人教版初中数学《勾股定理》说课稿
勾股定理人教版优秀说课稿

勾股定理人教版优秀说课稿尊敬的评委老师、各位同仁:大家好!今天,我将为大家说课一节数学课,主题是“勾股定理”。
这一课程内容选自人教版初中数学教材,是学生在几何学习中的一个重要里程碑。
接下来,我将从教材分析、教学目标、教学重点与难点、教学方法、教学过程及板书设计六个方面进行详细阐述。
教材分析:勾股定理是初中数学中几何部分的核心知识点,它描述了直角三角形三边之间的关系。
在教材中,勾股定理不仅是一个独立的知识点,而且也是解决后续几何问题的基础工具。
通过对勾股定理的学习,学生能够更好地理解空间形状,培养空间想象能力和逻辑推理能力。
教学目标:1. 知识与技能目标:使学生理解并掌握勾股定理的概念和公式,能够运用定理解决直角三角形边长问题。
2. 过程与方法目标:培养学生通过观察、实验、归纳总结几何定理的能力。
3. 情感态度与价值观目标:激发学生对数学的兴趣,培养学生勇于探索和合作交流的精神。
教学重点与难点:教学重点是勾股定理的概念理解和实际应用。
教学难点在于如何引导学生从具体例子中归纳出定理,并能够灵活运用于不同的问题解决中。
教学方法:本节课将采用启发式教学法和探究式学习法,通过观察、操作、讨论等多种教学活动,引导学生主动探究和发现勾股定理,同时结合实例进行讲解和练习,以加深学生对定理的理解和应用。
教学过程:1. 导入新课- 通过回顾三角形的基本知识,引出直角三角形的特点。
- 展示生活中的直角三角形实例,激发学生兴趣。
2. 探究新知- 利用多媒体展示直角三角形的面积分割,引导学生发现勾股定理。
- 组织学生分组讨论,通过实际操作验证勾股定理。
3. 讲解勾股定理- 明确勾股定理的内容和适用范围。
- 通过例题演示,讲解定理的应用方法。
4. 巩固练习- 安排相关练习题,让学生独立完成,巩固新知识。
- 教师巡回指导,及时解答学生疑问。
5. 总结归纳- 总结勾股定理的知识点,强调其在数学学习中的重要性。
- 鼓励学生分享学习心得,进行课堂小结。
人教版数学八年级下册17.1《勾股定理》(第1课时)说课稿

人教版数学八年级下册17.1《勾股定理》(第1课时)说课稿一. 教材分析《勾股定理》是人教版数学八年级下册第17.1节的内容,它是中学数学中一个非常重要的定理。
勾股定理揭示了直角三角形三边之间的数量关系,即直角边的平方和等于斜边的平方。
这一定理在我国古代就已经被发现,并有详细的证明。
在本节课中,学生将通过探究和证明来理解和掌握勾股定理,并能够运用它解决实际问题。
二. 学情分析在进入本节课的学习之前,学生已经学习了平面几何的基本概念,对三角形、直角三角形等有一定的了解。
同时,他们已经学习了平方根的概念,能够进行简单的平方运算。
但是,对于勾股定理的证明和应用,他们可能还存在一定的困难。
因此,在教学过程中,需要关注学生的学习情况,引导他们通过探究和思考来理解和掌握勾股定理。
三. 说教学目标1.知识与技能目标:学生能够理解勾股定理的内容,并能够进行简单的证明。
2.过程与方法目标:学生通过探究和证明,培养逻辑思维能力和空间想象能力。
3.情感态度与价值观目标:学生体验到数学的趣味性和魅力,增强对数学学习的兴趣。
四. 说教学重难点1.教学重点:学生能够理解和掌握勾股定理的内容。
2.教学难点:学生能够进行勾股定理的证明,并能够运用它解决实际问题。
五.说教学方法与手段在本节课的教学中,我将采用探究式教学法和启发式教学法。
通过引导学生进行自主探究和思考,激发他们的学习兴趣和动力。
同时,我将运用多媒体教学手段,如PPT、几何画板等,为学生提供直观的学习材料,帮助他们更好地理解和掌握勾股定理。
六.说教学过程1.导入:通过一个实际问题,引导学生思考直角三角形三边之间的关系。
2.探究:引导学生进行小组讨论,鼓励他们用自己的方法来证明勾股定理。
3.讲解:对学生的探究结果进行点评,并给出标准的证明过程。
4.练习:为学生提供一些练习题,帮助他们巩固所学内容。
5.应用:引导学生运用勾股定理解决实际问题,如测量物体的高度等。
七.说板书设计板书设计如下:直角三角形两直角边的平方和等于斜边的平方。
人教版数学八年级下册17.1勾股定理说课稿

(三)学习动机
为了激发学生的学习兴趣和动机,我将采取以下策略或活动:
1.创设情境:通过引入生活中的实际问题,让学生感受到勾股定理在实际应用中的价值,提高他们的学习兴趣。
2.合作探究:组织学生进行小组合作,共同探讨勾股定理的证明过程,培养学生的合作精神和探究能力。
2.勾股定理的证明:采用探究式教学法,引导学生通过观察、实验、分析等方法,自主探究勾股定理的证明过程。
3.勾股数的应用:结合实例,讲解如何利用勾股定理解决实际问题,如计算直角三角形的斜边长度等。
(三)巩固练习
我计划设计以下巩固练习或实践活动,以帮助学生巩固所学知识并提升应用能力:
1.课堂练习:设计勾股定理相关的习题,让学生独立完成,检验他们对勾股定理的理解程度。
为确保板书清晰、简洁,我将采取以下措施:
1.课前精心准备,明确板书内容和结构。
2.课堂上适时更新板书,避免一次性呈现过多信息。
3.使用不同颜色粉笔标出重点,提高视觉冲击力。
4.保持书写规范,确保字迹清晰可辨。
(二)教学反思
在教学过程中,我预见到以下可能出现的问题或挑战:
1.学生对勾股定理证明过程的理解可能存在困难。
二、学情分析导
(一)学生特点
本节课面向的是八年级学生,这个年龄段的学生正处于青春期,思维活跃,好奇心强,具备一定的独立思考能力。他们的认知水平逐渐从具体运算向形式运算过渡,对于抽象概念的理解能力有所提升。在学习兴趣方面,学生对新鲜事物充满兴趣,喜欢探索和发现,但学习习惯尚需进一步培养,尤其是自主学习能力和合作学习能力。
这些媒体资源在教学中的作用是:丰富教学形式,提高学生的学习兴趣;直观展示抽象概念,降低学习难度;拓展学习资源,提高学习效果。
勾股定理说课稿范文7篇

勾股定理说课稿范文7篇勾股定理说课稿范文7篇作为一位优秀的人民教师,通常会被要求编写说课稿,借助说课稿我们可以快速提升自己的教学能力。
说课稿要怎么写呢?下面是小编为大家收集的勾股定理说课稿范文7篇,仅供参考,欢迎大家阅读。
勾股定理说课稿范文7篇1各位专家领导:上午好,今天我说课的课题是《勾股定理》一、教材分析:(一)本节内容在全书和章节的地位这节课是九年制义务教育课程标准实验教科书(华东版),八年级第十九章第二节“勾股定理”第一课时。
勾股定理是学生在已经掌握了直角三角形有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形的主要依据之一,在实际生活中用途很大。
教材在编写时注意培养学生的动手操作能力和观察分析问题的能力;通过实际分析,拼图等活动,使学生获得较为直观的印象;通过联系比较,理解勾股定理,以便于正确的进行运用。
(二)三维教学目标:1.【知识与能力目标】⒈理解并掌握勾股定理的内容和证明,能够灵活运用勾股定理及其计算;⒉通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。
2. 【过程与方法目标】在探索勾股定理的过程中,让学生经历“观察-猜想-归纳-验证”的数学思想,并体会数形结合和从特殊到一般的思想方法。
3.【情感态度与价值观】通过介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。
(三)教学重点、难点:【教学重点】勾股定理的证明与运用【教学难点】用面积法等方法证明勾股定理【难点成因】对于勾股定理的得出,首先需要学生通过动手操作,在观察的基础上,大胆猜想数学结论,而这需要学生具备一定的分析、归纳的思维方法和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。
【突破措施】⒈创设情景,激发思维:创设生动、启发性的问题情景,激发学生的问题冲突,让学生在感到“有趣”、“有意思”的状态下进入学习过程;⒉自主探索,敢于猜想:充分让自己动手操作,大胆猜想数学问题的结论,老师是整个活动的组织者,更是一位参入者,学生之间相互交流、协作,从而形成生动的课堂环境;⒊张扬个性,展示风采:实行“小组合作制”,各小组中自己推荐一人担任“发言人”,一人担任“书记员”,在讨论结束后,由小组的“发言人”汇报本小组的讨论结果,并可上台利用“多媒体视频展示台”展示本组的优秀作品,其他小组给予评价。
人教版数学八年级下册17.1《勾股定理》说课稿1

人教版数学八年级下册17.1《勾股定理》说课稿1一. 教材分析《勾股定理》是人教版数学八年级下册第17.1节的内容,属于几何学的范畴。
本节内容主要介绍勾股定理的发现、证明及应用。
勾股定理是数学史上重要的定理之一,对于培养学生的逻辑思维能力、空间想象能力具有重要意义。
通过学习本节内容,学生可以了解古代数学家的智慧,提高对数学的兴趣和自信心。
二. 学情分析八年级的学生已经掌握了初中阶段的基本几何知识,具备一定的逻辑思维能力和空间想象能力。
但是,对于勾股定理的证明及应用,部分学生可能还存在一定的困难。
因此,在教学过程中,教师需要关注学生的个体差异,针对不同程度的学生进行引导和帮助,使他们在课堂上充分理解和掌握勾股定理。
三. 说教学目标1.知识与技能:使学生了解勾股定理的发现过程,掌握勾股定理的内容及证明方法,能运用勾股定理解决实际问题。
2.过程与方法:通过观察、猜想、证明等环节,培养学生的逻辑思维能力和空间想象能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生尊重和传承古代数学文化的意识。
四. 说教学重难点1.教学重点:勾股定理的内容、证明方法及应用。
2.教学难点:勾股定理的证明方法,特别是利用几何画板等工具进行动态演示的能力。
五. 说教学方法与手段1.教学方法:采用问题驱动、启发式教学法,引导学生主动探究、合作交流。
2.教学手段:利用多媒体课件、几何画板等工具,进行生动形象的展示和讲解。
六. 说教学过程1.导入:以古代数学家勾股的故事为切入点,激发学生对勾股定理的兴趣。
2.新课讲解:(1)介绍勾股定理的发现过程,让学生了解古代数学家的智慧。
(2)讲解勾股定理的内容,让学生掌握直角三角形三边之间的关系。
(3)引导学生通过观察、猜想、证明等环节,理解并掌握勾股定理的证明方法。
3.课堂练习:布置一些有关勾股定理的应用题,让学生巩固所学知识。
4.总结:对本节课的内容进行梳理,强调勾股定理的重要性和应用价值。
勾股定理优秀说课稿

勾股定理优秀说课稿尊敬的各位评委老师:大家好!今天我说课的内容是勾股定理。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。
一、教材分析勾股定理是初中数学中的一个重要定理,它揭示了直角三角形三边之间的数量关系。
本节课是在学生已经学习了直角三角形的相关性质的基础上进行的,为后续学习解直角三角形以及三角函数等知识奠定了基础。
本节课的教材内容编排注重从实际问题引入,通过观察、猜想、验证等活动,引导学生逐步发现勾股定理。
同时,教材还配备了丰富的例题和练习,帮助学生巩固所学知识,提高应用能力。
二、学情分析在学习本节课之前,学生已经掌握了直角三角形的一些基本性质,如直角三角形的两个锐角互余等。
同时,学生也具备了一定的观察、分析和推理能力。
但是,对于勾股定理的证明和应用,学生可能会存在一定的困难。
因此,在教学过程中,要注重引导学生通过自主探究和合作交流来理解和掌握勾股定理。
三、教学目标1、知识与技能目标(1)理解勾股定理的内容,能够用数学语言表达勾股定理。
(2)掌握勾股定理的证明方法,能够运用勾股定理解决简单的数学问题。
2、过程与方法目标(1)通过观察、猜想、验证等活动,培养学生的观察能力、分析能力和推理能力。
(2)通过自主探究和合作交流,培养学生的创新意识和合作精神。
3、情感态度与价值观目标(1)让学生在探索勾股定理的过程中,体验数学的乐趣,激发学生学习数学的兴趣。
(2)通过介绍勾股定理的历史,培养学生的民族自豪感和爱国主义精神。
四、教学重难点1、教学重点勾股定理的内容及其证明。
2、教学难点勾股定理的证明。
五、教法与学法1、教法为了突出重点,突破难点,我将采用启发式教学法、探究式教学法和讲练结合法。
通过创设问题情境,引导学生观察、思考、猜想、验证,从而理解和掌握勾股定理。
2、学法在教学过程中,我将注重引导学生采用自主探究法、合作交流法和归纳总结法。
让学生在自主探究和合作交流中,发现问题、解决问题,从而提高学生的学习能力和创新能力。
《勾股定理》说课稿(通用6篇)精选全文

可编辑修改精选全文完整版《勾股定理》说课稿(通用6篇)《勾股定理》篇1尊敬的各位评委、老师,您们好,我是临沂市苍山县实验中学的宋宁。
今天我说课的内容是人教版《数学》八年级下册第十八章第一节《勾股定理》第一课时,我将从教材、教法与学法、教学过程、教学评价以及设计说明五个方面来阐述对本节课的理解与设计。
一、教材分析:(一) 教材的地位与作用从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。
从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。
根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。
其中【情感态度】方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。
(二)重点与难点为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。
限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点,我将引导学生动手实验突出重点,合作交流突破难点。
二、教学与学法分析教学方法叶圣陶说过“教师之为教,不在全盘授予,而在相机诱导。
”因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。
学法指导为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。
三、教学过程我国数学文化源远流长、博大精深,为了使学生感受其传承的魅力,我将本节课设计为以下五个环节。
首先,情境导入古韵今风给出《七巧八分图》中的一组图片,让学生利用两组七巧板进行合作拼图。
(请看视频)让学生观察并思考三个正方形面积之间的关系?它们围成了什么三角形?反映在三边上,又蕴含着什么数学奥秘呢?寓教于乐,激发学生好奇、探究的欲望。
初中数学《勾股定理》说课稿5篇

初中数学《勾股定理》说课稿5篇初中数学《勾股定理》说课稿1一、教材分析^p :〔一〕、本节课在教材中的地位作用“勾股定理的逆定理”一节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判断定理,它是前面知识的继续和深化,勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有非常广泛的应用,同时在应用中浸透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本章的重要内容之一。
课标要求学生必须掌握。
〔二〕、教学目的:根据数学课标的要求和教材的详细内容,结合学生实际我确定了本节课的教学目的。
知识技能:1、理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理。
2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理断定一个三角形是不是直角三角形过程与方法:1、通过对勾股定理的逆定理的探究,经历知识的发生、开展与形成的过程2、通过用三角形三边的数量关系来判断三角形的形状,体验数与形结合方法的应用3、通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题。
情感态度:1、通过用三角形三边的数量关系来判断三角形的形状,体验数与形的内在联络,感受定理与逆定理之间的和谐及辩证统一的关系2、在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,浸透与别人交流、合作的意识和探究精神〔三〕、学情分析^p :尽管已到初二下学期学生知识增多,才能增强,但思维的局限性还很大,才能也有差距,而勾股定理的逆定理的证明方法学生第一次见到,它要求根据条件构造一个直角三角形,根据学生的智能状况,学生不容易想到,因此勾股定理的逆定理的证明又是本节的难点,这样如何添辅助线就是解决它的关键,这样就确定了本节课的重点、难点和关键。
重点:勾股定理逆定理的应用难点:勾股定理逆定理的证明关键:辅助线的添法探究二、教学过程:本节课的设计原那么是:使学生在动手操作的根底上和合作交流的良好气氛中,通过巧妙而自然地在学生的认识构造与几何知识构造之间筑了一个信息流通渠道,进而到达完善学生的数学认识构造的目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版初中数学《勾股定理》说课稿尊敬的各位评委、老师:
上午好!今天我说课的课题是《勾股定理》,我将从说教材,说教学任务,说教学过程及说远程教育资源在教学中的应用四个方面说课。
首先,说教材。
《勾股定理》是人教版新课标第十八章第一节的内容,是中学数学几个重要定理之一。
勾股定理的发现、验证和应用蕴含着丰富的文化价值,它在理论上占有重要地位,学好本节至关重要。
其次,说教学任务。
根据新课程标准对学生知识、能力的要求,结合八年级学生实际水平、认知特点制定以下教学目标。
知识与技能:知道勾股定理的由来,理解和掌握勾股定理的证明方法,应用网络查询资料。
过程与方法:让学生经历“观察-猜想-归纳-验证”的数学过程,并从中体会数形结合及从特殊到一般的数学思想。
情感态度与价值观:介绍我国古代在研究勾股定理方面取得的伟大成就,激发学生爱国情感。
在探索问题的过程中,培养学生的合作交流意识和探索精神。
本节课的重点是勾股定理的发现、验证和应用。
难点是用拼图方法、面积法证明勾股定理。
教学工具使用勾股定理拼图模具以及学件,而多媒体辅助工具为
多媒体网络教室和课件。
为了实现教学目标,突出教学重点,突破教学难点,在教学中我以“问题情境-分析探究-得出猜想-总结升华”为主线展开。
而学法主要采用启发探究法、合作法、情境法。
第三,说教学过程。
整个教学过程打算分为以下八个活动。
活动一,展示两幅图片,第一幅图片为我国著名数学家华罗庚教授提议的向宇宙发射的勾股定理的图形,用来与外星人联系。
第二幅图片为2002年在我国北京召开的第24届国际数学家大会的场景,值得一提的是这次大会的会徽,为著名的赵爽弦图。
这样的导入富有科学特色和浓郁的数学气息,激起学生强烈的兴趣和求知欲。
为什么要引入这两幅图呢?带着这个问题进入活动二。
活动二,通过讲述毕达哥拉斯的故事来进一步激发学生的学习兴趣,使学生在不知不觉中进入探究学习的最佳状态。
然后提出三个问题,让学生沿着毕达哥拉斯的足迹去探寻勾股定理。
问题一:在图中你能发现那些基本图形?同学可以发现等腰直角三角形。
问题二:与等腰直角三角形相邻的正方形面积之间有怎样的关系?同学通过直接数等腰直角三角形的个数可以得出A的面积加上B的面积等于C 的面积。
从而得到。
紧接着抛出第三个问题:由此你可以得出等腰直角三角形三边存在着一种怎样特殊的数量关系吗?同学可以很快得出:等腰直角三角形两直角边的平方和等于斜边的平方。
“问题是思维的起点”,通过层层设问,引导学生发现新知。
等腰直角三角形
三边具有这样的特殊关系,那么一般的直角三角形呢?我们进入活动三。
活动三,为了学生方便计算,将一般的直角三角形放入到网格中,并使得直角三角形的两条直角边为正整数,让学生去计算图1和图2中六个正方形的面积。
在计算C的面积时可能有一定的难度,此时就要用到数学当中常见的割补法。
当同学顺利的计算出六个正方形的面积之后,可以发现,正方形A、B的面积之和等于正方形C的面积。
从而得到。
此时进一步发问,如果直角三角形的两条直角边并不是正整数,仍然满足吗?引入几何画板。
老师首先进行演示,拖动点A或点B,我们可以发现,虽然a、b、c的长度在发生变化,但是始终满足。
然后可以通过多媒体网络教室将几何画板发送到学生的桌面上,让学生自己动手操作,学生通过几何画板验证出一般的直角三角形三边也满足之后,并可以请个别学生进行演示。
这样的设计渗透了从特殊到一般的数学思想,让学生参与到数学活动中。
培养学生的类比迁移能力。
活动四,严格的几何验证。
同学容易受前面知识的影响,想去构造以a、b、c三边为边长的正方形,从而验证正方形A的面积与正方形B的面积之和等于正方形C的面积。
当同学经过一段时间的思考之后发现,这种证明存在一定的难度。
此时,老师加以引导,在八年级上学期我们也曾经学习过用面积法证明公式的成立,就是完全平方公式。
(出示图形)大正方形的面积既可以表示为,也可以表示为。
也就是说,大正方形的面积可以用两种不同的方法表示,从而我们就
得到面积法证明的实质:同一面积用两种的不同的方法计算,结果相同。
此时,老师发放勾股定理拼图模具,让同学试试看,能不能仿照上面的例子,利用手中的纸质模具拼一拼,拼出一个规则图形,使得它的面积能用两种不同的方法表示。
当学生利用纸质模具拼出之后,可以利用多媒体网络教室将比拼平台发送到学生桌面,让他们利用电脑进行拼图,此时可以进行分组合作互相协助。
利用flash学件可以对直角三角形进行平移旋转。
相信同学在老师的指导和互相帮助之下,可以很快的拼出赵爽弦图和毕达哥拉斯用来证明勾股定理的图形。
通过这些实际操作,学生能够进一步加深对数形结合的理解,拼图也会产生感性认识,也为论证勾股定理做好准备,给学生充分的时间和空间参与到数学活动中来,并发挥他们的主观能动性,可以进一步提高学生的学习兴趣。
利用分组讨论,加强学生的合作意识。
此时,将毕达哥拉斯的图形通过动画沿中间正方形的对角线剪开,可以得到一个直角梯形,同样我们可以利用直角梯形的面积来证明勾股定理。
这就是美国第二十届总统加菲尔德的证法,我们称之为总统证法。
当学生完成这三种证法之后,可以让学生应用网络查询有关于勾股定理的知识。
活动五,播放一段介绍勾股定理有关历史的动画。
我国古代劳动人民早在公元前一世纪前后成书的《周髀算经》中就有了有关于勾股定理的记载。
而毕达哥拉斯证明勾股定理比我们晚了500多年。
所以在我国被称之为勾股定理,而在我国召开的国际数学家大会也采用了赵爽弦图来作为大会的会徽。
当学生倾听完有关于勾股定理的历史之
后,再让学生欣赏一下赵爽弦图,看看赵爽是怎样利用分割、拼接的方法来证明勾股定理的。
在学生倾听历史,欣赏赵爽弦图的过程中,进行爱国主义教育,可以让他们充分体会到我国古代在数学研究方面取得的伟大成就,从而激发学生的爱国热情和民族自豪感。
活动六,课堂训练,首先是几道填空题,这几道填空题既有类似又有不同,通过变式训练,强调应用勾股定理时应注意的问题。
一是勾股定理要应用于直角三角形当中,二是要注意哪一条边为斜边。
简单的填空题之后,可以出示一道和学生生活密切相关的应用题,让学生充分体会到数学是来源于生活,应用于生活。
训练之后就进入活动七,让学生谈谈这节课的收获是什么,他最感兴趣的地方是什么,想进一步研究的问题又是什么。
通过小结,培养学生的归纳概括能力。
最后活动八,布置作业。
针对学生认知的差异设计有层次的作业,既能巩固知识,有使学有余力的学生获得最佳发展。
第四,谈谈远程教育资源的应用
本节课出现的三幅图片都是在远程教育资源网上下载的资源。
而我通过对多媒体资源的引用和加工制作课件,创设了情境,加强了故事性、直观性,让枯燥的数学课堂充满了生气,提高了学生学习数学的浓厚兴趣和学习效果。
而在课堂上我也充分利用模式三计算机网络教室这一平台,发送几何画板和比拼平台,让学生参与到数学活动中,,提高了学生的动手动脑能力。
在教学中将数学资源与网络有机结合,师生互动,构建起数学教学现代教育模式的课堂。