公式法-平方差公式

合集下载

15.4.2_公式法--平方差公式

15.4.2_公式法--平方差公式
14.3.2 公式法 ----平方差公式
复习
1.计算:
( x 2 y)(x 2 y)
运用了什么知识?
复习
乘法公式 平方差公式:
(a b)(a b) a b
2
2
探究
2
Ⅰ.怎样将多项式a
b
2
进行因式分解?
2 2
(a b)(a b) a b
整式乘法
2 2
a b (a b)(a b)
2
(3)(x y) ( z m)
2
2
• 例3.分解因式:
(1) x y ;
4 4 3
(2)a b ab. 若有公因式,一定
要先提取公因式.
因式分解要分到 每个因式都不能 分为止.
范例
例4.简便计算: 1. 565 435
2 2
1 2 1 2 2. (65 ) (34 ) 2 2
先确定a和b
巩固
2.下列多项式能否用平方差公式分解因 式?
x y
2
2
x y
2
2
2
2
x y
2
2
x y
2 2 特别提醒:a 和b 的符号相反
巩固练习:
1.选择题: 1)下列各式能用平方差公式分解因式的是( A. 4X² +y² B. 4 x- (-y)² C. -4 X² -y³
D


D. - X² + y²
2) -4a²+1分解因式的结果应是 ( A. -(4a+1)(4a-1) C. -(2a +1)(2a+1) 2. 把下列各式分解因式: 1)18-2b² 2) x4 –1 B. D.

公式法之平方差公式

公式法之平方差公式

公式法之平方差公式平法差公式是指在代数运算中,存在一种形如(a+b)(a-b)的乘法运算规则,可以将两个相邻的平方差式表示为一个乘法式,从而简化计算。

平方差公式的推导可以通过展开乘法(a+b)(a-b)的过程进行,具体推导如下:首先,我们假设a和b是任意实数。

那么(a+b)可以看作是一个单位,(a-b)可以看作是一个差数。

我们将其展开:(a+b)(a-b)=a(a-b)+b(a-b)接下来,我们将展开式中的乘法运算进行分配:=a*a-a*b+b*a-b*b= a^2 - ab + ba - b^2由于ab和ba表示的是相同的乘法运算,所以我们可以将它们合并:= a^2 - ab + ab - b^2=a^2-b^2可以看到,展开式的结果是a^2和b^2的差。

这个差就是平方差公式的核心内容。

因此,平方差公式可以表示为:(a+b)(a-b)=a^2-b^2这个公式在代数运算中非常常用,并且在很多数学问题的解答中都会用到。

通过使用平方差公式,可以将两个相邻的平方差式简化为一个乘法式,从而可以更方便地进行运算。

举例来说,假设我们需要计算(3+2)(3-2)的值。

根据平方差公式,可以得到:(3+2)(3-2)=3^2-2^2=9-4=5因此,(3+2)(3-2)的值等于5平方差公式在解决二次方程、因式分解、简化分数等问题中都有广泛的应用。

通过运用平方差公式,可以将复杂的运算问题转化为简单的代数运算,从而更加容易进行计算和解答。

总结起来,平方差公式是一种代数运算规则,可以将两个相邻的平方差式表示为一个乘法式。

通过使用平方差公式,可以简化计算过程,提高计算效率。

在数学问题的解答中,平方差公式具有广泛的应用价值。

这就是平方差公式的基本原理和推导过程。

沪教版七年级数学上册 公式法—平方差公式(第1课时)

沪教版七年级数学上册 公式法—平方差公式(第1课时)

5.观察下列计算过程:
32-12=9-1=8=8×1; 52-32=25-9=16=8×2; 72-52=49-25=24=8×3; 92-72=81-49=32=8×4;
......
你能从上式中得出什么结论?说明理由.
解:根据上列各式得出的结论是
两个连续奇数的平方差是8的整数倍.
设两个连续奇数为2n+1、2n-1(n为正整数)
(2) 16a2-9b2
公式中的a和b 表示单项式
(1)解:原式 =62-(5x)2
(2)解:原式 =(4a)2-(3b)2
=(6+5x)(6-5x)
=(4a+3b)(4a-3b)
★在使用平方差公式分解因式时,步骤为: 1.变形(明确哪个相当于 a , 哪个相当于 b. ) 2.分解
例题2:分解因式:
当堂练习
1.利用因式分解计算:
“数”与“式” 的相互变换
(1) 10122-9882
(2) 9×1222-4×1332
解(1)原式=(1012+988)(1012-988)(2) 原式=(3×122)2 -(2×133)2
=2000×24
=3662 -2662
=4800
=(366+266)(366-266)
可以,因为 4x 2 可写为 (2x) 2 9 y 2可写为 (3y)2
,所以原式可看作两数的平方差,即: 4x2 9y2 (2x)2 (3y)2 (2x 3y)(2x 3y)
a 2 ▲ b 2 ( a ▲ b )( a ▲ b )
(1)公式左边:
★多项式含有两项,且这两项异号,并且能写 成( )2-( )2的形式。

(3)a2 -(-b)2 = a2 - b2 = (a+b)(a-b) 能

运用公式法——平方差公式教案

运用公式法——平方差公式教案

运⽤公式法——平⽅差公式教案运⽤公式法——平⽅差公式教案教学⽬标(⼀)知识认知要求1.使学⽣了解运⽤公式法分解因式的意义;2.使学⽣掌握⽤平⽅差公式分解因式.3.使学⽣了解,提公因式法是分解因式的⾸先考虑的⽅法,再考虑⽤平⽅差公式分解因式.(⼆)能⼒训练要求1.通过对平⽅差公式特点的辨析,培养学⽣的观察能⼒.2.训练学⽣对平⽅差公式的运⽤能⼒.(三)情感与价值观要求在引导学⽣逆⽤乘法公式的过程中,培养学⽣逆向思维的意识,同时让学⽣了解换元的思想⽅法.教学重点让学⽣掌握运⽤平⽅差公式分解因式.教学难点将单项式化为平⽅形式,再⽤平⽅差公式分解因式;培养学⽣多步骤分解因式的能⼒. 教学过程⼀、创设问题情境,引⼊新课在前两节课中我们学习了因式分解的定义,即把⼀个多项式分解成⼏个整式的积的形式,还学习了提公因式法分解因式,即在⼀个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从⽽将多项式化成⼏个因式乘积的形式.如果⼀个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利⽤这种关系找到新的因式分解的⽅法,本节课我们就来学习另外的⼀种因式分解的⽅法——公式法.⼆、新课讲解1.请看乘法公式(a +b )(a -b )=a 2-b 2 (1)左边是整式乘法,右边是⼀个多项式,把这个等式反过来就是a 2-b 2=(a +b )(a -b )(2)左边是⼀个多项式,右边是整式的乘积.⼤家判断⼀下,第⼆个式⼦从左边到右边是否是因式分解?符合因式分解的定义,因此是因式分解.对,是利⽤平⽅差公式进⾏的因式分解.第(1)个等式可以看作是整式乘法中的平⽅差公式,第(2)个等式可以看作是因式分解中的平⽅差公式.2.公式讲解请⼤家观察式⼦a 2-b 2,找出它的特点.公式的特点下⾯按公式分类,⼀⼀进⾏阐述.(1)平⽅差公式:))((22b a b a b a -+=-这⾥a ,b 可以表⽰数、单项式、多项式.公式的特点是:①左侧为两项;②两项都是平⽅项;③两项的符号相反.(是⼀个⼆项式,每项都可以化成整式的平⽅,整体来看是两个整式的平⽅差.如果⼀个⼆项式,它能够化成两个整式的平⽅差,就可以⽤平⽅差公式分解因式,分解成两个整式的和与差的积.)如x 2-16=(x )2-42=(x +4)(x -4).9 m 2-4n 2=(3 m )2-(2n )2=(3 m +2n )(3 m -2n )3.例题讲解例1 :把下列各式分解因式:(1)25-16x 2; (2)9a 2-41b 2. 解:(1)25-16x 2=52-(4x )2=(5+4x )(5-4x ); (2)9a 2-41b 2=(3a )2-(21b )2 =(3a +21b )(3a -21b ). 例2 :把下列各式分解因式:(1)9(m +n )2-(m -n )2;(2)2x 3-8x .解:(1)9(m +n )2-(m -n )2=[3(m +n )]2-(m -n )2=[3(m +n )+(m -n )][3(m +n )-(m -n )]=(3 m +3n + m -n )(3 m +3n -m +n )=(4 m +2n )(2 m +4n )=4(2 m +n )(m +2n )(2)2x 3-8x =2x (x 2-4)=2x (x +2)(x -2)说明:例1是把⼀个多项式的两项都化成两个单项式的平⽅,利⽤平⽅差公式分解因式;例2的(1)是把⼀个⼆项式化成两个多项式的平⽅差,然后⽤平⽅差公式分解因式,例2的(2)是先提公因式,然后再⽤平⽅差公式分解因式,由此可知,当⼀个题中既要⽤提公因式法,⼜要⽤公式法分解因式时,⾸先要考虑提公因式法,再考虑公式法. 补充例题3:判断下列分解因式是否正确.(1)(a +b )2-c 2=a 2+2ab +b 2-c 2.(2)a 4-1=(a 2)2-1=(a 2+1)·(a 2-1).解:(1)不正确.本题错在对分解因式的概念不清,左边是多项式的形式,右边应是整式乘积的形式,但(1)中还是多项式的形式,因此,最终结果是未对所给多项式进⾏因式分解.(2)不正确.错误原因是因式分解不到底,因为a 2-1还能继续分解成(a +1)(a -1).应为a 4-1=(a 2+1)(a 2-1)=(a 2+1)(a +1)(a -1).例4 :把下列各式分解因式:(1)22b a 9-;(2)22m n 4+-;(3)22b 9a 161-;(4)422c b 25a 16-;(5)09.0y x 4122+-。

平方差公式法分解因式

平方差公式法分解因式

15.4,1 运用公式法——平方差公式一、学习目标1.了解运用公式法分解因式的意义;2.掌握用平方差公式分解因式.3.了解提公因式法是分解因式的首先考虑的方法,再考虑用平方差公式分解因式.二、学习重点让学生掌握运用平方差公式分解因式.学习难点将单项式化为平方形式,再用平方差公式分解因式;培养学生多步骤分解因式的能力.三、教学过程(一)创设问题情境,引入新课在前两节课中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式.如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本节课我们就来学习另外的一种因式分解的方法——公式法.(二)新课1.请看乘法公式(a +b )(a -b )=a 2-b 2 (1)左边是整式乘法,右边是一个多项式,把这个等式反过来就是a 2-b 2=(a +b )(a -b ) (2)左边是一个多项式,右边是整式的乘积你判断一下,第二个式子从左边到右边是否是因式分解?2.例题讲解例1把下列各式分解因式:(1)25-16x 2; (2)9a 2-41b 2.例2把下列各式分解因式:(1)9(m +n )2-(m -n )2; (2)2x 3-8x .补充例题:判断下列分解因式是否正确.(1)(a+b)2-c2=a2+2ab+b2-c2. (2)a4-1=(a2)2-1=(a2+1)·(a2-1).(三)随堂练习1.判断正误(1)x2+y2=(x+y)(x-y); (2)x2-y2=(x+y)(x-y);(3)-x2+y2=(-x+y)(-x-y); (4)-x2-y2=-(x+y)(x-y).2.把下列各式分解因式(1)a2b2-m2(2)(m-a)2-(n+b)2(3)x2-(a+b-c)2(4)-16x4+81y4(5)36(x+y)2-49(x-y)2;(6)(x-1)+b2(1-x);(8)(x2+x+1)2-1.四.小结我们已学习过的因式分解方法有提公因式法和运用平方差公式法.如果多项式各项含有公因式,则第一步是提公因式,然后看是否符合平方差公式的结构特点,若符合则继续进行.第一步分解因式以后,所含的多项式还可以继续分解,则需要进一步分解因式,直到每个多项式都不能分解为止.五作业习题15.4第2题六.活动与探究学后反思:。

14.3.2 公式法---平方差公式

14.3.2 公式法---平方差公式

【例题】
【例1】把下列各式分解因式: (1)25-16x2. 【解析】(1)25-16x2 =52-(4x)2 =(5+4x)(5-4x). (2)9a2-b2.
(2)9a2-b2
=(3a)2-(b)2 =(3a+b)(3a-b).
你能由以上知识分解下列几个多项 式吗?
解:(1)、p2-16=(p+4)(p-4) (2)、y2-4=(y+2)(y-2)
1) 38² -37² 2) 213² -87² 3) 229² -171² 4) 91×89
已知,x+ y =7,x-y =5,求代数式 x2y2-2y+2x的值. 解: x2-y2-2y+2x
=x2-y2+(2x-2y)
=(x +y)( x -y )+2(x-y)
=( x -y )( x +y +2)
3. -1)=4a(a+1)(a-1) 1原式=4a(a² 5)、 ─ a² 2 =(7a+2b-5c)(-3a+2b+5c) 2
用平方差公式进行简便计算:
解:4) 91×89 解:解: 1) 3 38² )-37² 229² -171² =(90+1)(90-1 ) =( 38+37 )( 38-37 )229-171 =75 = (213² 229+171 )( ) 2) -87² =90² -1=8100-1=8099 =400×58=23200 =(213+87)(213-87) =300×126=37800
平方差公式:
(a+b)(a-b) = a²- b²
整式乘法
a²- b² = (a+b)(a-b)

2.3运用公式法

2.3运用公式法
4( x 2 2 x 1) 7 4( x 1) 2 7
任何一个正奇 你发现了什么规 数都可以表示 律?能用因式分 解来说明你发现 成两个相邻自 的规律吗? 然数的平方差。 对于正奇数 2n+1(n为自然 2 2 数),有 n 1 n
1 3 5 7 …
1 12 02
3 22 12
5 32 22
7 42 32


ห้องสมุดไป่ตู้

n 1 n n 1 n 2n 1
1.把下列各式分解因式
(1)(a 2 b 2 ) 2 4 a 2 b 2
(1)x -12xy+36y (1)18a2-50 4 2 2 4 (2)16a +24a b +9b (2)-3ax2+3ay4 2 2 (3)-2xy-x -y (3)(a+b)2-4a2 2 (4)4-12(x-y)+9(x-y) (4)-25x2y2+100 2+2a2x+a3; (5) ax 2 2 (5)4(a-b) -9(2a+3b) 2+6xy-3y2. (6) - 3 x 2 2 2 (6)(x +3x) -(x+1)
已知3a+b=10000,3a-b=0.0001, 求 b2-9a2 的值.
3.下列各式中,不能用完全平方公式分解的是( ) A、x4+6x2y2+9y4 B、x2n-2xnyn+y2n C、x6-4x3y3+4y6 D、x4+x2y2+y4
4.如果100x2+kxy+y2可以分解为(10x-y)2,那么k的值是( A、20 B、-20 C、10 D、-10 5.如果x2+mxy+9y2是一个完全平方式,那么m的值为( A 、6 B、±6 C、3 D、±3 ) )

公式法-平方差公式

公式法-平方差公式

11.3公式法――平方差公式【教材依据】本节课是冀教版数学七年级下册第十一章因式分解第三节公式法第一课时内容。

【教材分析】因式分解是初中数学的一个重要内容,它贯穿、渗透在各种代数式问题中,为以后学习分式运算、解方程和方程组提供必要的基础。

本节课是在学习了正式的乘法、乘法公式和提公因式因式分解之后,让学生利用逆向思维而得到平方差公式因式分解的方法,而运用平方差公式分解因式又是分解因式的一个重要内容。

它对学习机完全平方式因式分解和后面要学习的分式化简和计算,对九年级学习一元二次方程的解法和二次函数都有着重要的影响,所以学好本节课至关重要,【学情分析】学生在本册第八章已经学习了整式的运算,前一节学习了提公因式法分解因式。

已经初步体会到了乘法公式与因式分解的互逆关系,通过对乘法公式22b -a b -a b a =+))((的逆向变形,容易得出))((b -a b a b -a 22+=,但准确理解和掌握公式的结构特征,进行因式分解对学生来说还存在着一定的难度,学生归纳、类比、概括的能力有待加强。

【指导思想】以新课标要求“培养学生的合作探究和归纳总结”的教育理念为指导,引导学生通过复习旧知逐步过渡到新知,贯穿类比、还原的数学思想方法,通过小组讨论和学生讲解习题的过程培养学生数学文字语言应用和准确应用数学符号表达问题的能力。

采取启发式的教学方法,引导学生积极思考问题,从中培养学生的思维品质。

【教学目标】知识与技能:会用平方差公式进行因式分解。

过程与方法:经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维。

情感态度与价值观:在探究的过程中培养学生独立思考的习惯。

【教学重难点】【重点】能说出平方差公式的结构特征。

【难点】能较熟练地应用平方差公式分解因式。

【教学过程】复习导入:在前两节课中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式成绩的形式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一章 因式分解
11.3 公式法
第1课时 平方差公式
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.能说出平方差公式的结构特征.(重点) 2.能较熟练地应用平方差公式分解因式.(难点)
导入新课
复习引入
问题1:上节课我们学习了提公因式法分解因式, 如2x+xy-xz=x(2+y-z). 如果一个多项式的各项不具备公因式,是否就不能因 式分解了呢?
是a,b两数的平方差的形式. 平方差公式:
整式乘法 ( a + b )( a - b ) = a2 - b2 a 2 - b 2 = ( a + b )( a - b )
因式分解
归纳总结
(a+b)(a-b)=a2-b2是整式乘法中的平方差公式; a2-b2=(a+b)(a-b)是因式分解中的平方差公式. 如果一个多项式可化为两个整式的平方差的形式, 那么它就可以用平方差公式分解因式,分解成两 个整式的和与这两个整式的差的积.
典例精析
例1 把下列1)2-9
解:(1)4x2-9y2
(2)(3m-1)2-9=(3m-1)2-32
=(2x)2-(3y)2
=(3m-1+3)(3m-1-3)
=(2x+3y)(2x-3y).
=(3m+2)(3m-4).
方法归纳:平方差公式中的a、b,是形式上的两个 “数”,它们可以表示单项式,也可以表示多项式.
当然不是,还要寻找其他方法.
问题2:观察乘法公式:(a+b)(a-b)=a2-b2. 判断一下,把这个式子从左边到右边反过来,是否是 因式分解?
是,式子反过来就是a2-b2=(a+b)(a-b). 左边是一个多项式,右边是几个整式的乘积,所以 是分解因式.
讲授新课
一 用平方差公式分解因式
问题:多项式a2-b2有什么特点?你能将它分解因式吗?
=a(a2-16)
=2ab(b2-1)
=a(a+4)(a-4)
=2ab(b+1)(b-1).
方法归纳:当多项式有公因式时,应先提出公因式, 再看能否利用平方差公式进行因式分解.
例4 已知 a-b=1,求a2-b2-2b的值.
解: 因为 a-b=1 所以a2-b2-2b =(a+b)(a-b)-2b =(a+b)×1-2b =a+b-2b =a-b =1
例2 分解因式:x4-y4 解:x4-y4 = (x2+y2)(x2-y2) = (x2+y2)(x+y)(x-y).
方法归纳:分解因式,必须进行到每一个多项式都不 能再分解为止.
例3 把下列各式分解因式:
(1) a3-16a;
(2) 2ab3-2ab.
解:(1) a3-16a
(2) 2ab3-2ab
课堂小结
平方差公式:a2-b2=( a+b )( a-b )

可化为_两___个整式.
方 差 公
多项式 的特征
两项符号__相__反___.

每一项都是整式的_平__方___.


有公因式时,应先提出_公__因__式__.
多 项
注意事项 进行到每一个多项式都

不能再分解为止.
相关文档
最新文档