 1 解:(1)似然函数 n L (e ) f (人)e n c n e (x 1 x 2 i 1 X n ) mm 计) 解:U,b 2的矩估计是 X 74.002 E (X ) = mp 令 mp = X ,解得?莖 m 3.[三]求上题中各未知参数的极大似然估计值和估计 量。 ln x i 0

(解唯一故为极大似然估计 量) In X i nln c i 1 ⑵ L(B ) n n _ f (X i ) e 2(X 1X 2 X n ) 0 1 ,ln L(B ) n 2~ n ln( 0) (0 1) In X i i 1 dI nL(0) n d 0 2 1 0 1 n In X i 0, i 1 ? (n In x i )2 0 (解唯一)故为极大似然 估 2.一 0 计量。 n m m n X i n mn 召 (5) L(p) P{X X i } p i1 (1 p) i1 , i - 1 X 1 X n n n n In L(p) In m X i x i In p (mn X i )l n(1 p), i 1 i 1 i 1 i 1 n mn x i i 1 0 1 p n X i d In L(p) i 1_ dp p n Xi - 解得 p q — —,(解唯一)故为极大似然估计量。 mn m 4.[四(2)]设X , X,…,X.是来自参数为入的泊松分布总体的一个样本,试求入 的极大似然估计量及矩估计量。 解:(1)矩估计 X ~ n 入),E ( X )=入,故*= X 为矩估计量。 (2)极大似然估计L (入) n P(X i ;入) 1 n X i *1 X 1 !X 2! X e n *, In L(入) i X i In In X i ! d In L(入) d 入 n X i i 1 入 0 ,解得* X 为极大似然估计 量。

浙江大学概率论与数理统计试题连答案

《概率论》试题 一、填空题(每空5%) 1、设为A ,B 为随机变量,(|)0.48,(|)0.4,()0.86P A B P B A P A B ==?=。则 ()P A B ?=_________,()P AB =________。 2、设某电话交换台等候一个呼叫来到的时间为X ,它的概率密度函数为 0.5()0 {x ke f x θ=0 0x x >≤ 第一次呼叫在5分钟到10分钟之间来到的概率为1 4 ,那么它在15分钟以后来的概率为________。 3、已知随机向量(,)X Y 的联合分布律如下表所示 则(02)P X Y <-≤=________,()E XY =________。 4、投一枚硬币直到正反面都出现为止,投掷次数的数学期望是________。 5、设随机变量,X Y ,已知X 服从正态分布,2(,)X N μσ,Y 服从θ的指数分布, Z aX bY c =+-,则()E Z =________,()Var Z =________。 二、(15%)妈妈给儿子小明做了4张饼,她想知道这回做得是好极了还是一般般。以她的手艺1/3的概率是好极了。此时,小明有点饿或者非常饿的可能性各占一半。如果饼味道好极了,若小明有点饿,他吃掉1、2、3、4张饼的概率分别为0、0、0.6、0.4;若他非常饿,上述概率为0、0、0、1。如果味道仅一般般,若小明有点饿时,概率为0、0.2、0.4、0.4;若他非常饿,上述概率为0、0.1、0.3、0.6。 (1)小明吃掉4张饼的概率是多少? (2)妈妈看见小明吃掉4张饼,则他非常饿而饼仅一般般的概率是多少? (3)妈妈看见小明吃掉4张饼,则饼味道好极了的概率是多少? 三、(12%)(,)X Y 的联合密度函数为 John Nash 2(,)0 {x f x y = 01,01 x y else <<<< 22Z X Y =+, (1)求()X f x 和()Y f y ;

浙大《概率论》习题

第一讲 1. 由盛有号码为N ,,2,1 的球的箱子中有放回的摸了n 次, 依次记其号码, 求这些号码按严格上升次序排列的概率. 2. 对任意凑在一起的40人, 求他们中没有两人生日相同的概率. 3. 从n 双不同的鞋子中任取)2(2n r r ≤只, 求下列事件的概率: (1) (1) 没有成双的鞋子; (2)只有一双鞋子; (3) 恰有二双鞋子; (4) 有r 双鞋子. 4. 从52张的一副扑克牌中, 任取5张, 求下列事件的概率: (1) (1) 取得以A 为打头的顺次同花色5张; (2) (2) 有4张同花色; (3) (3) 5张同花色; (4) (4) 3张同点数且另2张也同点数. 思考题: 1.(分房、占位问题)把n 个球随机地放入N 个不同的格子中,每个球落入各格子内的概率相同(设格子足够大,可以容纳任意多个球)。 I. I. 若这n 个球是可以区分的,求(1)指定的n 个格子各有 一球的概率;(2)有n 个格子各有一球的概率; 若这n 个球是不可以区分的,求(1)某一指定的盒子中恰有k 个球的概率;(2)恰好有m 个空盒的概率。 2.取数问题)从1-9这九个数中有放回地依次取出五个数,求下列各事件的概率: (1) (1) 五个数全不同;(2)1恰好出现二次;(3)总和为10. 第二讲 1. 在一张打方格的纸上投一枚直径为1的硬币, 问方格要多小时才能使硬币与线不相交的概率小于 2. 在某城市中共发行三种报纸:甲、乙、丙。在这个城市的居民中,订甲报(记为A)的有45%,订乙报(记为B)的有35%,订丙报(记为C)的有30%,同时订甲、乙两报(记为D)的有10%,同时订甲、丙两报(记为E)的有8%,同时订乙、丙两报(记为F)的有5%,同时订三中报纸(记为G)的有3%. 试表示下列事件, 并求下述百分比:(1)只订甲报的;(2)只订甲、乙两报的;(3)只订一种报纸的;(4)正好订两种报纸的;(5)至少订一种报纸的;(6)不订任何报纸的. 3. 在线段[0,1]上任意投三个点, 求0到这三点的三条线段能构成三角形的概率. 4. 设A, B, C, D 是四个事件, 似用它们表示下列事件: (1) (1) 四个事件至少发生一个; (2) (2) 四个事件恰好发生两个; (3) (3) A,B 都发生而C, D 不发生; (4) (4) 这四个事件都不发生; (5) (5) 这四个事件至多发生一个; (6) (6) 这四个事件至少发生两个; (7) (7) 这四个事件至多发生两个. 5. 考试时共有n 张考签, 有)(n m m ≥个同学参加考试. 若被抽过的考签立即放回, 求在考试结束后, 至少有一张考签没有被抽到的概率. 6. 在§3例5中, 求恰好有)(n k k ≤个人拿到自己的枪的概率. 7. 给定)(),(),(B A P r B P q A P p ?===, 求)(B A P 及)(B A P . 思考题 1.(蒲丰投针问题续)向画满间隔为a 的平行线的桌面上任投一直径)(a l l <为的半圆形纸片,求事件“纸片与某直线相交”的概率;

浙大版概率论与数理统计答案---第五章

第五章 大数定律及中心极限定理 注意: 这是第一稿(存在一些错误) 1、 解(1)由于{0}1P X ≥=,且()36E X =,利用马尔科夫不等式,得 () {50}0.7250 E X P X ≥≤ = (2)2 ()2D X =,()36E X =,利用切比雪夫不等式,所求的概率为: 223 {3240}1(364)10.75164 P X P X <<=--≥≥-== 2、解:()500,0.1i X B :, 500500121 1500111610%5%192.8%5000.05125i i i i D X P X ==?? ???? ?-<≥-==???? ∑∑ 3、 解 ξ服从参数为的几何分布,1 1(),(2,3,4)2n P n n ξ-?? === ? ?? L 可求出2 ()()3,()2n E nP n D ξξξ∞ == ===∑ 于是令 ()2 a b E ξ+=,2b a ε-=,利用切比雪夫不等式,得 有2 () ()1(())175%D P a b P E ξξξξεε <<=--≥≥-= 从而可以求出()3()3a E b E εξεξε==-=-=+=+4、解:()()()() ()() () 1,,n n n X n n n x F x P X x P X x X x F x a =≤=≤≤==L ,()0,x a ∈。 则() ()()() ()1 1 n n n X n nx p x n F x p x a --==,()0,x a ∈。 ()()10 1 n n a X n nx n E x x dx a a n -=?=+? , ()()()() 2 12 22 121n n a X n nx n n D x x dx a a a n n n -??=?-= ?+??++? 。

(浙大第四版)概率论与数理统计知识点总结

第1章
n Pm ?
随机事件及其概率
(1)排列 组合公式
n Cm ?
m! (m ? n)! m! n!(m ? n)!
从 m 个人中挑出 n 个人进行排列的可能数
从 m 个人中挑出 n 个人进行组合的可能数
(2)加法 和乘法原 理
(3)一些 常见排列 (4)随机 试验和随 机事件
(5)基本 事件、样 本空间和 事件
(6)事件 的关系与 运算
加法原理(两种方法均能完成此事) :m+n 某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种 方法可由 n 种方法来完成,则这件事可由 m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事) :m×n 某件事由两个步骤来完成,第一个步骤可由 m 种方法完成,第二个 步骤可由 n 种方法来完成,则这件事可由 m×n 种方法来完成。 重复排列和非重复排列(有序) 对立事件(至少有一个) 顺序问题 如果一个试验在相同条件下可以重复进行,而每次试验的可能结果 不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则 称这种试验为随机试验。 试验的可能结果称为随机事件。 在一个试验下,不管事件有多少个,总可以从其中找出这样一组事 件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用 ? 来表示。 基本事件的全体,称为试验的样本空间,用 ? 表示。 一个事件就是由 ? 中的部分点(基本事件 ? )组成的集合。通常用 大写字母 A,B,C,…表示事件,它们是 ? 的子集。 ? 为必然事件,? 为不可能事件。 不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事 件;同理,必然事件(Ω )的概率为 1,而概率为 1 的事件也不一定 是必然事件。 ①关系: 如果事件 A 的组成部分也是事件 B 的组成部分, (A 发生必有事件 B 发生) :A? B 如果同时有 A ? B , B ? A ,则称事件 A 与事件 B 等价,或称 A 等于 B:A=B。
A、B 中至少有一个发生的事件:A ? B,或者 A+B。
1 / 33

概率论与数理统计浙大四版习题答案

第七章 参数估计 1.[一] 随机地取8只活塞环,测得它们的直径为(以mm 计) 求总体均值μ及方差σ2的矩估计,并求样本方差S 2。 解: μ , σ 2 的矩估计是 61 22 106)(1?,002.74?-=?=-===∑n i i x X n X σ μ 621086.6-?=S 。 2.[二]设X 1,X 1,…,X n 为准总体的一个样本。求下列各总体的密度函数或分布律中的未知参数的矩估计量。 (1)? ??>=+-其它,0,)()1(c x x c θx f θθ 其中c >0为已知,θ>1,θ为未 知参数。 (2)?? ???≤≤=-.,01 0,)(1其它x x θx f θ 其中θ>0,θ为未知参数。 (5)()p p m x p p x X P x m x m x ,10,,,2,1,0,) 1()(<<=-==- 为未知参数。 解:(1)X θc θθc θc θc θdx x c θdx x xf X E θθc θ θ =--=-===+-∞+-∞+∞ -? ?1 ,11)()(1令, 得c X X θ-= ( 2 ) ,1)()(10 += = = ? ? ∞+∞ -θθdx x θdx x xf X E θ 2 )1(,1 X X θX θθ-==+得令 (5)E (X ) = mp 令mp = X , 解得m X p =? 3.[三]求上题中各未知参数的极大似然估计值和估计量。

解:(1)似然函数 1211 )()()(+-===∏θn θn n n i i x x x c θx f θL 0ln ln )(ln ,ln )1(ln )ln()(ln 1 1 =- +=-++=∑∑ ==n i i n i i x c n n θθ d θL d x θc θn θn θL ∑=-= n i i c n x n θ1 ln ln ? (解唯一故为极大似然估计量) ( 2 ) ∑ ∏=-- =-+-=== n i i θn n n i i x θθn θL x x x θ x f θL 1 1 212 1 ln )1()ln(2)(ln ,) ()()( ∑∑====+?-=n i i n i i x n θx θ θn θd θL d 1 2 1 ) ln (?,0ln 21 12)(ln 。(解唯一)故为极大似 然估计量。 (5)∑∑==- =-??? ? ?????? ??===∏ n i n i i i x mn x n n i i p p x m x m x X P p L 1 1 )1(}{)(11 , ()),1ln()(ln ln )(ln 1 1 1 p x mn p x p L n i i n i i n i m x i -- ++= ∑∑∑=== 01) (ln 1 1 =--- =∑∑==p x mn p x dp p L d n i i n i i 解得 m X mn x p n i i = = ∑=2 ,(解唯一)故为极大似然估计量。 4.[四(2)] 设X 1,X 1,…,X n 是来自参数为λ的泊松分布总体的一个样本,试求λ的极大似然估计量及矩估计量。 解:(1)矩估计 X ~ π (λ ),E (X )= λ,故λ?=X 为矩估计

概率论与数理统计浙大第四版习题答案全

概率论与数理统计习题答案 完全版 浙大第四版(高等教育出版社) 第一章 概率论的基本概念 1.[一] 写出下列随机试验的样本空间 (1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1) ? ??????=n n n n o S 1001 , ,n 表小班人数 (3)生产产品直到得到10件正品,记录生产产品的总件数。([一] 2) S={10,11,12,………,n ,………} (4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。 查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。 ([一] (3)) S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,} 2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。 (1)A 发生,B 与C 不发生。 表示为: C B A 或A - (AB+AC )或A - (B ∪C ) (2)A ,B 都发生,而C 不发生。 表示为: C AB 或AB -ABC 或AB -C (3)A ,B ,C 中至少有一个发生 表示为:A+B+C

(4)A ,B ,C 都发生, 表示为:ABC (5)A ,B ,C 都不发生, 表示为:C B A 或S - (A+B+C)或C B A ?? (6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。故 表示为:C A C B B A ++。 (7)A ,B ,C 中不多于二个发生。 相当于:C B A ,,中至少有一个发生。故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。 相当于:AB ,BC ,AC 中至少有一个发生。故 表示为:AB +BC +AC 6.[三] 设A ,B 是两事件且P (A )=0.6,P (B )=0. 7. 问(1)在什么条件下P (AB )取到最大值,最大值是多少?(2)在什么条件下P (AB )取到最小值,最小值是多少? 解:由P (A ) = 0.6,P (B ) = 0.7即知AB ≠φ,(否则AB = φ依互斥事件加法定理, P (A ∪B )=P (A )+P (B )=0.6+0.7=1.3>1与P (A ∪B )≤1矛盾). 从而由加法定理得 P (AB )=P (A )+P (B )-P (A ∪B ) (*) (1)从0≤P (AB )≤P (A )知,当AB =A ,即A ∩B 时P (AB )取到最大值,最大值为 P (AB )=P (A )=0.6, (2)从(*)式知,当A ∪B=S 时,P (AB )取最小值,最小值为 P (AB )=0.6+0.7-1=0.3 。 7.[四] 设A ,B ,C 是三事件,且0)()(,4 1 )()()(=== ==BC P AB P C P B P A P ,8 1 )(= AC P . 求A ,B ,C 至少有一个发生的概率。 解:P (A ,B ,C 至少有一个发生)=P (A +B +C )= P (A )+ P (B )+ P (C )-P (AB )-P (BC )-P (AC )+ P (ABC )= 8 508143=+- 8.[五] 在一标准英语字典中具有55个由二个不相同的字母新组成的单词,若从26

浙大版概率论与数理统计答案---第六章

第六章 统计量与抽样分布 注意: 这是第一稿(存在一些错误) 1、解:易知的X 期望为μ,方差为2n σ ,则()0,1X N μσ-:近似地 , 所以,( ) (0.10.10.909X P X P μσ μσσ σ? ? - ? -<=<≈Φ= ? ? ??? 。 2、解 (1)由题意得: 2 2 2 2211111 ()()()()n n i i i i E X D X E X D X E X n n n σμ==??=+=+=+ ???∑∑ ()2211111111 ()()n n i i i i E X X E X X E X X n n n σμ==?=?==+∑∑ (2)1X X -服从正态分布,其中: 1()0E X X -=,22 1122111()( )()()n n n D X X D X D X n n n σ----=+= 从而 2 11~(0,)n X X N n σ-- 由于 ~(0,1)i X N μ σ -,1,2,i n =L ,且相互独立,因此: () ()2 22 1 ~n i i X n μχσ =-∑ ~(0,1)X N μ-,所以()()2 22 ~1n X μχσ - 由于 ()2 22 (1)~1n S n χσ --,所以 () () ()2 2 2 2 22 (1)/~1,1(1)n X n X n S F n n S μ μσσ---=-- (3)由于 () 2 /2 2 1 ~(/2)n i i X n μχσ=-∑ ,以及 () 2 2 1/2 ~(/2)n i i n X n μχσ=+-∑ ,因此有:

概率论与数理统计浙大四版习题答案第三章

第三章 多维随机变量及其分布 1.[一] 在一箱子里装有12只开关,其中2只是次品,在其中随机地取两次,每次取一只。考虑两种试验:(1)放回抽样,(2)不放回抽样。我们定义随机变量X ,Y 如下: ???? ?=ο若第一次取出的是次品若第一次取出的是正品,1, ,0X ???? ?=ο 若第二次取出的是次品若第二次取出的是正品,1, ,0Y 试分别就(1)(2)两种情况,写出X 和Y 的联合分布律。 解:(1)放回抽样情况 由于每次取物是独立的。由独立性定义知。 P (X=i , Y=j )=P (X=i )P (Y=j ) P (X=0, Y=0 )=3625 12101210=? P (X=0, Y=1 )=3651221210=? P (X=1, Y=0 )=3651210122=? P (X=1, Y=1 )= 36 1122122=? 或写成 (2)不放回抽样的情况 P {X=0, Y=0 }=66451191210=? P {X=0, Y=1 }= 66 101121210=?

P {X=1, Y=0 }=66101110122=? P {X=1, Y=1 }= 66 1111122=? 或写成 3.[二] 盒子里装有3只黑球,2只红球,2只白球,在其中任取4只球,以X 表,Y 的联合分布律。 解:(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }= 35147 2 222= C C C P {X=1, Y=1 }= 3564 722 1213= C C C C P {X=1, Y=2 }=35 64 712 2213= C C C C P {X=2, Y=0 }=35347 2223= C C C P {X=2, Y=1 }= 35 124 7 12 1223= C C C C

概率论与数理统计浙江大学第四版-课后习题答案(完全版)

概率论与数理统计习题答案 第四版 盛骤 (浙江大学) 浙大第四版(高等教育出版社) 第一章 概率论的基本概念 1.[一] 写出下列随机试验的样本空间 (1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1) ???????=n n n n o S 1001, ,n 表小班人数 (3)生产产品直到得到10件正品,记录生产产品的总件数。([一] 2) S={10,11,12,………,n ,………} (4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。 查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。 ([一] (3)) S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,} 2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。 (1)A 发生,B 与C 不发生。

表示为: C B A 或A - (AB+AC )或A - (B ∪C ) (2)A ,B 都发生,而C 不发生。 表示为: C AB 或AB -ABC 或AB -C (3)A ,B ,C 中至少有一个发生 表示为:A+B+C (4)A ,B ,C 都发生, 表示为:ABC (5)A ,B ,C 都不发生, 表示为:C B A 或S - (A+B+C)或 C B A ?? (6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。故 表示为:C A C B B A ++。 (7)A ,B ,C 中不多于二个发生。 相当于:C B A ,,中至少有一个发生。故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。 相当于:AB ,BC ,AC 中至少有一个发生。故 表示为:AB +BC +AC 6.[三] 设A ,B 是两事件且P (A )=0.6,P (B )=0. 7. 问(1)在什么条件下P (AB )取到最大值,最大值是多少?(2)在什么条件下P (AB )取到最小值,最小值是多少?

概率论与数理统计答案-浙江大学-张帼奋-主编

第一章 概率论的基本概念 注意: 这是第一稿(存在一些错误) 1解:该试验的结果有9个:(0,a ),(0,b ),(0,c ),(1,a ),(1,b ),(1,c ),(2,a ),(2,b ),(2,c )。所以, (1)试验的样本空间共有9个样本点。 (2)事件A 包含3个结果:不吸烟的身体健康者,少量吸烟的身体健康者,吸烟较多的身体健康者。即A 所包含的样本点为(0,a ),(1,a ),(2,a )。 (3)事件B 包含3个结果:不吸烟的身体健康者,不吸烟的身体一般者,不吸烟的身体有病者。即B 所包含的样本点为(0,a ),(0,b ),(0,c )。 2、解 (1)AB BC AC U U 或ABC ABC ABC ABC U U U ; (2)AB BC AC U U (提示:题目等价于A ,B ,C 至少有2个发生,与(1)相似); (3)ABC ABC ABC U U ; (4)A B C U U 或ABC ; (提示:A ,B ,C 至少有一个发生,或者A B C ,,不同时发生) ; 3(1)错。依题得()()()()0=-+=B A p B p A p AB p Y ,但空集≠B A I ,故A 、B 可能相容。 (2)错。举反例 (3)错。举反例 (4)对。证明:由()6.0=A p ,()7.0=B p 知 ()()()()()3.03.1>-=-+=B A p B A p B p A p AB p Y Y ,即A 和B 交非空,故A 和B 一定相容。 4、解 (1)因为A B ,不相容,所以A B ,至少有一发生的概率为: ()()()=0.3+0.6=0.9P A B P A P B =+U (2) A B , 都不发生的概率为: ()1()10.90.1P A B P A B =-=-=U U ; (3)A 不发生同时B 发生可表示为:A B I ,又因为A B ,不相容,于是

浙大版概率论与数理统计答案第八章

第八章 假设检验 注意: 这是第一稿(存在一些错误) 1 、解 由题意知: ~(0,1)/X N n μ σ- (1)对参数μ提出假设: 0: 2.3H μ≤, 1: 2.3H μ> (2)当0H 为真时,检验统计量 2.3 ~(0,1)0.29/35 X N -,又样本实测得 2.4x =,于 是 002.4 2.3( )( 2.04)1(2.04)0.0207/0.29/35/H H X X P P P n n μμ σσ----=≥=≥=-Φ= (3)由(2)知,犯第I 类错误的概率为0.0207 (4)如果0.05α=时,经查表得 1.645z α=,于是 2.3 2.3{ }{ 1.645}/0.29/35 X X W z W n ασ-->=> (5)是。 2、 14.5515x =<故将希望得到支持的假设“15μ>”作为原假设,即考虑假设问题 0H : 15μ≥,1H :15μ< 因2 σ未知,取检验统计量为0 /X T S n μ-= ,由样本资料10n =,14.55x =, 1.2445s =和015μ=代入得观察值0 1.2857t =-,拒绝域为 ()0 0.059/X W T t S n μ??-==≤-?? ??,查分布表得()0.059 1.8331t =,()00.059t t >- 故接受原假设0H ,即认为该广告是真实的。 3、 解(1)由题意得,检验统计量1 /X Z n σ-= ,其拒绝域为

1 {}{ 1.66}/X W Z z W X n ασ-== ≥=≥ 当2μ=时,犯第II 类错误的概率为: 0021.662 {|}{ 1.66|2}P{ }=0.198//X P H H P X n n βμσσ--==≤==≤接受是错误的 (2) 2 22 (n 1)S ~(n 1)χσ --,当2σ未知时,检验统计量224S ,其拒绝域为: 2221W {24S (24)}{S 0.577}αχ-=<=< 当21.25σ=时,检验犯第I 类错误的概率为: 22 2 0024S 240.577 {|}{S 0.577| 1.25}P{}=0.012 1.251.25 P H H P ασ?==<==<拒绝是正确的 4、 (1)提出假设0H :3000μ=,1H :3000μ≠ 建立检验统计量0 /X T S n μ-= ,其中03000μ= 在显著水平0.05α=下,检验的拒绝域为 ()0 0.0257 2.3646/X W T t S n μ??-==≥=?? ??,由样本资料得观察值()00.0252958.753000 2.97271348.4375/8 t t -= =>,故有显著差异。 (2)μ的95%的置信区间为()()/2/21,1S S X t n X t n n n αα??- -+- ?? ? ,由样本资料得μ的95%的置信区间为()2925.93,2991.57 (3)(){}(){} 02127 2.9720.0207P P t n t P t =-≥=≥=。 5、 解 (1) ~(1)S /X t n n μ --。由题意得,样本测得的值为167.2x =, 4.1s =,100n =,经查表得()/299 1.984t α=,于是均值μ的95%的置信区间为: ()()/2/2(99s /,99s /)(166.4,168.0)x t n x t n αα+-=

浙江大学《概率论与数理统计》配套题库【章节题库】(马尔可夫链)

第13章马尔可夫链 1.从数1,2,…,N中任取一数,记为;再从1,2,…,中任取一数,记为;如此继续,从1,2,…,中任取一数,记为,说明构成一齐次马氏链,并写出它的状态空间和一步转移概率矩阵。 解:随机序列的状态空间,在1,2,…,中均匀取值,对于任意整数1≤≤N,有 故具有无后效性,即它是一个马氏链。 按题意一步转移概率为 它们都只与有关而与起始时刻m无关,因此{,n≥1)是齐次马氏链,且它的一步转移概率矩阵为

3.设是相互独立且都以概率P(0

性知一步转移概率为 因只与i,j有关而与起始时刻m无关,因此,它是齐次马氏链。 一步转移概率矩阵为 4.(传染模型)有N个人及某种传染病,假设 (1)在每个单位时间内此N个人中恰有两人互相接触,且一切成对的接触是等可能的; (2)当健康者与患病者接触时,被传染上病的概率为a; (3)患病者康复的概率是0,健康者如果不与患病者接触,得病的概率也为0。 现以表示第n个单位时间内的患病人数,试说明这种传染过程,即{,n≥0}是一马氏链,并写出它的状态空间及一步转移概率矩阵。 解:的状态空间I={0,1,2,…,N},的取值仅与的取值以及第n 个单位时间内人群的成对接触情况有关,所以{,n≥0}是一个马氏链。 由假设(3),一旦患病的人数(状态)为0或N,则患病人数不会再改变,用相应的转移概率可表示为:

相关文档
最新文档