最新浙江高考理科数学试题及解析
高考理科数学试题及答案2024

高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.31ii+=+() A .12i + B .12i - C .2i + D .2i -2. 设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =()A .{}1,3-B .{}1,0C .{}1,3D .{}1,53. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A .1盏B .3盏C .5盏D .9盏4. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部 分所得,则该几何体的体积为() A .90π B .63π C .42π D .36π5. 设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是()A .15-B .9-C .1D .96. 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A .12种B .18种C .24种D .36种7. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩8. 执行右面的程序框图,如果输入的1a =-,则输出的S =()A .2 B .3 C .4 D .59. 若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的 离心率为()A .2B .3C .2D .2310. 若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为()A.1-B.32e --C.35e -D.111. 已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB与1C B 所成角的余弦值为()A .32 B .155 C .105D .33 12. 已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是()A.2-B.32-C. 43- D.1- 二、填空题:本题共4小题,每小题5分,共20分。
2024年浙江高考数学真题及答案

2024年浙江高考数学真题及答案本试卷共10页,19小题,满分150分.注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知集合{}355,{3,1,0,2,3}A x xB =-<<=--∣,则A B = ()A.{1,0}- B.{2,3} C.{3,1,0}-- D.{1,0,2}-2.若1i 1zz =+-,则z =()A.1i --B.1i-+ C.1i- D.1i+3.已知向量(0,1),(2,)a b x == ,若(4)b b a ⊥-,则x =()A.2- B.1- C.1D.24.已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=()A.3m- B.3m -C.3m D.3m5.()A. B. C. D.6.已知函数为22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩,在R 上单调递增,则a 取值的范围是()A.(,0]-∞ B.[1,0]- C.[1,1]- D.[0,)+∞7.当[0,2]x πÎ时,曲线sin y x =与2sin 36y x π⎛⎫=- ⎪⎝⎭的交点个数为()A.3B.4C.6D.88.已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是()A.(10)100f >B.(20)1000f >C.(10)1000f < D.(20)10000f <二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则()(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈)A.(2)0.2P X >>B.(2)0.5P X ><C.(2)0.5P Y >> D.(2)0.8P Y ><10.设函数2()(1)(4)f x x x =--,则()A.3x =是()f x 的极小值点B.当01x <<时,()2()f x f x<C.当12x <<时,4(21)0f x -<-< D.当10x -<<时,(2)()f x f x ->11.造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则()A.2a =- B.点在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点()00,x y 在C 上时,0042y x ≤+三、填空题:本题共3小题,每小题5分,共15分.12.设双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为___________.13.若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a __________.14.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为_________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.记ABC 内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC 的面积为3c .16.已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭为椭圆2222:1(0)x yC a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.17.如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB ==.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --的正弦值为427,求AD .18.已知函数3()ln(1)2xf x ax b x x=++--(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;(3)若()2f x >-当且仅当12x <<,求b 的取值范围.19.设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.参考答案本试卷共10页,19小题,满分150分.注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知集合{}355,{3,1,0,2,3}A x xB =-<<=--∣,则A B = ()A.{1,0}- B.{2,3} C.{3,1,0}-- D.{1,0,2}-【答案】A 【解析】【分析】化简集合A ,由交集的概念即可得解.【详解】因为{{}|,3,1,0,2,3A x x B =<<=--,且注意到12<<,从而A B = {}1,0-.故选:A.2.若1i 1zz =+-,则z =()A.1i --B.1i-+ C.1i- D.1i+【答案】C 【解析】【分析】由复数四则运算法则直接运算即可求解.【详解】因为11111i 111z z z z z -+==+=+---,所以111i i z =+=-.故选:C.3.已知向量(0,1),(2,)a b x == ,若(4)b b a ⊥-,则x =()A.2-B.1- C.1D.2【答案】D 【解析】【分析】根据向量垂直的坐标运算可求x 的值.【详解】因为()4b b a ⊥- ,所以()40b b a ⋅-=,所以240b a b -⋅=即2440x x +-=,故2x =,故选:D.4.已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=()A.3m -B.3m -C.3m D.3m【答案】A 【解析】【分析】根据两角和的余弦可求cos cos ,sin sin αβαβ的关系,结合tan tan αβ的值可求前者,故可求()cos αβ-的值.【详解】因为()cos m αβ+=,所以cos cos sin sin m αβαβ-=,而tan tan 2αβ=,所以sin sin 2cos cos αβαβ=,故cos cos 2cos cos m αβαβ-=即cos cos m αβ=-,从而sin sin 2m αβ=-,故()cos 3m αβ-=-,故选:A.5.()A. B. C. D.【答案】B 【解析】【分析】设圆柱的底面半径为r ,根据圆锥和圆柱的侧面积相等可得半径r 的方程,求出解后可求圆锥的体积.【详解】设圆柱的底面半径为r而它们的侧面积相等,所以2ππr r =即=,故3r =,故圆锥的体积为1π93⨯=.故选:B.6.已知函数为22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩,在R 上单调递增,则a 取值的范围是()A.(,0]-∞ B.[1,0]- C.[1,1]- D.[0,)+∞【答案】B 【解析】【分析】根据二次函数的性质和分界点的大小关系即可得到不等式组,解出即可.【详解】因为()f x 在R 上单调递增,且0x ≥时,()()e ln 1xf x x =++单调递增,则需满足()02021e ln1a a -⎧-≥⎪⨯-⎨⎪-≤+⎩,解得10a -≤≤,即a 的范围是[1,0]-.故选:B.7.当[0,2]x πÎ时,曲线sin y x =与2sin 36y x π⎛⎫=- ⎪⎝⎭的交点个数为()A.3B.4C.6D.8【答案】C 【解析】【分析】画出两函数在[]0,2π上的图象,根据图象即可求解【详解】因为函数sin y x =的的最小正周期为2πT =,函数π2sin 36y x ⎛⎫=-⎪⎝⎭的最小正周期为2π3T =,所以在[]0,2πx ∈上函数π2sin 36y x ⎛⎫=-⎪⎝⎭有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C8.已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是()A.(10)100f >B.(20)1000f >C.(10)1000f <D.(20)10000f <【答案】B 【解析】【分析】代入得到(1)1,(2)2f f ==,再利用函数性质和不等式的性质,逐渐递推即可判断.【详解】因为当3x <时()f x x =,所以(1)1,(2)2f f ==,又因为()(1)(2)f x f x f x >-+-,则(3)(2)(1)3,(4)(3)(2)5f f f f f f >+=>+>,(5)(4)(3)8,(6)(5)(4)13,(7)(6)(5)21f f f f f f f f f >+>>+>>+>,(8)(7)(6)34,(9)(8)(7)55,(10)(9)(8)89f f f f f f f f f >+>>+>>+>,(11)(10)(9)144,(12)(11)(10)233,(13)(12)(11)377f f f f f f f f f >+>>+>>+>(14)(13)(12)610,(15)(14)(13)987f f f f f f >+>>+>,(16)(15)(14)15971000f f f >+>>,则依次下去可知(20)1000f >,则B 正确;且无证据表明ACD 一定正确.故选:B.【点睛】关键点点睛:本题的关键是利用(1)1,(2)2f f ==,再利用题目所给的函数性质()(1)(2)f x f x f x >-+-,代入函数值再结合不等式同向可加性,不断递推即可.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则()(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈)A.(2)0.2P X >>B.(2)0.5P X ><C.(2)0.5P Y >>D.(2)0.8P Y ><【答案】BC 【解析】【分析】根据正态分布的3σ原则以及正态分布的对称性即可解出.【详解】依题可知,22.1,0.01x s ==,所以()2.1,0.1Y N ,故()()()2 2.10.1 2.10.10.84130.5P Y P Y P Y >=>-=<+≈>,C 正确,D 错误;因为()1.8,0.1X N ,所以()()2 1.820.1P X P X >=>+⨯,因为()1.80.10.8413P X <+≈,所以()1.80.110.84130.15870.2P X >+≈-=<,而()()()2 1.820.1 1.80.10.2P X P X P X >=>+⨯<>+<,B 正确,A 错误,故选:BC.10.设函数2()(1)(4)f x x x =--,则()A.3x =是()f x 的极小值点B.当01x <<时,()2()f x f x<C.当12x <<时,4(21)0f x -<-< D.当10x -<<时,(2)()f x f x ->【答案】ACD 【解析】【分析】求出函数()f x 的导数,得到极值点,即可判断A;利用函数的单调性可判断B;根据函数()f x 在()1,3上的值域即可判断C;直接作差可判断D.【详解】对A ,因为函数()f x 的定义域为R ,而()()()()()()22141313f x x x x x x =--+-=--',易知当()1,3x ∈时,()0f x '<,当(),1x ∞∈-或()3,x ∞∈+时,()0f x '>函数()f x 在(),1∞-上单调递增,在()1,3上单调递减,在()3,∞+上单调递增,故3x =是函数()f x 的极小值点,正确;对B,当01x <<时,()210x x x x -=->,所以210x x >>>,而由上可知,函数()f x 在()0,1上单调递增,所以()()2f x f x>,错误;对C,当12x <<时,1213x <-<,而由上可知,函数()f x 在()1,3上单调递减,所以()()()1213f f x f >->,即()4210f x -<-<,正确;对D,当10x -<<时,()()()()()()222(2)()12141220f x f x x x x x x x --=------=-->,所以(2)()f x f x ->,正确;故选:ACD.11.造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则()A.2a =- B.点在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点()00,x y 在C 上时,0042y x ≤+【答案】ABD 【解析】【分析】根据题设将原点代入曲线方程后可求a ,故可判断A 的正误,结合曲线方程可判断B 的正误,利用特例法可判断C 的正误,将曲线方程化简后结合不等式的性质可判断D 的正误.【详解】对于A:设曲线上的动点(),P x y ,则2x >-4x a -=,04a -=,解得2a =-,故A 正确.对于24x +=,而2x >-,()24x +=.当0x y ==()2844=-=,故()在曲线上,故B 正确.对于C:由曲线的方程可得()()2221622y x x =--+,取32x =,则2641494y =-,而64164525624510494494494---=-=>⨯,故此时21y >,故C 在第一象限内点的纵坐标的最大值大于1,故C 错误.对于D:当点()00,x y 在曲线上时,由C 的分析可得()()()220022001616222y x x x =--≤++,故0004422y x x -≤≤++,故D 正确.故选:ABD.【点睛】思路点睛:根据曲线方程讨论曲线的性质,一般需要将曲线方程变形化简后结合不等式的性质等来处理.三、填空题:本题共3小题,每小题5分,共15分.12.设双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为___________.【答案】32【解析】【分析】由题意画出双曲线大致图象,求出2AF ,结合双曲线第一定义求出1AF ,即可得到,,a b c 的值,从而求出离心率.【详解】由题可知2,,A B F 三点横坐标相等,设A 在第一象限,将x c =代入22221x ya b-=得2b y a =±,即22,,,b b A c B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,故2210b AB a ==,225b AF a ==,又122AF AF a -=,得1222513AF AF a a =+=+=,解得4a =,代入25b a=得220b =,故22236,c a b =+=,即6c =,所以6342c e a ===.故答案为:3213.若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a __________.【答案】ln 2【解析】【分析】先求出曲线e x y x =+在()0,1的切线方程,再设曲线()ln 1y x a =++的切点为()()0,ln 1x xa ++,求出y ',利用公切线斜率相等求出0x ,表示出切线方程,结合两切线方程相同即可求解.【详解】由e x y x =+得e 1x y '=+,00|e 12x y ='=+=,故曲线e x y x =+在()0,1处的切线方程为21y x =+;由()ln 1y x a =++得11y x '=+,设切线与曲线()ln 1y x a =++相切的切点为()()00,ln 1x x a ++,由两曲线有公切线得0121y x '==+,解得012x =-,则切点为11,ln 22a ⎛⎫-+ ⎪⎝⎭,切线方程为112ln 21ln 222y x a x a ⎛⎫=+++=++- ⎪⎝⎭,根据两切线重合,所以ln 20a -=,解得ln 2a =.故答案为:ln 214.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为_________.【答案】12##0.5【解析】【分析】将每局的得分分别作为随机变量,然后分析其和随机变量即可.【详解】设甲在四轮游戏中的得分分别为1234,,,X X X X ,四轮的总得分为X .对于任意一轮,甲乙两人在该轮出示每张牌的概率都均等,其中使得甲获胜的出牌组合有六种,从而甲在该轮获胜的概率()631448k P X ===⨯,所以()()31,2,3,48k E X k ==.从而()()()441234113382kk k E X E X X X X E X ===+++===∑∑.记()()0,1,2,3k p P X k k ===.如果甲得0分,则组合方式是唯一的:必定是甲出1,3,5,7分别对应乙出2,4,6,8,所以04411A 24p ==;如果甲得3分,则组合方式也是唯一的:必定是甲出1,3,5,7分别对应乙出8,2,4,6,所以34411A 24p ==.而X 的所有可能取值是0,1,2,3,故01231p p p p +++=,()1233232p p p E X ++==.所以121112p p ++=,1213282p p ++=,两式相减即得211242p +=,故2312p p +=.所以甲的总得分不小于2的概率为2312p p +=.故答案为:12.【点睛】关键点点睛:本题的关键在于将问题转化为随机变量问题,利用期望的可加性得到等量关系,从而避免繁琐的列举.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.记ABC 内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC 的面积为3c .【答案】(1)π3B =(2)【解析】【分析】(1)由余弦定理、平方关系依次求出cos ,sin C C ,最后结合已知sin C B=得cos B 的值即可;(2)首先求出,,A B C ,然后由正弦定理可将,a b 均用含有c 的式子表示,结合三角形面积公式即可列方程求解.【小问1详解】由余弦定理有2222cos a b c ab C +-=,对比已知222a b c +-=,可得22222cos 222a b c C ab ab +-===,因为()0,πC ∈,所以sin 0C >,从而2sin 2C ==,又因为sin C B =,即1cos 2B =,注意到()0,πB ∈,所以π3B =.【小问2详解】由(1)可得π3B =,2cos 2C =,()0,πC ∈,从而π4C =,ππ5ππ3412A =--=,而5πππ232162sin sin sin 124622224A ⎛⎫⎛⎫==+=⨯=⎪ ⎪⎝⎭⎝⎭,由正弦定理有5πππsin sin sin 1234a b c==,从而623136,4222a cbc +====,由三角形面积公式可知,ABC 的面积可表示为211316233sin 222228ABC S ab C c c c +==⋅⋅= ,由已知ABC 的面积为3+,可得23338c =,所以c =16.已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭为椭圆2222:1(0)x yC a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.【答案】(1)12(2)直线l 的方程为3260x y --=或20x y -=.【解析】【分析】(1)代入两点得到关于,a b 的方程,解出即可;(2)方法一:以AP 为底,求出三角形的高,即点B 到直线AP 的距离,再利用平行线距离公式得到平移后的直线方程,联立椭圆方程得到B 点坐标,则得到直线l 的方程;方法二:同法一得到点B 到直线AP 的距离,再设()00,B x y ,根据点到直线距离和点在椭圆上得到方程组,解出即可;法三:同法一得到点B 到直线AP 的距离,利用椭圆的参数方程即可求解;法四:首先验证直线AB 斜率不存在的情况,再设直线3y kx =+,联立椭圆方程,得到点B 坐标,再利用点到直线距离公式即可;法五:首先考虑直线PB 斜率不存在的情况,再设3:(3)2PB y k x -=-,利用弦长公式和点到直线的距离公式即可得到答案;法六:设线法与法五一致,利用水平宽乘铅锤高乘12表达面积即可.【小问1详解】由题意得2239941b a b =⎧⎪⎪⎨⎪+=⎪⎩,解得22912b a ⎧=⎨=⎩,所以12e ==.【小问2详解】法一:3312032APk -==--,则直线AP 的方程为132y x =-+,即260x y +-=,2AP ==,由(1)知22:1129x y C +=,设点B 到直线AP 的距离为d,则5352d ==,则将直线AP 沿着与AP 垂直的方向平移1255单位即可,此时该平行线与椭圆的交点即为点B ,设该平行线的方程为:20x y C ++=,5=,解得6C =或18C =-,当6C =时,联立221129260x y x y ⎧+=⎪⎨⎪++=⎩,解得03x y =⎧⎨=-⎩或332x y =-⎧⎪⎨=-⎪⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,当()0,3B -时,此时32l k =,直线l 的方程为332y x =-,即3260x y --=,当33,2B ⎛⎫--⎪⎝⎭时,此时12lk =,直线l 的方程为12y x =,即20x y -=,当18C =-时,联立2211292180x y x y ⎧+=⎪⎨⎪+-=⎩得22271170y y -+=,227421172070∆=-⨯⨯=-<,此时该直线与椭圆无交点.综上直线l 的方程为3260x y --=或20x y -=.法二:同法一得到直线AP 的方程为260x y +-=,点B 到直线AP 的距离1255d =,设()00,B x y,则220012551129x y =⎪+=⎪⎩,解得00332x y =-⎧⎪⎨=-⎪⎩或0003x y =⎧⎨=-⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,以下同法一.法三:同法一得到直线AP 的方程为260x y +-=,点B 到直线AP的距离5d =,设(),3sin B θθ,其中[)0,2θ∈π1255=,联立22cos sin 1θθ+=,解得cos 21sin 2θθ⎧=-⎪⎪⎨⎪=-⎪⎩或cos 0sin 1θθ=⎧⎨=-⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,以下同法一;法四:当直线AB 的斜率不存在时,此时()0,3B -,16392PAB S =⨯⨯= ,符合题意,此时32l k =,直线l 的方程为332y x =-,即3260x y --=,当线AB 的斜率存在时,设直线AB 的方程为3y kx =+,联立椭圆方程有2231129y kx x y =+⎧⎪⎨+=⎪⎩,则()2243240k x kx ++=,其中AP k k ≠,即12k ≠-,解得0x =或22443k x k -=+,0k ≠,12k ≠-,令22443k x k -=+,则2212943k y k -+=+,则22224129,4343k k B k k ⎛⎫--+ ⎪++⎝⎭同法一得到直线AP 的方程为260x y +-=,点B 到直线AP 的距离1255d =,5=,解得32k =,此时33,2B ⎛⎫-- ⎪⎝⎭,则得到此时12lk =,直线l 的方程为12y x =,即20x y -=,综上直线l 的方程为3260x y --=或20x y -=.法五:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=-= ⎪⎝⎭到PB 距离3d =,此时1933922ABP S =⨯⨯=≠ 不满足条件.当l 的斜率存在时,设3:(3)2PB y k x -=-,令()()1122,,,P x y B x y ,223(3)21129y k x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,消y 可得()()22224324123636270k x k k x k k +--+--=,()()()2222Δ24124433636270k kk k k =--+-->,且AP k k ≠,即12k ≠-,21222122241243,36362743k k x x k PB k k x x k ⎧-+=⎪⎪+==⎨--⎪=⎪+⎩,A 到直线PB距离192PAB d S ==⋅ ,12k ∴=或32,均满足题意,1:2l y x ∴=或332y x =-,即3260x y --=或20x y -=.法六:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=-= ⎪⎝⎭到PB 距离3d =,此时1933922ABP S =⨯⨯=≠ 不满足条件.当直线l 斜率存在时,设3:(3)2l y k x =-+,设l 与y 轴的交点为Q ,令0x =,则30,32Q k ⎛⎫-+⎪⎝⎭,联立223323436y kx k x y ⎧=-+⎪⎨⎪+=⎩,则有()2223348336362702k x k k x k k ⎛⎫+--+--= ⎪⎝⎭,()2223348336362702k x k k x k k ⎛⎫+--+--= ⎪⎝⎭,其中()()22223Δ8343436362702k k k k k ⎛⎫=--+--> ⎪⎝⎭,且12k ≠-,则2222363627121293,3434B B k k k k x x k k----==++,则211312183922234P B k S AQ x x k k +=-=+=+,解的12k =或32k =,经代入判别式验证均满足题意.则直线l 为12y x =或332y x =-,即3260x y --=或20x y -=.17.如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB ==.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --的正弦值为7,求AD .【答案】(1)证明见解析【解析】【分析】(1)先证出AD ⊥平面PAB ,即可得AD AB ⊥,由勾股定理逆定理可得BC AB ⊥,从而//AD BC ,再根据线面平行的判定定理即可证出;(2)过点D 作DEAC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF ,根据三垂线法可知,DFE ∠即为二面角A CP D --的平面角,即可求得tan DFE ∠=AD的长度表示出,DE EF ,即可解方程求出AD .【小问1详解】(1)因为PA ⊥平面ABCD ,而AD ⊂平面ABCD ,所以PA AD ⊥,又AD PB ⊥,PB PA P = ,,PB PA ⊂平面PAB ,所以AD ⊥平面PAB ,而AB ⊂平面PAB ,所以AD AB ⊥.因为222BC AB AC +=,所以BC AB ⊥,根据平面知识可知//AD BC ,又AD ⊄平面PBC ,BC ⊂平面PBC ,所以//AD 平面PBC .【小问2详解】如图所示,过点D 作DEAC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF ,因为PA ⊥平面ABCD ,所以平面PAC ⊥平面ABCD ,而平面PAC 平面ABCD AC =,所以DE ⊥平面PAC ,又EF CP ⊥,所以⊥CP 平面DEF ,根据二面角的定义可知,DFE ∠即为二面角A CP D --的平面角,即42sin 7DFE ∠=,即tan DFE ∠=因为AD DC ⊥,设AD x =,则CD =,由等面积法可得,42DE =,又242xCE -==,而EFC 为等腰直角三角形,所以2EF =,故242tan 4DFE x∠==x =AD =.18.已知函数3()ln(1)2xf x ax b x x=++--(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;(3)若()2f x >-当且仅当12x <<,求b 的取值范围.【答案】(1)2-(2)证明见解析(3)23b ≥-【解析】【分析】(1)求出()min 2f x a '=+后根据()0f x '≥可求a 的最小值;(2)设(),P m n 为()y f x =图象上任意一点,可证(),P m n 关于()1,a 的对称点为()2,2Q m a n --也在函数的图像上,从而可证对称性;(3)根据题设可判断()12f =-即2a =-,再根据()2f x >-在()1,2上恒成立可求得23b ≥-.【小问1详解】0b =时,()ln2xf x ax x=+-,其中()0,2x ∈,则()()()112,0,222f x a x x x x x =+=+∈--',因为()22212x x x x -+⎛⎫-≤= ⎪⎝⎭,当且仅当1x =时等号成立,故()min 2f x a '=+,而()0f x '≥成立,故20a +≥即2a ≥-,所以a 的最小值为2-.,【小问2详解】()()3ln12x f x ax b x x=++--的定义域为()0,2,设(),P m n 为()y f x =图象上任意一点,(),P m n 关于()1,a 的对称点为()2,2Q m a n --,因为(),P m n 在()y f x =图象上,故()3ln 12m n am b m m=++--,而()()()()3322ln221ln 122m m f m a m b m am b m a m m -⎡⎤-=+-+--=-++-+⎢⎥-⎣⎦,2n a =-+,所以()2,2Q m a n --也在()y f x =图象上,由P 的任意性可得()y f x =图象为中心对称图形,且对称中心为()1,a .【小问3详解】因为()2f x >-当且仅当12x <<,故1x =为()2f x =-的一个解,所以()12f =-即2a =-,先考虑12x <<时,()2f x >-恒成立.此时()2f x >-即为()()3ln21102x x b x x +-+->-在()1,2上恒成立,设()10,1t x =-∈,则31ln 201t t bt t+-+>-在()0,1上恒成立,设()()31ln 2,0,11t g t t bt t t+=-+∈-,则()()2222232322311tbtbg t bt t t -++=-+=-'-,当0b ≥,232332320bt b b b -++≥-++=>,故()0g t '>恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当203b -≤<时,2323230bt b b -++≥+≥,故()0g t '≥恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当23b <-,则当01t <<<时,()0g t '<故在⎛ ⎝上()g t 为减函数,故()()00g t g <=,不合题意,舍;综上,()2f x >-在()1,2上恒成立时23b ≥-.而当23b ≥-时,而23b ≥-时,由上述过程可得()g t 在()0,1递增,故()0g t >的解为()0,1,即()2f x >-的解为()1,2.综上,23b ≥-.【点睛】思路点睛:一个函数不等式成立的充分必要条件就是函数不等式对应的解,而解的端点为函数对一个方程的根或定义域的端点,另外,根据函数不等式的解确定参数范围时,可先由恒成立得到参数的范围,再根据得到的参数的范围重新考虑不等式的解的情况.19.设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.【答案】(1)()()()1,2,1,6,5,6(2)证明见解析(3)证明见解析【解析】【分析】(1)直接根据(),i j -可分数列的定义即可;(2)根据(),i j -可分数列的定义即可验证结论;(3)证明使得原数列是(),i j -可分数列的(),i j 至少有()21m m +-个,再使用概率的定义.【小问1详解】首先,我们设数列1242,,...,m a a a +的公差为d ,则0d ≠.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形()111,2,...,42k ka a a k m d-=+=+',得到新数列()1,2, (42)a k k m ==+',然后对1242,,...,m a a a +'''进行相应的讨论即可.换言之,我们可以不妨设()1,2,...,42k a k k m ==+,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从1,2,3,4,5,6中取出两个数i 和()j i j <,使得剩下四个数是等差数列.那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6.所以所有可能的(),i j 就是()()()1,2,1,6,5,6.【小问2详解】由于从数列1,2,...,42m +中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①{}{}{}1,4,7,10,3,6,9,12,5,8,11,14,共3组;②{}{}{}15,16,17,18,19,20,21,22,...,41,4,41,42m m m m -++,共3m -组.(如果30m -=,则忽略②)故数列1,2,...,42m +是()2,13-可分数列.【小问3详解】定义集合{}{}410,1,2,...,1,5,9,13,...,41A k k m m =+==+,{}{}420,1,2,...,2,6,10,14,...,42B k k m m =+==+.下面证明,对142i j m ≤<≤+,如果下面两个命题同时成立,则数列1,2,...,42m +一定是(),i j -可分数列:命题1:,i A j B ∈∈或,i B j A ∈∈;命题2:3j i -≠.我们分两种情况证明这个结论.第一种情况:如果,i A j B ∈∈,且3j i -≠.此时设141i k =+,242j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124142k k +<+,即2114k k ->-,故21k k ≥.此时,由于从数列1,2,...,42m +中取出141i k =+和242j k =+后,剩余的4m 个数可以分为以下三个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}{}{}11111111222242,43,44,45,46,47,48,49,...,42,41,4,41k k k k k k k k k k k k ++++++++--+,共21k k -组;③{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)故此时数列1,2,...,42m +是(),i j -可分数列.第二种情况:如果,i B j A ∈∈,且3j i -≠.此时设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124241k k +<+,即2114k k ->,故21k k >.由于3j i -≠,故()()2141423k k +-+≠,从而211k k -≠,这就意味着212k k -≥.此时,由于从数列1,2,...,42m +中取出142i k =+和241j k =+后,剩余的4m 个数可以分为以下四个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}112121241,31,221,31k k k k k k k +++++++,{}121212232,222,32,42k k k k k k k +++++++,共2组;③全体{}11212124,3,22,3k p k k p k k p k k p +++++++,其中213,4,...,p k k =-,共212k k --组;④{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含212k k --个行,4个列的数表以后,4个列分别是下面这些数:{}111243,44,...,3k k k k +++,{}12121233,34,...,22k k k k k k +++++,{}121212223,223,...,3k k k k k k +++++,{}1212233,34,...,4k k k k k ++++.可以看出每列都是连续的若干个整数,它们再取并以后,将取遍{}11241,42,...,42k k k +++中除开五个集合{}1141,42k k ++,{}121231,32k k k k ++++,{}1212221,222k k k k ++++,{}121231,32k k k k ++++,{}2241,42k k ++中的十个元素以外的所有数.而这十个数中,除开已经去掉的142k +和241k +以外,剩余的八个数恰好就是②中出现的八个数.这就说明我们给出的分组方式满足要求,故此时数列1,2,...,42m +是(),i j -可分数列.至此,我们证明了:对142i j m ≤<≤+,如果前述命题1和命题2同时成立,则数列1,2,...,42m +一定是(),i j -可分数列.然后我们来考虑这样的(),i j 的个数.首先,由于A B ⋂=∅,A 和B 各有1m +个元素,故满足命题1的(),i j 总共有()21m +个;而如果3j i -=,假设,i A j B ∈∈,则可设141i k =+,242j k =+,代入得()()2142413k k +-+=.但这导致2112k k -=,矛盾,所以,i B j A ∈∈.设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈,则()()2141423k k +-+=,即211k k -=.所以可能的()12,k k 恰好就是()()()0,1,1,2,...,1,m m -,对应的(),i j 分别是()()()2,5,6,9,...,42,41m m -+,总共m 个.所以这()21m +个满足命题1的(),i j 中,不满足命题2的恰好有m 个.这就得到同时满足命题1和命题2的(),i j 的个数为()21m m +-.当我们从1,2,...,42m +中一次任取两个数i 和()j i j <时,总的选取方式的个数等于()()()()424121412m m m m ++=++.31/31而根据之前的结论,使得数列1242,,...,m a a a +是(),i j -可分数列的(),i j 至少有()21m m +-个.所以数列1242,,...,m a a a +是(),i j -可分数列的概率m P 一定满足()()()()()()()()()22221111124214121412142221218m m m m m m m m P m m m m m m m m ⎛⎫+++ ⎪+-++⎝⎭≥=>=++++++++.这就证明了结论.【点睛】关键点点睛:本题的关键在于对新定义数列的理解,只有理解了定义,方可使用定义验证或探究结论.。
2022年理数高考试题答案及解析-浙江

绝密★考试结束前2022年普通高等学校招生全国同一考试〔浙江卷〕数 学〔理科〕本试题卷分选择题和非选择题两局部.全卷共5页,选择题局部1至3页,非选择题局部4至5页.总分值150分,考试时间120分钟.请考生按规定用笔将所有试题的答案涂、写在答题纸上.选择题局部〔共50分〕本卷须知:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上.2.每题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干 净后,再选涂其它答案标号。
不能答在试题卷上.参考公式:如果事件A ,B 互斥,那么 柱体的体积公式如果事件A ,B 相互独立,那么 其中S 表示柱体的底面积,h 表示柱体的高 ()()()P A B P A P B ⋅=⋅ 锥体的体积公式如果事件A 在一次试验中发生的概率是p ,那么 13V Sh =n 次独立重复试验中事件A 恰好发生k 次的概率 其中S 表示锥体的底面积,h 表示锥体的高()()()1,0,1,2,,n kk kn n P k C p p k n -=-=球的外表积公式台体的体积公式 24πS R =()1213V h S S = 球的体积公式其中12,S S 分别表示台体的上底、下底面积, 34π3V R =h 表示台体的高 其中R 表示球的半径一、选择题:本大题共10小题,每题5分,共50分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.设集合A ={x |1<x <4},B ={x |x 2-2x -3≤0},那么A ∩(C R B )=A .(1,4)B .(3,4)C .(1,3)D .(1,2) 【解析】A =(1,4),B =(-3,1),那么A ∩(C R B )=(1,4). 【答案】A 2.i 是虚数单位,那么3+i1i-= A .1-2i B .2-i C .2+i D .1+2i 【解析】3+i 1i -=()()3+i 1+i 2=2+4i2=1+2i .【答案】D3.设a ∈R ,那么“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行〞的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】当a =1时,直线l 1:x +2y -1=0与直线l 2:x +2y +4=0显然平行;假设直线l 1与直线l 2平行,那么有:211a a =+,解之得:a =1 or a =﹣2.所以为充分不必要条件. 【答案】A4.把函数y =cos2x +1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图像是【解析】把函数y =cos2x +1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变)得:y 1=cos x +1,向左平移1个单位长度得:y 2=cos(x —1)+1,再向下平移1个单位长度得:y 3=cos(x —1).令x =0,得:y 3>0;x =12π+,得:y 3=0;观察即得答案. 【答案】B5.设a ,b 是两个非零向量.A .假设|a +b |=|a |-|b |,那么a ⊥bB .假设a ⊥b ,那么|a +b |=|a |-|b |C .假设|a +b |=|a |-|b |,那么存在实数λ,使得a =λbD .假设存在实数λ,使得a =λb ,那么|a +b |=|a |-|b |【解析】利用排除法可得选项C 是正确的,∵|a +b |=|a |-|b |,那么a ,b 共线,即存在实数λ,使得a =λb .如选项A :|a +b |=|a |-|b |时,a ,b 可为异向的共线向量;选项B :假设a ⊥b ,由正方形得|a +b |=|a |-|b |不成立;选项D :假设存在实数λ,使得a =λb ,a ,b 可为同向的共线向量,此时显然|a +b |=|a |-|b |不成立. 【答案】C6.假设从1,2,2,…,9这9个整数中同时取4个不同的数,其和为偶数,那么不同的取法共有A .60种B .63种C .65种D .66种【解析】1,2,2,…,9这9个整数中有5个奇数,4个偶数.要想同时取4个不同的数其和为偶数,那么取法有:4个都是偶数:1种;2个偶数,2个奇数:225460C C =种; 4个都是奇数:455C =种.∴不同的取法共有66种. 【答案】D7.设S n 是公差为d (d ≠0)的无穷等差数列{a n }的前n 项和,那么以下命题错误的选项是......A .假设d <0,那么数列{S n }有最大项B .假设数列{S n }有最大项,那么d <0C .假设数列{S n }是递增数列,那么对任意的n ∈N*,均有S n >0D .假设对任意的n ∈N*,均有S n >0,那么数列{S n }是递增数列【解析】选项C 显然是错的,举出反例:—1,0,1,2,3,….满足数列{S n }是递增数列,但是S n >0不成立.【答案】C8.如图,F 1,F 2分别是双曲线C :22221x y a b-=(a ,b >0)的左右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P ,Q 两点,线段PQ 的垂直平分线与x 轴交于点M .假设|MF 2|=|F 1F 2|,那么C 的离心率是 A 23 B 6C 2D 3【解析】如图:|OB |=b ,|OF 1|=c .∴k PQ =b c,k MN =﹣b c.直线PQ 为:y =b c (x +c ),两条渐近线为:y =b a x .由()b y x c c b y x a ⎧⎪⎪⎨⎪⎪⎩=+=,得:Q (ac c a -,bc c a -);由()b y x c cb y xa ⎧⎪⎪⎨⎪⎪⎩=+=-,得:P (ac c a -+,bc c a +).∴直线MN 为:y -bc c a +=﹣b c(x -acc a -+), 令y =0得:x M =322c c a -.又∵|MF 2|=|F 1F 2|=2c ,∴3c =x M =322c c a -,解之得:2232a c e a==,即e 6.【答案】B9.设a >0,b >0A .假设2223a b a b +=+,那么a >bB .假设2223a b a b +=+,那么a <bC .假设2223a b a b -=-,那么a >bD .假设2223a b a b -=-,那么a <b【解析】假设2223a b a b +=+,必有2222a b a b +>+.构造函数:()22x f x x =+,那么()2ln 220x f x '=⋅+>恒成立,故有函数()22x f x x =+在x >0上单调递增,即a >b 成立.其余选项用同样方法排除. 【答案】A10.矩形ABCD ,AB =1,BC 2∆ABD 沿矩形的对角线BD 所在的直线进行翻着,在翻着过程中,A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三直线“AC 与BD 〞,“AB 与CD 〞,“AD 与BC 〞均不垂直【解析】最简单的方法是取一长方形动手按照其要求进行翻着,观察在翻着过程,即可知选项C 是正确的. 【答案】C2022年普通高等学校招生全国同一考试〔浙江卷〕数 学〔理科〕非选择题局部〔共100分〕本卷须知:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上.2.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑.二、填空题:本大题共7小题,每题4分,共28分. 11.某三棱锥的三视图(单位:cm)如下列图,那么该三棱锥的体积等于___________cm 3.【解析】观察三视图知该三棱锥的底面为一直角三角 11312123⨯⨯⨯⨯=. 形,右侧面也是一直角三角形.故体积等于【答案】112.假设程序框图如下列图,那么该程序运行后输出的值是______________.【解析】T ,i 关系如以下列图: T 1 12 16 124 1120i 23 4 5 6【答案】112013.设公比为q (q >0)的等比数列{a n }的前n 项和为{S n }.假设2232S a =+,4432S a =+,那么q =______________.q 表示的式子.【解析】将2232S a =+,4432S a =+两个式子全部转化成用1a ,即111233111113232a a q a q a a q a q a q a q +=+⎧⎨+++=+⎩,两式作差得:2321113(1)a q a q a q q +=-,即:2230q q --=,解之得:312q or q ==-(舍去). 【答案】3214.假设将函数()5f x x =表示为其中0a ,1a ,2a ,…,5a 为实数,那么3a =______________. 【解析】法一:由等式两边对应项系数相等.即:545543315544310100a C a a a C a C a a =⎧⎪+=⇒=⎨⎪++=⎩. 法二:对等式:()()()()2550125111f x x a a x a x a x ==+++++++两边连续对x 求导三次得:2234560624(1)60(1)x a a x a x =++++,再运用赋值法,令1x =-得:3606a =,即310a =.【答案】1015.在∆ABC 中,M 是BC 的中点,AM =3,BC =10,那么AB AC ⋅=______________. 【解析】此题最适合的方法是特例法.假设∆ABC 是以AB =AC 的等腰三角形,如图, AM =3,BC =10,AB =AC 34 cos ∠BAC =3434102923434+-=⨯.AB AC ⋅=cos 29AB AC BAC ⋅∠=【答案】2916.定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的距离.曲线C 1:y =x 2+a 到直线l :y =x 的距离等于C 2:x 2+(y +4) 2 =2到直线l :y =x 的距离, 那么实数a =______________.【解析】C 2:x 2+(y +4) 2 =2,圆心(0,—4),圆心到直线l :y =x 的距离为:0(4)222d --==C 2到直线l :y =x 的距离为22d d r d '=-== 另一方面:曲线C 1:y =x 2+a ,令20y x '==,得:12x =,曲线C 1:y =x 2+a 到直线l :y =x 的距离的点为(12,14a +),111()72442422a ad a -++'==⇒=. 【答案】7417.设a ∈R ,假设x >0时均有[(a -1)x -1]( x 2-ax -1)≥0,那么a =______________. 【解析】此题按照一般思路,那么可分为一下两种情况: (A )2(1)1010a x x ax ≤⎧⎨≤⎩----, 无解; (B )2(1)1010a x x ax ≥⎧⎨≥⎩----, 无解. 因为受到经验的影响,会认为此题可能是错题或者解不出此题.其实在x >0的整个区间上,我们可以将其分成两个区间(为什么是两个),在各自的区间内恒正或恒负.(如下答图) 我们知道:函数y 1=(a -1)x -1,y 2=x 2-ax -1都过定点P (0,1). 考查函数y 1=(a -1)x -1:令y =0,得M (11a -,0),还可分析得:a >1; 考查函数y 2=x 2-ax -1:显然过点M (11a -,0),代入得:211011a a a ⎛⎫--= ⎪--⎝⎭,解之得:2a =,舍去2a =,得答案:2a = 【答案】2a =三、解答题:本大题共5小题,共72分,解容许写出文字说明、证明过程或演算步骤. 18.(本小题总分值14分)在∆ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .cos A =23,sin B 5C . (Ⅰ)求tan C 的值;(Ⅱ)假设a 2∆ABC 的面积.【解析】此题主要考察三角恒等变换,正弦定理,余弦定理及三角形面积求法等知识点。
高考真题浙江卷解析-数学理

普通高等学校招生全国统一考试(浙江卷)数学(理)试题解析一、选择题 (本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设函数2,0,()()4,0.x x f x f x xα-≤⎧==⎨⎩若,则实数α=(A )-4或-2 (B )-4或2 (C )-2或4 (D )-2或2 【答案】B【解析】当0≤α时,4,42)(-==-=ααf ; 当0>α,4,42)(2===ααf .(2)把复数z 的共轭复数记作z ,i 为虚数单位,若z=1+I,则(1)z z +⋅= (A )3-i (B )3+i (C )1+3i (D )3 【答案】A【解析】∵i z +=1,∴i z -=1,∴i z z z z -=-+=•+3)1)(2()1(.(3)若某几何体的三视图如图所示,则这个几何体的直观图能够是【答案】D【解析】由正视图可排除A 、B 选项;由俯视图可排除C 选项. (4)下列命题中错误的是(A )如果平面αβ⊥平面,那么平面α内一定存有直线平行于平面β (B )如果平面不垂直于平面β,那么平面α内一定不存有直线垂直于平面β (C )如果平面αγ⊥平面,平面βγ⊥平面,=l αβ⋂,那么l γ⊥平面 (D )如果平面αβ⊥平面,那么平面α内所有直线都垂直于平面β 【答案】D【解析】若面⊥α面β,在面α内与面的交线不相交的直线平行平面β,故A 准确;B 中若α内存有直线垂直平面β,则βα⊥,与题没矛盾,所以B 准确;由面⊥面的性质知选项C 准确.(5)设实数,x y 满足不等式组250270,0x y x y x +-⎧⎪+-⎨⎪⎩>>≥,y ≥0,若,x y 为整数,则34x y +的最小值是(A )14 (B )16 (C )17 (D )19 【答案】B【解析】可行域如图所示联立⎩⎨⎧=-+=-+072052y x y x ,解之得⎩⎨⎧==13y x ,又∵边界线为虚线取不到,且目标函数线的斜率为43-,∴当y x z 43+=过点(4,1)时,有最小值16.(6)若02πα<<,02πβ-<<,1cos()43πα+=,cos()42πβ-=则cos()2βα+= (A)3 (B)3- (C)9 (D)9-【答案】C【解析】∵31)4cos(=+απ,20πα<<,∴332)4sin(=+απ,又∵33)24cos(=-βπ,02<<-βπ,∴36)24sin(=-βπ,∴)]24()4cos[()2cos(βπαπβα--+=+=)24sin()4sin()24cos()4cos(βπαπβπαπ-++-+=363323331⨯+⨯=935. (7)若,a b 为实数,则“01m ab <<”是11a b b a<或>的 (A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件 【答案】A【解析】当0,0>>b a 时,由10<<ab 两边同除b 可得ba 1<成立;当0,0<<b a 时,两边同除以a 可得a b 1>成立,∴“10<<ab ”是“b a 1<或a b 1>”的充会条件,反过来0<ab ,由b a 1<或ab 1>得不到10<<ab .(8)已知椭圆22122:1(0)x y C a b a b +=>>与双曲线221:14y C x -=有公共的焦点,2C 的一条渐近线与以1C 的长轴为直径的圆相交于,A B 两点,若1C 恰好将线段AB 三等分,则 (A )2132a =(B )213a = (C )212b = (D )22b = 【答案】 C【解析】由双曲线422y x -=1知渐近线方程为x y 2±=,又∵椭圆与双曲线有公共焦点,∴椭圆方程可化为22x b +()225y b +=()225b b +,联立直线与椭圆方程消y 得,()20552222++=b b b x,又∵1C 将线段AB 三等分,∴()3220552212222a b b b =++⨯+, 解之得212=b .(9)有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率[(A )15 (B )25 (C )35 D 45【答案】B【解析】由古典概型的概率公式得522155222233232222=+-=A A A A A A A P .(10)设a ,b ,c 为实数,)1)1()(),)(()(22+++=+++=bx cx ax x g c bx x a x x f (.记集合S=()0,,()0,,x f x x R T x g x x R =∈==∈若S ,T 分别为集合元素S ,T 的元素个数,则下列结论不可能...的是 (A )S =1且T =0 (B )1T =1S =且 (C )S =2且T =2 (D )S =2且T =3 【答案】C【解析】当0===c b a 时,1=s 且 0||=T ;当0,0≠=b a 且042<-c b 时,1=s 且1||=T ;当04,02>-≠a b a 时,2=s 且3||=T .非选择题部分(共100分)二、填空题:本大题共7小题,每小题4分,共28分(11)若函数2()f x x x a =-+为偶函数,则实数a = 。
高考真题——理科数学(浙江卷)解析版(1) Word版含答案

数学理试题(浙江卷)一.选择题1、已知i 是虚数单位,则=-+-)2)(1(i iA. i +-3B. i 31+-C. i 33+-D.i +-12、设集合}043|{},2|{2≤-+=->=x x x T x x S ,则=⋃T S C R )( A. ]1,2(- B. ]4,(--∞ C. ]1,(-∞ D.),1[+∞ 答案:C 解析:如图1所示,由已知得到考点定位:此题考查集合的使用之补集和并集体,考查一元二次不等式的解法,利用数轴即可解决此题,体现数形结合思想的应用,此考点是历年来高考必考考点之一,属于简单题; 3、已知y x ,为正实数,则 A.y x yx lg lg lg lg 222+=+ B.y x y x lg lg )lg(222•=+ C.y x yx lg lg lg lg 222+=• D.y x xy lg lg )lg(222•=答案:D解析:此题中,由考点定位:此题考查对数的运算法则和同底数幂的乘法的运算法则;4、已知函数),0,0)(cos()(R A x A x f ∈>>+=ϕωϕω,则“)(x f 是奇函数”是2πϕ=的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D.既不充分也不必要条件 答案:B 解析:考点定位:充分条件的判断和三角函数的奇偶性性质知识点;5、某程序框图如图所示,若该程序运行后输出的值是59,则 A.4=a B.5=a C. 6=a D.7=a 答案:A解析:由图可知考点定位:此题考查算法及数列的列项相消求和的方法;6、已知210cos 2sin ,=+∈αααR ,则=α2tan A.34 B. 43 C.43- D.34- 答案:C解析:由已知得到:考点定位:此题考查同角三角函数商数关系和平方关系的灵活应用,考查二倍角正切公式的应用,考查学生的运算求解水平;7、设0,P ABC ∆是边AB 上一定点,满足AB B P 410=,且对于边AB 上任一点P ,恒有C P B P PC PB 00•≥•。
2022年普通高等学校招生统一考试(浙江卷)数学含答案解析(原卷版)

……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前2022年普通高等学校招生统一考试(浙江卷)数学学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
1. 设集合A ={1,2},B ={2,4,6},则A ∪B =( ) A. {2}B. {1,2}C. {2,4,6|D. {1,2,4,6}2. 已知a ,b ∈R ,a +3i =(b +i)i(i 为虚数单位),则( ) A. a =1,b =−3 B. a =−1,b =3 C. a =−1,b =−3D. a =1,b =33. 若实数x ,y 满足约束条件{x −2≥0,2x +y −7≤0,x −y −2≤0,则z =3x +4y 的最大值是( )A. 20B. 18C. 13D. 64. 设x ∈R ,则“sin x =1”是“cos x =0”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件D. 既不充分也不必要条件……○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※……○…………内…………○…………装…………○…………订…………○…………线…………○…………5. 某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A. 22πB. 8πC.223π D.163π 6. 为了得到函数y =2sin 3x 的图象,只要把函数y =2sin(3x +π5)图象上所有的点( )A. 向左平移π5个单位长度 B. 向右平移π5个单位长度 C. 向左平移π15个单位长度D. 向右平移π15个单位长度7. 已知2a =5,log 83=b ,则4a−3b =( ) A. 25B. 5C. 259D. 538. 如图,已知正三棱柱ABC −A 1B 1C 1,AC =AA 1,E ,F 分别是棱BC ,A 1C 1上的点.记EF 与AA 1所成的角为α,EF 与平面ABC 所成的角为β,二面角F −BC −A 的平……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………面角为γ,则( )A. α≤β≤γB. β≤α≤γC. β≤γ≤αD. α≤γ≤β9. 已知a ,b ∈R ,若对任意x ∈R ,a|x −b|+|x −4|−|2x −5|≥0,则( ) A. a ≤1,b ≥3B. a ≤1,b ≤3C. a ≥1,b ≥3D. a ≥1,b ≤310. 已知数列{a n }满足a 1=1,a n+1=a n −13a n 2(n ∈N ∗),则( )A. 2<100a 100<52 B. 52<100a 100<3 C. 3<100a 100<72D. 72<100a 100<411. 我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法称为“三斜求积”,它填补了我国传统数学的一个空白.如果把这个方法写成公式,就是S =√14[c 2a 2−(c 2+a 2−b 22)2],其中a ,b ,c 是三角形的三边,S 是三角形的面积.设某三角形的三边a =√2,b =√3,c =2,则该三角形的面积S = . 12. 已知多项式(x +2)(x −1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则a 2= ,a 1+a 2+a 3+a 4+a 5= .13. 若3sinα−sinβ=√10,α+β=π2,则sin α= ,cos2β= .14. 已知函数f(x)={−x 2+2,x ≤1,x +1x −1,x >1,则f(f(12))= ;若当x ∈[a,b]时,1≤f(x)≤3,则b −a 的最大值是 .15. 现有7张卡片,分别写上数字1,2,2,3,4,5,6,从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为ξ,则P(ξ=2)= ,E(ξ)= .16. 已知双曲线x 2a 2−y 2b2=1(a >0,b >0)的左焦点为F ,过F 且斜率为b 4a的直线交双曲线于点A(x 1,y 1),交双曲线的渐近线于点B(x 2,y 2)且x 1<0<x 2.若|FB|=3|FA|,则双曲线的离心率是 .……○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※……○…………内…………○…………装…………○…………订…………○…………线…………○…………17. 设点P 在单位圆的内接正八边形A 1A 2⋯A 8的边A 1A 2上,则PA 1⃗⃗⃗⃗⃗⃗⃗ 2+PA 2⃗⃗⃗⃗⃗⃗⃗ 2+⋯+PA 8⃗⃗⃗⃗⃗⃗⃗ 2的取值范围是 .18. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.已知4a =√5c ,cos C =35. (I)求sin A 的值;(Ⅱ)若b =11,求△ABC 的面积.19. 如图,已知ABCD 和CDEF 都是直角梯形,AB//DC ,DC//EF ,AB =5,DC =3,EF =1,∠BAD =∠CDE =60∘,二面角F −DC −B 的平面角为60∘.设M ,N 分别为AE ,BC 的中点. (I)证明:FN ⊥AD;(Ⅱ)求直线BM 与平面ADE 所成角的正弦值.20. 已知等差数列{a n }的首项a 1=−1,公差d >1.记{a n }的前n 项和为S n (n ∈N ∗).(1)若S 4−2a 2a 3+6=0,求S n ;(2)若对于每个n ∈N ∗,存在实数c n ,使a n +c n ,a n+1+4c n ,a n+2+15c n 成等比数列,求d 的取值范围.21. 如图,已知椭圆x 212+y 2=1.设A ,B 是椭圆上异于P(0,1)的两点,且点Q(0,12)在线段AB 上,直线PA ,PB 分别交直线y =−12x +3于C ,D 两点.(I)求点P 到椭圆上点的距离的最大值; (II )求|CD|的最小值.22. 设函数f(x)=e2x +lnx(x >0).(I)求f(x)的单调区间;(II)已知a ,b ∈R ,曲线y =f(x)上不同的三点(x 1,f(x 1)),(x 2,f(x 2)),(x 3,f(x 3))处的切线都经过点(a,b).证明:(i)若a>e,则0<b−f(a)<12(ae−1);(ii)若0<<a<e,x1<x2<x3,则2e +e−a6e2<1x1+1x3<2a−e−a6e2.(注:e=2.71828⋯是自然对数的底数)……○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※……○…………内…………○…………装…………○…………订…………○…………线…………○…………答案和解析1.【答案】D【解析】 【分析】本题考查的是集合的并集运算,属于基础题. 【解答】解:因为A ={1,2},B ={2,4,6}, 所以A ∪B ={1,2,4,6}. 故选:D .2.【答案】B【解析】 【分析】本题考查复数的计算和复数相等概念. 【解答】解:a +3i =(b +i)i =−1+bi ⇒{a =−1b =3.3.【答案】B【解析】解:根据题意作出可行域,如图所示,由z =3x +4y 得y =−34x +14z ,当直线过点A(2,3)时,z 最大,即z max =3×2+4×3=18.选项B正确.4.【答案】A【解析】【分析】本题主要考查充分条件的判断,属于基础题.【解答】解:当sin x=1时,x=π2+2kπ,k∈Z当cosx=0时,x=π2+kπ,k∈Z,则x=π2+2kπ,k∈Z是x=π2+kπ,k∈Z的充分不必要条件.所以“sin x=1”是“cos x=0”的充分不必要条件.5.【答案】C【解析】【分析】本题考查三视图的体积,属于基础题.根据三视图,还原立体图,计算组合体的体积.【解答】解:由三视图可知该几何体由一个半球体,一个圆柱、一个圆台拼接而成,故V=12×43×π×13+12×π×2+13×2×(π×12+π×22+√π×12×π×22)=23π+2π+23×(5π+2π)=22π3.6.【答案】D【解析】【分析】本题考查了三角函数图象的平移,属于基础题。
2021年浙江省高考数学(含解析版)

A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
答案:
B
解析:
若 c a 且 c b ,则 a c b c 0 ,但 a 不一定等于 b ,故充分性不成立,
若 a b ,则 a c b c ,必要性成立,故为必要不充分条件.
故选 B.
, E( )
.
6
3
答案:
1 8 9
解析:
P(
2)
C42 C2
mn4
6 C2
mn4
1 6
C
2 mn
4
36
,所以 m n 4 9 ,
P(一红一黄)
C41 Cm1 C2
mn4
4m 36
m 9
1 3
m
3
,所以 n
2 ,则 m n
1,
P(
2)
1 6
,
P(
1)
C41 C51 C92
45 36
13.已知多项式 (x 1)3 (x 1)4 x4 a1x3 a2 x a3x a4 ,则 a1
; a2 a3 a4
.
答案:
5 10
解析:
根据二项式通项公式: a1x3 C30 x3 (1)0 C41x311 5x3 ,故 a1 5 ;
同理, a2 x2 C31x2 (1)1 C42 x212 3x2 6x2 3x2 a2 3 ,
a
,故 e
5
.
5
解析二:不妨假设 c 2 , sin PF1F2
sin HF1M
HM F1M
2 , HM 3
c 2
2
2
,
F1M
【高三】浙江2021年高考数学理科试卷(附答案和解释)

【高三】浙江2021年高考数学理科试卷(附答案和解释)浙江卷数学(理)试题答案与解析选择题部分(共50分)一、选择题:每小题5分,共50分.1.已知i是虚数单位,则(?1+i)(2?i)=A.?3+iB.?1+3i C.?3+3i D.?1+i【命题意图】本题考查复数的四则运算,属于容易题【答案解析】B2.设集合S={xx>?2},T={xx2+3x?4≤0},则(?RS)∪T=A.(?2,1]B.(?∞,?4]C.(?∞,1]D.[1,+∞)【命题意图】本题考查集合的运算,属于容易题【答案解析】C 因为(?RS)={xx≤?2},T={x?4≤x≤1},所以(?RS)∪T=(?∞,1]. 3.已知x,y为正实数,则A.2lgx+lgy=2lgx+2lgyB.2lg(x+y)=2lgx ? 2lgyC.2lgx ? lgy=2lgx+2lgy D.2lg(xy)=2lgx ? 2lgy【命题意图】本题考查指数和对数的运算性质,属于容易题【答案解析】D 由指数和对数的运算法则,易知选项D正确4.已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,φ?R),则“f(x)是奇函数”是“φ=π2”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【命题意图】本题考查简易逻辑以及函数的奇偶性,属于中档题【答案解析】B 由f(x)是奇函数可知f(0)=0,即cosφ=0,解出φ=π2+kπ,k?Z,所以选项B正确5.某程序框图如图所示,若该程序运行后输出的值是95,则A.a=4B.a=5C.a=6D.a=7【命题意图】本题考查算法程序框图,属于容易题【答案解析】A6.已知α?R,sin α+2cos α=102,则tan2α=A.43B.34C.?34D.?43【命题意图】本题考查三角公式的应用,解法多样,属于中档题【答案解析】C 由(sin α+2cos α)2=1022可得sin2α+4cos2α+4sin αcos α sin2α+cos2α=104,进一步整理可得3tan2α?8tan α?3=0,解得tan α=3或tanα=?13,于是tan2α=2tan α1?tan2α=?34.7.设△ABC,P0是边AB上一定点,满足P0B=14AB,且对于AB上任一点P,恒有→PB?→PC≥→P0B?→P0C,则A.?ABC=90?B.?BAC=90?C.AB=ACD.AC=BC【命题意图】本题考查向量数量积的几何意义,不等式恒成立的有关知识,属于中档题【答案解析】D 由题意,设→AB=4,则→P0B=1,过点C作AB的垂线,垂足为H,在AB上任取一点P,设HP0=a,则由数量积的几何意义可得,→PB?→PC=→PH→PB=(→PB ?(a+1))→PB,→P0B?→P0C=?→P0H→P0B=?a,于是→PB?→PC≥→P0B?→P0C恒成立,相当于(→PB?(a+1))→PB≥?a恒成立,整理得→PB2?(a+1)→PB+a≥0恒成立,只需?=(a+1)2?4a=(a?1)2≤0即可,于是a=1,因此我们得到HB=2,即H是AB的中点,故△ABC是等腰三角形,所以AC=BC8.已知e为自然对数的底数,设函数f(x)=(ex?1)(x?1)k(k=1,2),则A.当k=1时,f(x)在x=1处取到极小值B.当k=1时,f(x)在x=1处取到极大值C.当k=2时,f(x)在x=1处取到极小值D.当k=2时,f(x)在x=1处取到极大值【命题意图】本题考查极值的概念,属于中档题【答案解析】C 当k=1时,方程f(x)=0有两个解,x1=0,x2=1,由标根法可得f(x)的大致图象,于是选项A,B错误;当k=2时,方程f(x)=0有三个解,x1=0,x2=x3=1,其中1是二重根,由标根法可得f(x)的大致图象,易知选项C正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年普通高等学校招生全国统一考试(浙江卷)数 学(理科)选择题部分(共50分)参考公式:如果事件,A B 互斥,那么 柱体的体积公式()()()P A B P A P B +=+ V sh =如果事件,A B 相互独立,那么 其中s 表示柱体的底面积,h 表示柱体的高()()()P A B P A P B ⋅=⋅ 锥体的体积公式 13V sh = 一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设函数2,0(),0x x f x x x -≤⎧=⎨>⎩,若()4f a =,则实数a = (A )-4或-2 (B )-4或2 (C )-2或4 (D )-2或2(2)把复数z 的共轭复数记作z ,i 为虚数单位,若z=1+i,则(1)z z +⋅=(A )3i - (B )3i + (C )13i + (D )3(3)若某几何体的三视图如图所示,则这个几何体的直观图可以是(4)下列命题中错误..的是 (A )如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β(B )如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β(C )如果平面α⊥平面γ,平面β⊥平面γ,l αβ⋂=,那么l ⊥平面γ(D )如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β(5)设实数x 、y 是不等式组2502700,0x y x y x y +->⎧⎪+->⎨⎪≥≥⎩,若x 、y 为整数,则34x y +的最小值是(A )14 (B )16 (C )17 (D )19(6)若02πα<<,02πβ-<<,1cos()43πα+=,cos ()423πβ-=,则cos ()2βα+= (A)3 (B)3-(C)9 (D)9- (7)若a 、b 为实数,则“01ab <<”是“1a b <或1b a>”的 (A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件(8)已知椭圆22122:1x y C a b +=(a >b >0)与双曲线 222:14y C x -=有公共的焦点,2C 的一条渐近线与以1C 的长轴为直径的圆相交于,A B 两点,若1C 恰好将线段AB 三等分,则(A )2132a = (B )2a =13 (C )212b = (D )2b =2 (9)有5本不同的书,其中语文书2本,数学书2本,物理书1本。
若将其随机地并排摆放到书架的同一层上,则同一科目的书都不相邻的概率是(A )15 (B )25 (C )53 (D )45(10)设,,a b c 为实数,22()()(),()(1)(1)f x x a x bx c g x ax cx bx =+++=+++。
记集合{|()0,},{|()0,}.S x f x x R T x g x x R ==∈==∈若||S ,||T 分别为集合,S T 的元素个数,则下列结论不可能...的是 (A )||1S = 且 ||0T = (B )||1S = 且 ||1T =(C )||2S = 且 ||2T = (D )||2S = 且 ||3T =非选择题部分(共100分)二、填空题:本大题共7小题,每小题4分,共28分。
(11)若函数2()f x x x a =-+为偶函数,则实数a = 。
(12)若某程序框图如图所示,则该程序运行后输出的k 值为(13)若二项式6()(0)x a x->的展开式中3x 的系数为A ,常数项为B ,若4B A =,则a 的值是 。
(14)若平面向量,αβ满足1,1a β=≤,且以向量,αβ为邻边的平行四边形的面积为12,则α与β的夹角θ的取值范围是 。
(15)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的。
记X 为该毕业生得到面试的公司个数。
若1(0)12P X ==,则随机变量X 的数学期望()E X = . 16.设,x y 为实数,若2241x y xy ++=,则2x y +的最大值是 .17.设12,F F 分别为椭圆2213x y +=的左、右焦点,点,A B 在椭圆上,若125F A F B =,则点A 的坐标是 .三、解答题:本大题共5小题,共72分。
解答应写出文字说明、证明过程或演算步骤。
(18)(本题满分14分)在ABC ∆中,角,,A B C 所对的边分别为a ,b ,c ,已知()sin sin sin ,A C p B p R +=∈且214ac b =. (Ⅰ)当5,14p b ==时,求,a c 的值; (Ⅱ) 若角B 为锐角,求p 的取值范围。
(19)(本题满分14分)已知公差不为0的等差数列{}n a 的首项1a 为a (a ∈R ),设数列的前n 项和为n S ,11a ,21a ,41a 成等比数列。
(Ⅰ)求数列{}n a 的通项公式及n S ;(Ⅱ) 记n A =11S +21S +31S +…+1n S , n B =11a + 21a +221a +… +121-n a ,当n ≥2时,试比较n A 与n B 的大小。
(20)(本题满分15分)如图,在三棱锥P-ABC 中,AB =AC ,D为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC =8,PO =4,AO =3,OD =2(Ⅰ)证明:AP ⊥BC ;(Ⅱ)在线段AP 上是否存在点M ,使得二面角A-MC-B 为直二面角?若存在,求出AM 的长;若不存在,请说明理由。
(21)(本题满分15分)已知抛物线1:C 2x =y ,圆2:C 22(4)1x y +-=的圆心为点M 。
(Ⅰ)求点M 到抛物线1C 的准线的距离;(Ⅱ)已知点P 是抛物线1C 上一点(异于原点),过点P 作圆2C 的两条切线,交抛物线1C 于A ,B 两点,若过M ,P 两点的直线l 垂足于AB ,求直线l 的方程.(22)(本题满分14分)设函数()f x =2()ln x a x -,a ∈R(Ⅰ)若x =e 为()y f x =的极值点,求实数a ;(Ⅱ)求实数a 的取值范围,使得对任意的x ∈(0,3e ],恒有()f x ≤42e 成立.注:e 为自然对数的底数。
2011年浙江省高考数学理科参考答案1、解析:此题考察分段函数求值问题,直接代入计算即可,属简单题,选B 。
2、解析:此题考察复数的运算以及共轭复数的定义,属简单题。
选A 。
3、解析:考察三视图还原直观图,由正视图排除A 、B ,由俯视图可排除C ,故选D 。
简单题。
4、 解析:考察线面的平行与垂直关系,紧扣线面平行与垂直的判定与性质,不难选出D 错。
属简单题。
5、 解析:考察线性规划及最值问题,与一般求值问题不同的是要注意定义域的取值范围,X 与Y 均取整数,画出区域,不难看出在(4,1)处取到最小值。
故选B 。
属中档题。
6、 解析:考察三角函数求值,和差化积公式的运用。
在这里先将2βα+拆成()4πα+- ()42πβ-,再利用不等式的性质求出()4πα+、()42πβ-角的范围进而求出sin()4πα+、sin()42πβ-的值,最后余弦的和差化积公式计算出结果C 。
属中档题。
7、 解析:考察充分必要性,由01ab <<知a 、b 同号且均不为0,同正可得1a b <,同负可得1b a>,故充分性成立;而由11a b b a<或>并不能推出a b 、同号,故必要性不能成立,选A.属中档题。
8、 解析 :考察圆锥曲线相关综合知识,考察学生的分析能力和计算能力。
首先画出示意图,由已知条件可知2a -2b =5,以双曲线的一条渐进线y=2x 为例,由图形的对称性可知y=2x 与椭圆22122:1(0)x y C a b a b+=>>、圆222x y a +=在第一象限的交点横坐标之比为1:3,即1:3=,求出2112a =,故212b =,选C 。
属中档题。
9、 解析:考察排列组合的限制条件排列问题,此类问题可用先分类后再排的方法解决。
以1A 、2A 表示语文,1B 、2B 表示数学,C 表示物理,第一类:先排1A 、2A ,有22A 种,C 排1A 、2A 中间,这样有4个空位可以插入1B 、2B ,有24A 种,故有22A 24A =24种;第二类,先排1A 、2A ,有22A 种,C 不排1A 、2A 中间,1A 、2A 中间只能排1B 或2B ,剩下两个可以排在一起或排在两端,有12C 22A (22A +12C 22A )=24种,故概率为(24+24)/55A =2/5,选B 。
属较难题。
10、 解析:此题属于分类讨论型的题目,可采用逐个检验法进行排除。
A 在a=b=0,c ≥0下成立;B在a ≠0,240b c -<下成立;C 在a ≠0,240b c -=下成立;D 必须在240b c -=和240b c ->同时成立下才成立,故不可能。
选D 。
属难题。
11、 解析:考察偶函数的判定。
利用()f x = ()f x -即可得a=0;或由偶+偶=偶也可得。
属简单题。
12、 解析:考察程序框图的循环与判断,属简单题,k=5。
13、 解析:考察二项式展开的通式36621662(1)(1)rr rr r r r r r ra T C x C x a x --+=-=-,由题意知r=4时是r=2时的4倍,得a=2。
属简单题。
14、 解析:考察平行四边形的面积公式与解三角不等式以及向量夹角的范围0θπ≤≤,由S=|α||β|sin θ=12,|α|≤1,|β|≤1可得12≤sin θ≤1,故566ππθ≤≤。
属简单题。
15、 解析:考察相互独立事件的概率计算及离散型随机变量的概率分布列和期望的计算公式。
由11(0)(1)(1)312P X p p ==⋅--=得p=12,故212211(1)(1)(1)333P X p C p p ==-+⋅-=,122215(2)(1)3312P X C p p p ==⋅-+=,221(3)36P X p ===, 所以()E X =151512+3=31263⨯+⨯⨯。
属简单题。
16、 解析1:设2x+y=t ,则y=t-2x 代入2241x y xy ++=中有226310x tx t -+-= 将它看作一个关于x 的二次方程,则由判别式大于等于0,可得22(3)46(1)0t t ∆=-⋅⋅-≥解得t ≤≤2x+y解析2:2222233214(2)(2)(2)()222x y x y xy x y x y x y +=++=+-⋅≥+- 可解得2x+y。