7-轴流压气机气动计算
轴流压气机多叶片排的气动优化设计

收稿日期:2005-03-03; 修订日期:2005-08-08作者简介:尉 涵(1979-),女,山西永济人,清华大学硕士研究生.文章编号:1001-2060(2005)06-0603-04轴流压气机多叶片排的气动优化设计尉 涵,袁 新(清华大学热能工程系,北京100084)摘 要:对某多级轴流压气机前三排叶片径向积叠方案进行了气动优化。
该方案以商用软件iSIGHT作为平台,利用试验设计方法对整个搜索空间进行初步探索,采用逐次序列二次规划算法进行局部寻优,利用商业软件NUMECA进行粘性流场数值评估。
对压气机全工况性能的计算表明,在流量和压比不减少的情况下,优化后的叶型设计工况和非设计工况性能均得到了改善。
关键词:轴流压气机;叶片;DOE;SQP;优化中图分类号:TK263.3 文献标识码:A1 引 言为了提高燃气轮机气动效率、做功能力以及扩大稳定工作范围,要求压气机具有更高的压比和效率。
这就需要不断提高压气机叶型的设计水平,研究压气机新叶型成型技术,以满足压气机气动设计的需要。
随着计算技术的飞速发展,应用计算流体动力学(CFD)已经可以深刻了解、分析流体机械内部的流动状况。
在使用C FD方法对流体机械内部流场进行数值模拟的基础上,人们提出数值设计方法,将数值优化技术与正问题流场计算相结合,由数学过程替代设计人员经验来控制设计参数的修改方向,就构成了叶型气动优化设计方法[1~3]。
一个完整的气动优化设计系统通常包括3个部分:参数化造型系统、评价系统和优化策略。
参数化造型是优化设计系统的基础,需要对优化的对象(即叶轮机械的通流部分)进行建模,并且为优化设计提供设计变量;评价系统的任务是通过某种方法对设计方案的性能做出评估,目前通常是由CFD方法精确求解正问题,获得通流部分的流场数据;优化策略的作用是用尽可能少的计算时间,找到最优的设计方案。
叶轮机械的设计问题即围绕这3个部分进行展开。
2 叶片参数化造型技术叶轮机械叶片弯扭联合设计是现代动力机械行业常用的叶片造型方法[4],它通过叶片的弯曲、扭转来控制叶片积叠线的形状。
某型多级轴流压气机三维CFD流场分析及气动优化

某型多级轴流压气机三维CFD流场分析及气动优化王辅方;赵连会;何磊;张玫宝【摘要】以某11级轴流压气机为研究对象,通过三维计算软件对某型压气机整机建模及流场进行了数值模拟,分别计算了设计工况、变工况及改变导叶安装角等工况的特性,得到了压气机流量-压比特性曲线、流量-效率特性曲线,与压气机的性能试验数据进行了对比,其误差在可允许范围内.同时对压气机的每一级的数据行了分析,总结了该压气机的气动设计规律.通过流场分析得到出口导叶的流场分布不合理的结论,并通过对其母型机的流场分析,提出了改进的方案.这些工作对压气机的设计开发提供了宝贵经验.【期刊名称】《热力透平》【年(卷),期】2012(041)003【总页数】5页(P215-219)【关键词】压气机;特性线;优化;数值模拟【作者】王辅方;赵连会;何磊;张玫宝【作者单位】上海电气电站集团,上海201100;上海电气电站技术研究与发展中心,上海201612;上海电气电站技术研究与发展中心,上海201612;上海电气电站技术研究与发展中心,上海201612【正文语种】中文【中图分类】TK472符号说明:从2000年开始,我国施行了3次燃气轮机打捆招标项目,引进了F级先进燃气轮机技术,建造了大量的燃气轮机电站,积累了一定的运行经验。
在燃气轮机三大部件中,压气机占有相当重要的地位,因此掌握压气机产品的设计、改型、模化等经验,并应用到新型压气机的设计中,具有重要的指导作用。
当今,CFD技术已经广泛地应用于压气机的气动设计中[1]。
近些年计算机CPU速度和内存容量的不断提高,CFD已经变成改进现有压气机和评估新型压气机性能的一个主要气动设计手段[2-5]。
多级CFD计算的一个主要功能是检查级间匹配,并给出压气机优化的方向[6]。
改善流道二次流特性的三维叶片造型特征,比如弯掠设计特征都可以通过CFD工具来进行优化。
Lisa等作者使用多级CFD分析低压压气机,通过总体特性图来看,CFD计算和试验数据均得到了很好的吻合。
压气机级间压缩比计算公式

压气机级间压缩比计算公式压气机是一种用于增压气体的机械设备,广泛应用于工业生产和航空航天领域。
在压气机中,压缩比是一个重要的参数,它描述了气体在压缩过程中的变化情况。
本文将介绍压气机级间压缩比的计算公式,并探讨其在工程实践中的应用。
压气机级间压缩比的计算公式如下:r = (P2/P1)^(1/n)。
其中,r表示压缩比,P2和P1分别表示压缩后和压缩前的压力,n表示多级压缩时的级数。
在这个公式中,压缩比r是一个描述压气机性能的重要参数。
它反映了气体在压缩过程中的压力变化情况,是评价压气机性能优劣的重要指标之一。
通过计算压缩比,可以帮助工程师们了解压气机的工作状态,从而进行合理的设计和优化。
在实际工程中,压缩比的计算通常需要考虑多种因素。
首先,压气机的工作压力通常会随着时间和工况的变化而发生变化,因此需要根据实际工作条件来确定压缩前和压缩后的压力值。
其次,多级压缩时需要考虑级数n的影响,不同的级数会对压缩比产生影响,因此在实际计算中需要对级数进行合理的选择和考虑。
除了计算公式外,压缩比还可以通过实验和仿真来进行确定。
通过实验,可以直接测量压气机的压缩前后压力值,从而得到压缩比的实际数值。
而通过仿真,可以利用计算机模拟压气机的工作过程,从而得到压缩比的理论数值。
这些方法都可以帮助工程师们更好地了解压气机的性能特点,为工程设计和优化提供参考。
在工程实践中,压缩比的计算和分析对于压气机的设计和优化具有重要意义。
首先,通过计算压缩比,可以帮助工程师们了解压气机的工作状态,从而进行合理的设计和优化。
其次,压缩比还可以用来评估压气机的性能优劣,从而为用户提供合适的选择和应用建议。
因此,压缩比的计算和分析在压气机的研发和应用过程中起着重要的作用。
总之,压气机级间压缩比的计算公式可以帮助工程师们了解压气机的工作状态,从而进行合理的设计和优化。
通过实验和仿真,可以进一步确定压缩比的实际数值,为工程设计和优化提供参考。
第三章 轴流式压气机工作原理

四 平面叶栅的实验研究
(一)亚声平面叶栅风洞
f1 (i, Ma1 )
f 2 (i, Ma1 )
f 1 (i )
来流马赫数低于0.4~0.6
f 2 (i )
(二)平面叶栅攻角特性
iБайду номын сангаас: (基本不变)
基本不变, 损失由摩擦引起
i : icr max 气流部分分离,损失增大
一、动叶对气流的加功
以动叶为研究对象,即气体对动叶作功
气流作用于叶片的周向分力: Pu=m(w1u-w2u) 单位时间做功为 -m(w1u-w2u).u 单位质量气体做功为 - (w1u-w2u).u 动叶对气体作功为 Lu=u (w1u-w2u)=u Δwu
轮缘功
r1 r2
动量矩定理
M m(c2u r2 c1u r1 ) M m (c2u r2 c1u r1 ) m(c2u u2 c1u u1 )
2 2 2 w12 w2 w12a w12u w2 a w2u 2 w12u w2u ( w1u w2u )( w1u w2u )
代入能量反力度表达式
Lu uwu u ( w1u w2u )
K
1 ( 2 2 w12 w2 )
Lu
w1u w2u 2u
2 2 w1 w2 2
:动叶中有多少动能用于压力势能的增加和克服动叶流阻, 即动叶中压力势能转换值 :静叶中压力势能转换值
2 c2 c12 2
所以Lu代表气体流经动叶和静叶发生的压力势能转换总和
反力度定义式:
1 ( 2
2 w12 w2 )
Lu
物理意义:动叶中用于压力势能转换的能量与整个级用于压力势能转换 的能量比值。 2、运动反力度 K 目的:与速度三角形联系,应用方便 设u1=u2,w1a=w2a
压气机性能试验报告_第9组

北京航空航天大学能源与动力工程学院专业综合实验报告班级学号姓名评分实验名称压气机性能实验实验日期一、实验目的1)掌握轴流压气机内流动、加功增压原理和特性;2)熟悉压气机气动参数测量和计算方法。
二、实验内容1、性能测试中的气动参数测量与速度三角形一台压气机在设计完成后,组装到核心机之前一定要经过部件试验的验证。
达到设计指标的才能进行组装。
这部分试验内容称之为压气机的性能测试。
其中最主要的性能参数集中反映在流量、压比和效率这几个参数上。
为了能够绘制速度三角形,本次试验要求在设计和近失速这两个特征状态下,测量如下气动参数:流量管静压、转子进出口外壁静压、静子出口外壁静压、转子进出口和静子出口平均半径处的总压、转子出口平均半径处的气流偏角以及其它必要的辅助参数。
2、额定折合转速下压气机特性曲线压气机的性能用特性曲线来表示。
对于高速压气机,通常的特性曲线图为流量-总压比图和流量-效率图。
但对于低速压气机,其横坐标则常用流量系数来表示,而压比可用压升或压升系数来表示。
试验时首先要在流量全开的情况下将转速开至待测转速。
待转速稳定后逐渐减小排气阀关度,通过减小排气面积来提高反压,从而得到同一转速下不同流量点的特性。
当流量减小到一定值时就会发生失速或喘振,此时应退出失速或喘振状态。
将同一转速下的这些测点连接起来就成为一条特性线。
如需完整的特性图,还应返回大流量状态,然后开至其它转速,重复这个过程。
图2.1为某低速压气机额定转速下的特性曲线示意图。
0.200.250.300.350.400.450.500.550.600.650.70∆p/.5ρum2ca/um0.200.250.300.350.400.450.500.550.600.650.701.0101.0121.0141.016πca/um0.750.800.850.90η图 2.1 压气机特性曲线三、实验装置如图2.2所示,实验台为一排动叶和一排静叶组成的单级轴流压气机,可增加叶片排数,扩展为双级相同级或三级相同级。
气动计算

1 1
0.8536
叶轮机械原理
——轴流压气机气动计算 重热系数的确定(多变压缩功):
lc
* ladk
k
(1 ) H s
z 1 z
叶轮机械原理
——轴流压气机气动计算 各级等熵功分配:
总的等熵功: lc (1 ) H s 252kj/ kg H z
按照功率确定:
ladk
k 1 * k * k RT1 c 1 241.5kJ / kg k 1
若H u 30kJ / kg 则:z 8 ~ 9
叶轮机械原理
——轴流压气机气动计算 2、分配各级的绝热压缩功:
ladk
k 1 * k * k RT1 c 1 241.5kJ / kg k 1
叶轮机械原理
——轴流压气机气动计算 级进口参数确定:
进气道总压损失系数 进口总压 进口密度
P 1 1 RT1
叶轮机械原理
——轴流压气机气动计算 结构参数确定:
由连续方程确定进口面积 确定进口外径 确定平均直径
叶轮机械原理
——轴流压气机气动计算 基元级速度三角形的确定:
确定轴流压气机转速 确定相对进气角 计算出口气流角
叶轮机械原理
——轴流压气机气动计算 其它参数的确定:
计算基元级反动度 校核叶尖速度 计算叶根弯角
叶轮机械原理
——轴流压气机气动计算 计算动叶出口热力学参数:
动叶出口压力 动叶出口温度 动叶出口速度 出口绝对气流角
叶轮机械原理
si
H sm
7-轴流压气机气动计算

* ladk
k
(1 ) H s
z 1 z
叶轮机械原理
——轴流压气机气动计算 各级等熵功分配:
总的等熵功: lc (1 ) H s 252kj/ kg H z
si
H sm
28kJ / kg
叶轮机械原理
——轴流压气机气动计算 各级等熵功分配:
叶轮机械原理
——轴流压气机气动计算
多级通流计算: 1、确定级数 2、分配各级绝热压缩功 3、选择通流部分形式 4、计算各级气流参数和确定部分尺寸 5、求出转子转速及所需功率
叶轮机械原理
——轴流压气机气动计算
设计数据: 空气流量:50kg/s 滞止总压比:8.4 大气参数: P* 1.01325105
1
T1* 288k
叶轮机械原理 ——轴流压气机气动计算
1、压气机级数的确定
1 8.4
* c z
若 1 1.27 则:z 9
叶轮机械原理
——轴流压气机气动计算
按照功率确定:
ladk
k 1 * k * k RT1 c 1 241.5kJ / kg k 1
进气道总压损失系数 进口总压 进口密度
P 1 1 RT1
叶轮机械原理
——轴流压气机气动计算 结构参数确定:
由连续方程确定进口面积 确定进口外径 确定平均直径
叶轮机械原理
——轴流压气机气动计算 基元级速度三角形的确定:
确定轴流压气机转速 确定相对进气角 计算出口气流角
dp
n RT1 ( c n 1) n 1
第三章 轴流压气机工作原理

第三章 轴流压气机的工作原理压气机是燃气涡轮发动机的重要部件之一,它的作用是给燃烧室提供经过压缩的高压、高温气体。
根据压气机的结构和气流流动特点,可以把它分为两种主要型式:轴流式压气机和离心式压气机。
本章论述轴流式压气机的基本工作原理,重点介绍压气机基元级和压气机一级的流动特性及工作原理。
第一节 轴流压气机的增压比和效率轴流式压气机由两大部分组成,与压气机旋转轴相联接的轮盘和叶片构成压气机的转子,外部不转动的机匣和与机匣相联接的叶片构成压气机的静子。
转子上的叶片称为动叶,静子上的叶片称为静叶。
每一排动叶(包括动叶安装盘)和紧随其后的一排静叶(包括机匣)构成轴流式压气机的一级。
图3-1为一台10级轴流压气机,在第一级动叶前设有进口导流叶片(静叶)。
图3-1 多级轴流压气机压气机的增压比定义为***=1p p k kπ (3-1) *kp :压气机出口截面的总压;*1p :压气机进口截面的总压;*号表示用滞止参数(总参数)来定义。
依据工程热力学有关热机热力循环的理论,对于燃气涡轮发动机来讲,在一定范围内,压气机出口的压力愈高,则燃气涡轮发动机的循环热效率也就愈高。
近六十年来,压气机的总增压比有了很大的提高,从早期的总增压比3.5左右,提高到目前的总增压比40以上。
图3-2 压气机的总增压比发展历程压气机的绝热效率定义为***=k adkkL L η (3-2) 效率公式定义的物理意义是将气体从*1p 压缩到*2p ,理想的、无摩擦的绝热等熵过程所需要的机械功*adk L 与实际的、有摩擦的、绝热熵增过程所需要的机械功k L *之比。
p 1*p k*1k adkL *k L *ad ksh *图3-3 压气机热力过程焓熵图 由热焓形式能量方程(2-5)式、绝热条件、等熵过程的气动关系式)1(11)(k k adk adk p p T T -****=和R k k c p 1-=可以得到 )1(1)(111--=-=-****k k k adk p adk RT k k T T c L π (3-3) )1(1)(111--=-=******T T RT k k T T c L k k p k (3-4) 将(3-3)和(3-4)式代入到(3-2)式,则得到1111--=**-**T T k k k k k πη (3-5)效率公式(3-5)式可以用来计算多级或单级压气机的绝热效率,也可以用来计算单排转子的绝热效率,只要*k p 和*k T 取相应出口截面处值即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
按照功率确定:
ladk
k 1 * k * k RT1 c 1 241.5kJ / kg k 1
若H u 30kJ / kg 则:z 8 ~ 9
叶轮机械原理
——轴流压气机气动计算 2、分配各级的绝热压缩功:
ladk
k 1 * k * k RT1 c 1 241.5kJ / kg k 1
叶轮机械原理
——轴流压气机气动计算 级进口参数确定:
进气道总压损失系数 进口总压 进口密度
P 1 1 RT1
叶轮机械原理
——轴流压气机气动计算 结构参数确定:
由连续方程确定进口面积 确定进口外径 确定平均直径
叶轮机械原理
——轴流压气机气动计算 基元级速度三角形的确定:
si
H sm
28kJ / kg
叶轮机械原理
——轴流压气机气动计算 各级等熵功分配:
第一级:(0.5~0.6)Hsm(15kJ/kg) 中间级:(1.08~1.1) Hsm (32kJ/kg)
末级: Hsm (28kJ/kg)
叶轮机械原理
——轴流压气机气动计算 各级通流度) 轴向速度
需确定多变效率与重热系数
叶轮机械原理
——轴流压气机气动计算 2、多变压缩功:
dp
n RT1 ( c n 1) n 1
n 1
多变效率
n k 1 p n 1 k
叶轮机械原理
——轴流压气机气动计算 级效率的选取:
多变效率:0.89 压气机效率:
*
sk
k 1 k c k 1 k si c
——轴流压气机气动计算
设计数据: 空气流量:50kg/s 滞止总压比:8.4 大气参数: P* 1.01325105
1
T1* 288k
叶轮机械原理 ——轴流压气机气动计算
1、压气机级数的确定
1 8.4
* c z
若 1 1.27 则:z 9
叶轮机械原理
——轴流压气机气动计算
1 1
0.8536
叶轮机械原理
——轴流压气机气动计算 重热系数的确定(多变压缩功):
lc
* ladk
k
(1 ) H s
z 1 z
叶轮机械原理
——轴流压气机气动计算 各级等熵功分配:
总的等熵功: lc (1 ) H s 252kj/ kg H z
确定轴流压气机转速 确定相对进气角 计算出口气流角
叶轮机械原理
——轴流压气机气动计算 其它参数的确定:
计算基元级反动度 校核叶尖速度 计算叶根弯角
叶轮机械原理
——轴流压气机气动计算 计算动叶出口热力学参数:
动叶出口压力 动叶出口温度 动叶出口速度 出口绝对气流角
叶轮机械原理
——轴流压气机气动计算 压气机静叶参数计算:
进气角 静叶总压损失
叶轮机械原理
——轴流压气机气动计算 叶型参数计算:
弯角 叶型厚度分布 中弧线变化规律 叶栅稠度
叶轮机械原理
——轴流压气机气动计算
多级轴流压气机的气动计算: 已知数据:空气流量G、压比π、大气参数P、T 1、选定进口参数 轮毂比、进口轴向速度、圆周速度、进口相对马赫数 2、计算进口气流参数 3、计算进口结构参数 4、计算出口气流参数 选取基元级等熵效率、基元级反动度 5、计算出口结构参数 6、各级的结构参数和气流参数计算
叶轮机械原理
——轴流压气机气动计算
气动计算内容: 1、多级通流计算 2、各级沿叶高气流参数计算(扭向设计) 3、叶片造型
叶轮机械原理
——轴流压气机气动计算
多级通流计算: 1、确定级数 2、分配各级绝热压缩功 3、选择通流部分形式 4、计算各级气流参数和确定部分尺寸 5、求出转子转速及所需功率
叶轮机械原理