新人教版初中数学[中考总复习:四边形综合复习--知识点整理及重点题型梳理](提高)
四边形综合篇(解析版)-2023年中考数学必考考点总结

四边形综合--中考数学必考考点总结+题型专训知识回顾1.平行四边形的性质:①边的性质:两组对边分别平行且相等。
②角的性质:对角相等,邻角互补。
③对角线的性质:对角线相互平分。
即对角线交点是两条对角线的中点。
④对称性:平行四边形是一个中心对称图形,绕对角线交点旋转180°与原图形重合。
⑤面积计算:等于底乘底边上的高。
等底等高的两个平行四边形的面积相等。
2.平行四边形的判定:①一组对边平行且相等的四边形是平行四边形。
∵AB∥DC,AB=DC,∴四边行ABCD是平行四边形②两组对边分别相等(两组对边分别平行)的四边形是平行四边形。
符号语言:∵AB=DC,AD=BC(AB∥DC,AD∥BC),∴四边行ABCD是平行四边形.③两组对角分别相等的四边形是平行四边形。
∵∠ABC=∠ADC,∠DAB=∠,∴四边行ABCD是平行四边形④对角线相互平行的四边形是平行四边形。
∵OA=OC,OB=OD,∴四边行ABCD是平行四边形3.矩形的性质:①具有平行四边形的一切性质。
②矩形的四个角都是直角。
③矩形的对角线相等。
④矩形既是一个中心对称图形,也是轴对称图形。
对角线交点是对称中心,过一组对边中点的直线是矩形的对称。
⑤由矩形的对角线的性质可知,直角三角形斜边上的中线等于斜边的一半。
4.矩形的判定:(1)直接判定:有三个角(四个角)都是直角的四边形是矩形。
(2)利用平行四边形判定:①定义:有一个角是直角(邻边相互垂直)的平行四边形是矩形。
②对角线的特殊性:对角线相等的平行四边形是矩形。
5.菱形的性质:①具有平行四边形的一切性质。
②菱形的四条边都相等。
③菱形的对角线相互垂直,且平分每一组对角。
④菱形既是一个中心对称图形,也是一个轴对称图形。
对称中心为对角线交点,对称轴为对角线所在直线。
⑤面积计算:除了用计算平行四边形的面积计算方法面积,还可以用对角线乘积的一半来计算面积。
6.菱形的判定:(1)直接判定:四条边都相等的四边形是菱形。
中考数学总复习知识点总结四边形

中考数学总复习知识点总结四边形四边形是指具有四条边的几何图形,在数学中有着重要的地位。
下面是中考数学总复习知识点总结四边形的内容。
一、基本定义和性质1.四边形的定义:具有四个顶点、四条边和四个内角的几何图形称为四边形。
2.四边形的分类:a.顶点关系分类:凸四边形和凹四边形;b.边长关系分类:等边四边形、等腰四边形和普通四边形;c.内角关系分类:矩形、正方形、平行四边形、菱形、梯形等。
3.四边形的性质:a.任意一条对角线将四边形分成两个三角形;b.对角线互相平分;c.相对边平行;d.相对角和为180度。
二、特殊四边形1.平行四边形:a.定义:对边平行的四边形;b.性质:i.对边相等;ii. 相邻内角互补;iii. 对角相等。
c.定理:1)如果一条对角线把平行四边形分成两个等腰三角形,则这条对角线是平行四边形的对称轴;2)如果一个四边形的对角线互相平分,则这个四边形是平行四边形。
2.矩形:a.定义:对边平行且四个内角都是直角的四边形;b.性质:i.两对对边相等;ii. 对角线相等;iii. 相邻内角互补;iv. 对角线互相平分。
3.菱形:a.定义:四个边都相等的平行四边形;b.性质:i.相邻内角互补;ii. 对角线互相垂直;iii. 对角线平分相应的内角。
4.正方形:a.定义:对边相等且四个内角都是直角的矩形;b.性质:i.两对对边相等;ii. 对角线相等;iii. 对角线互相垂直;iv. 对角线平分相应的内角。
5.等腰梯形:a.定义:有两对对边平行且有两条边相等的梯形;b.性质:i.上底和下底平分相应的内、外角;ii. 对角线等分梯形的积。
三、四边形的面积和周长1.面积:a.矩形的面积等于长度乘以宽度;b.平行四边形的面积等于底边长乘以高;c.三角形的面积等于底边长乘以高的一半;d.梯形的面积等于上底和下底的平均值乘以高;e.菱形的面积等于对角线的乘积的一半;f.正方形的面积等于一条边长的平方。
2.周长:a.四边形的周长等于四条边的长度之和;b.正方形的周长等于边长的四倍。
中考数学总复习知识点总结四边形

中考数学总复习知识点总结四边形本文将围绕中考数学总复习知识点总结四边形展开,主要包括四边形的性质、特殊四边形、四边形的周长和面积等方面的内容。
希望可以帮助中考学生对这一知识点进行系统性的复习,提高复习效果。
四边形的性质:1.四边形是由四条线段围成的图形,共有四个顶点和四条边。
2.顺序连接四个顶点得到四边形的周界。
3.四边形的内角和为360度。
4.一个四边形的对角线是连接两个非相邻顶点的线段。
5.对角线分割四边形成为两个三角形。
6.对角线相交于一点且互相平分。
特殊四边形:1.矩形:四个顶点都是直角,对角线长度相等。
2.正方形:四个顶点都是直角,对边相等。
3.平行四边形:对边平行。
4.菱形:四个顶点都相等,对边平行。
5.梯形:有两条平行边。
6.等腰梯形:有两条平行边,两个非平行边长度相等。
4.三角形:只有三个顶点。
四边形的周长和面积:1.周长:计算四边形周长的方法是将四条边的长度相加。
如果已知四边形的其中一方向边的长度,可以根据其性质计算其他边的长度再相加。
2.面积:计算四边形面积的方法因四边形的类型不同而不同。
矩形的面积可以通过长度和宽度的乘积得到。
正方形的面积可以直接通过边长的平方得到。
平行四边形的面积可以通过底边的长度和高的长度的乘积得到。
菱形的面积可以通过对角线的长度乘积的一半得到。
梯形的面积可以通过上底和下底的和乘以高再除以2得到。
等腰梯形的面积可以通过上底和下底的和乘以高再除以2得到。
三角形的面积可以通过底边的长度和高的长度的乘积再除以2得到。
为了更好地掌握四边形的知识点,建议中考学生进行以下练习:1.根据已知的四边形性质,判断下列说法是否正确:(1)一个四边形的对角线是连接两个相邻顶点的线段。
(2)一个四边形的内角和为180度。
(3)对角线相交于一点且互相垂直。
(4)矩形是一种特殊的梯形。
(5)等腰梯形的面积可以通过上底和下底的差再乘以高得到。
2.计算下列四边形的周长和面积:(1) 长方形,长为6cm,宽为4cm。
中考四边形综合知识点总结

中考四边形综合知识点总结一、四边形的性质1. 任意四边形的内角和为360度2. 对角线互相垂直的四边形是矩形3. 对边平行且相等的四边形是平行四边形4. 有一对对边平行的四边形是梯形5. 有一对对边相等的四边形是菱形6. 对角线相等的四边形是菱形7. 有一对对边互相垂直且相等的四边形是正方形8. 矩形和菱形都是平行四边形二、矩形1. 定义:有四个顶点和四条边的四边形2. 性质:内角和为360度,对角线长度相等,对角线互相垂直,相邻边互相垂直且相等3. 公式:周长=2*(长+宽),面积=长*宽三、平行四边形1. 定义:有四个顶点和四条边的四边形,对边平行且相等2. 性质:内角和为360度,对角线互相平分,对边互相相等3. 公式:周长=2*(a+b),面积=底*高四、梯形1. 定义:有四个顶点和四条边的四边形,有一对对边平行2. 性质:内角和为360度,底边平行,上底和下底长度相等,两个底边平行线段的中线互相平行3. 公式:周长=上底+下底+两腰,面积=(上底+下底)*高/2五、菱形1. 定义:有四个顶点和四条边的四边形,对边互相平行且相等2. 性质:内角和为360度,对角线相等,对角线互相平分,对角线互相垂直3. 公式:周长=4*边长,面积=对角线1*对角线2/2六、正方形1. 定义:有四个顶点和四条边的四边形,对角线相等,对边互相平行且相等2. 性质:内角和为360度,对角线相等,对角线互相垂直,边互相平行且相等3. 公式:周长=4*边长,面积=边长^2七、计算题1. 计算四边形的周长和面积2. 计算梯形的高3. 根据题目条件运用四边形的性质进行计算4. 判断四边形的类型和性质八、应用题1. 根据实际场景运用四边形的性质进行解决问题2. 通过综合应用四边形的知识解决问题3. 运用数学推理和逻辑思维解答四边形的实际问题以上就是中考四边形综合知识点总结,希望对大家有所帮助。
四边形知识点和题型归纳

(③图) ⑤ 对角线互相垂直的等腰
可得:等腰直角三角形
(④图)
(⑤图)
8. 中点四边形: (顶点为各边的中点,需讨论对角线&中位线)
(1) 顺次连结任意四边形各边中点构成的四边形是_______________
(2) 顺次连结对角线相等的四边形的各边中点, 构成的四边形
是__________
13.填空
(1)等腰梯形上底长为3cm,腰长为4cm,其中锐角等于60º,
则下底长是
.
(2)等腰梯形一个底角是60º,它的上、下底分别是8和18,则这梯形
的
腰长是
,高是
,面积是
.
(3)在直角梯形中,垂直于底的腰长5cm,上底长3cm,另一腰与下底
的
夹角为30º,则另一腰长为
,下底长为
.
(4)等腰梯形两对角线互相垂直,一条对角线长为6,则高为
A.一组对边平行的四边形是平行四边形
B.有一个角是直角的四边形是矩形
C.有一组邻边相等的平行四边形是菱形
D.对角线互相垂直平分的四边形是正方形
6.(2007甘肃陇南)顺次连结任意四边形各边中点所得四边形一定是
()
A.平行四边形
B.菱形
C.矩形
D.
正方形
7.(2007四川眉山)下列命题中的假命题是( )
图41(3)
(3)如图41(4),已知⊿ABD,⊿BCE是等边三角形,A,F是CE,EB上一 点,且CA=EB,求证:四边形ADFC是平行四边形.
图42(4)
42、(2007浙江台州)把正方形绕着点,按顺时针方向旋转得到正方 形,边与交于点(如图).试问线段与线段 相等吗?请先观察猜想,然后再证明你的猜想.
中考数学知识点复习四边形

第五单元四边形第19讲多边形与平行四边形知识点一:多边形关键点拨与对应举例1.多边形的相关概念(1)定义:在平面内,由一些段线首尾顺次相接组成的封闭图形叫做多边形.(2)对角线:从n边形的一个顶点可以引(n-3)条对角线,并且这些对角线把多边形分成了(n-2)个三角形;n边形对角线条数为()32n n-.多边形中求度数时,灵活选择公式求度数,解决多边形内角和问题时,多数列方程求解.例:(1)若一个多边形的内角和为1440°,则这个多边形的边数为10.(2)从多边形的一个顶点出发引对角线,可以把这个多边形分割成7个三角形,则该多边形为九边形.2.多边形的内角和、外角和( 1 ) 内角和:n边形内角和公式为(n-2)·180°(2)外角和:任意多边形的外角和为360°.3.正多边形(1)定义:各边相等,各角也相等的多边形.(2)正n边形的每个内角为()2180nn-⋅o,每一个外角为360°/n.( 3 ) 正n边形有n条对称轴.(4)对于正n边形,当n为奇数时,是轴对称图形;当n为偶数时,既是轴对称图形,又是中心对称图形.知识点二:平行四边形的性质4.平行四边形的定义两组对边分别平行的四边形叫做平行四边形,平行四边形用“□”表示.利用平行四边形的性质解题时的一些常用到的结论和方法:(1)平行四边形相邻两边之和等于周长的一半.(2)平行四边形中有相等的边、角和平行关系,所以经常需结合三角形全等来解题.(3)过平行四边形对称中心的任一直线等分平行四边形的面积及周长.例:如图,□ABCD中,EF过对角线的交点O,AB=4,AD=3,OF=1.3,则四边形BCEF的周长为9.6.5.平行四边形的性质(1)边:两组对边分别平行且相等.即AB∥CD 且AB=CD,BC∥AD且AD=BC. (2)角:对角相等,邻角互补.即∠BAD=∠BCD,∠ABC=∠ADC,∠ABC+∠BCD=180°,∠BAD+∠ADC=180°. (3)对角线:互相平分.即OA=OC,OB=OD(4)对称性:中心对称但不是轴对称.6.平行四边形中的几个解题模型(1)如图①,AF平分∠BAD,则可利用平行线的性质结合等角对等边得到△ABF为等腰三角形,即AB=BF.(2)平行四边形的一条对角线把其分为两个全等的三角形,如图②中△ABD ≌△CDB;两条对角线把平行四边形分为两组全等的三角形,如图②中△AOD≌△COB,△AOB≌△COD;根据平行四边形的中心对称性,可得经过对称中心O的线段与对角线所组成的居于中心对称位置的三角形全等,如图②△AOE≌△COF.图②中阴影部分的面积为平行四边形面积的一半.(3)如图③,已知点E为AD上一点,根据平行线间的距离处处相等,可得S△BEC=S△ABE+S△CDE.(4)根据平行四边形的面积的求法,可得AE·BC=AF·CD.OD CBA知识点三:平行四边形的判定7.平行四边形的判定(1)方法一(定义法):两组对边分别平行的四边形是平行四边形.即若AB∥CD,AD∥BC,则四边形ABCD是□.(2)方法二:两组对边分别相等的四边形是平行四边形.即若AB=CD,AD=BC,则四边形ABCD是□.(3)方法三:有一组对边平行且相等的四边形是平行四边形.即若AB=CD,AB∥CD,或AD=BC,AD∥BC,则四边形ABCD是□.(4)方法四:对角线互相平分的四边形是平行四边形.即若OA=OC,OB=OD,则四边形ABCD是□.(5)方法五:两组对角分别相等的四边形是平行四边形若∠ABC=∠ADC,∠BAD=∠BCD,则四边形ABCD是□.例:如图四边形ABCD的对角线相交于点O,AO=CO,请你添加一个条件BO=DO或AD∥BC或AB∥CD(只添加一个即可),使四边形ABCD为平行四边形.第20讲特殊的平行四边形知识点一:特殊平行四边形的性质与判定关键点拨及对应举例1.性质(具有平行四边形的一切性质,对边平行且相等)矩形菱形正方形(1)矩形中,Rt△ABD≌Rt△DCA≌Rt△CDB≌Rt△BAC; _两对全等的等腰三角形.所以经常结合勾股定理、等腰三角形的性质解题.(2)菱形中,有两对全等的等腰三角形;Rt△ABO≌Rt△ADO≌Rt△CBO≌Rt△CDO;若∠ABC=60°,则△ABC和△ADC为等边三角形,且四个直角三角形中都有一个30°的锐角.(3)正方形中有8个等腰直角三角形,解题时结合等腰直角三角形的锐角为45°,斜边=直角边. (1)四个角都是直角(2)对角线相等且互相平分.即AO=CO=BO=DO.(3)面积=长×宽=2S△ABD=4S△AOB.(1)四边相等(2)对角线互相垂直、平分,一条对角线平分一组对角(3)面积=底×高=对角线_乘积的一半(1)四条边都相等,四个角都是直角(2)对角线相等且互相垂直平分(3)面积=边长×边长=2S△ABD=4S△AOB2.判定(1)定义法:有一个角是直角的平行四边形(2)有三个角是直角(3)对角线相等的平行四边形(1)定义法:有一组邻边相等的平行四边形(2)对角线互相垂直的平行四边形(3)四条边都相等的四边形(1)定义法:有一个角是直角,且有一组邻边相等的平行四边形(2)一组邻边相等的矩形(3)一个角是直角的菱形(4)对角线相等且互相垂直、平分例:判断正误.邻边相等的四边形为菱形.()有三个角是直角的四边形式矩形.()对角线互相垂直平分的四边形是菱形. ()对边相等的矩形是正方形.()OD CBA3.联系包含关系:知识点二:特殊平行四边形的拓展归纳4.中点四边形(1)任意四边形多得到的中点四边形一定是平行四边形.(2)对角线相等的四边形所得到的中点四边形是矩形.(3)对角线互相垂直的四边形所得到的中点四边形是菱形.(4)对角线互相垂直且相等的四边形所得到的中点四边形是正方形.如图,四边形ABCD为菱形,则其中点四边形EFGD的形状是矩形.5.特殊四边形中的解题模型(1)矩形:如图①,E为AD上任意一点,EF过矩形中心O,则△AOE≌△COF,S1=S2.(2)正方形:如图②,若EF⊥MN,则EF=MN;如图③,P为AD边上任意一点,则PE+PF=AO. (变式:如图④,四边形ABCD为矩形,则PE+PF的求法利用面积法,需连接PO.)图①图②图③图④。
中考数学四边形知识点整理

中考数学四边形知识点整理学习从来无捷径。
每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要练的。
下面是小编给大家整理的一些中考数学四边形知识点的学习资料,希望对大家有所帮助。
中考数学知识点总结:平行四边形考点分析1.两组对边平行的四边形是平行四边形.2.性质:(1)平行四边形的对边相等且平行;(2)平行四边形的对角相等,邻角互补;(3)平行四边形的对角线互相平分.3.判定:(1)两组对边分别平行的四边形是平行四边形:(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形:(5)对角线互相平分的四边形是平行四边形.4。
对称性:平行四边形是中心对称图形.5.平行四边形中常用辅助线的添法1、连对角线或平移对角线2、过顶点作对边的垂线构造直角三角形3、连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线4、连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。
5、过顶点作对角线的垂线,构成线段平行或三角形全等。
中考数学易错知识点:四边形四边形易错点1:平行四边形的性质和判定,如何灵活、恰当地应用。
三角形的稳定性与四边形不稳定性。
易错点2:平行四边形注意与三角形面积求法的区分。
平行四边形与特殊平行四边形之间的转化关系。
易错点3:运用平行四边形是中心对称图形,过对称中心的直线把它分成面积相等的两部分。
对角线将四边形分成面积相等的四部分。
易错点4:平行四边形中运用全等三角形和相似三角形的知识解题,突出转化思想的渗透。
易错点5:矩形、菱形、正方形的概念、性质、判定及它们之间的关系,主要考查边长、对角线长、面积等的计算。
矩形与正方形的折叠,(23题必考)易错点6:四边形中的翻折、平移、旋转、剪拼等动手操作性问题,掌握其中的不变与旋转一些性质。
(18题必考)易错点7:(25题可能用到)梯形问题的主要做辅助线的方法。
初中四边形知识点总结归纳

初中四边形知识点总结归纳四边形作为初中数学中的重要内容,是学习几何学不可或缺的一部分。
在初中阶段,我们需要系统地学习和掌握四边形的性质、分类以及相关的定理。
本文将对初中四边形的知识点进行总结和归纳,帮助大家更好地理解和掌握这一部分知识。
1. 四边形的定义四边形是由四条线段组成的图形。
四边形的特点是有四个顶点、四条边和四个内角。
2. 四边形的分类根据边长和角度的不同,四边形可以分为以下几类:1) 矩形:具有四个右角的四边形,对边相等。
2) 正方形:具有四个相等边和四个右角的四边形。
3) 平行四边形:具有两对平行边的四边形。
4) 长方形:具有四个右角的四边形,对边相等。
5) 菱形:具有四个相等边的四边形。
6) 梯形:具有两对平行边的四边形。
7) 不规则四边形:没有特殊性质的四边形。
3. 四边形的性质1) 内角和定理:任意四边形的内角和等于360度。
2) 对角线性质:- 矩形、正方形和菱形的对角线相互平分。
- 平行四边形的对角线互相等长。
- 不规则四边形的对角线一般不相等。
3) 矩形、正方形和菱形的边长关系:正方形的边长等于矩形或菱形的长度,矩形和菱形的边长相等。
4) 平行四边形的边长关系:对边相等。
5) 梯形的特点:有一个对角线作为它的中线,两腰相等的梯形是等腰梯形。
6) 不规则四边形的特点:没有特殊性质,边长和角度都可能不相等。
4. 四边形的重要定理1) 矩形的重要定理:- 矩形的对角线相等。
- 矩形的四个角都是直角。
- 矩形的边互相垂直。
2) 正方形的重要定理:- 正方形的对角线相等且垂直。
- 正方形的对角线平分角。
- 正方形的四个角都是直角。
3) 平行四边形的重要定理:- 平行四边形的对边平行且相等。
- 平行四边形的对角线互相平分。
4) 菱形的重要定理:- 菱形的对角线互相垂直。
- 菱形的对角线平分角。
5. 解题技巧和注意事项1) 综合运用已知条件和四边形的性质来解题。
2) 注意图形的标记和注释,保持清晰易懂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版初中数学中考总复习重难点突破知识点梳理及重点题型巩固练习中考总复习:四边形综合复习—知识讲解(提高)【考纲要求】1.探索并了解多边形的内角和与外角和公式,了解正多边形的概念.2.掌握平行四边形、矩形、菱形、正方形、梯形、直角梯形、等腰梯形的概念和性质,了解它们之间的关系;了解四边形的不稳定性.3.探索并掌握平行四边形的有关性质和四边形是平行四边形的条件.4.探索并掌握矩形、菱形、正方形的有关性质和四边形是矩形、菱形、正方形的条件.5.探索并了解等腰梯形的有关性质和四边形是等腰梯形的条件.6.通过探索平面图形的镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用这几种图形进行简单的镶嵌设计.【知识网络】【考点梳理】考点一、四边形的相关概念1.多边形的定义:在平面内,由不在同一直线上的一些线段首尾顺次相接组成的封闭图形叫做多边形.2.多边形的性质:(1)多边形的内角和定理:n边形的内角和等于(n-2)·180°;(2)推论:多边形的外角和是360°;(3)对角线条数公式:n边形的对角线有条;(4)正多边形定义:各边相等,各角也相等的多边形是正多边形.3.四边形的定义:同一平面内,由不在同一条直线上的四条线段首尾顺次相接组成的图形叫做四边形.4.四边形的性质:(1)定理:四边形的内角和是360°; (2)推论:四边形的外角和是360°.考点二、特殊的四边形1.平行四边形及特殊的平行四边形的性质2. 平行四边形及特殊的平行四边形的判定【要点诠释】面积公式:S 菱形 =21ab=ch.(a 、b 为菱形的对角线 ,c 为菱形的边长 ,h 为c 边上的高) S 平行四边形 =ah. a 为平行四边形的边,h 为a 上的高)考点三、梯形1.梯形的定义:一组对边平行而另一组对边不平行的四边形叫做梯形.(1)互相平行的两边叫做梯形的底;较短的底叫做上底,较长的底叫做下底. (2)不平行的两边叫做梯形的腰. (3)梯形的四个角都叫做底角.2.直角梯形:一腰垂直于底的梯形叫做直角梯形.3.等腰梯形:两腰相等的梯形叫做等腰梯形.4.等腰梯形的性质:(1)等腰梯形的两腰相等; (2)等腰梯形同一底上的两个底角相等. (3)等腰梯形的对角线相等. 5.等腰梯形的判定方法:(1)两腰相等的梯形是等腰梯形(定义);(2)同一底上的两个角相等的梯形是等腰梯形; (3)对角线相等的梯形是等腰梯形.6.梯形中位线:连接梯形两腰中点的线段叫梯形的中位线.7.面积公式: S=(a+b)h(a 、b 是梯形的上、下底,h 是梯形的高).【要点诠释】解决四边形问题常用的方法(1)有些四边形问题可以转化为三角形问题来解决.(2)有些梯形的问题可以转化为三角形、平行四边形问题来解决. (3)有时也可以运用平移、轴对称来构造图形,解决四边形问题. 考点四、平面图形1.平面图形的镶嵌的定义:用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙,不重叠地铺成一片,这就是平面图形的镶嵌,又称做平面图形的密铺.2.平面图形镶嵌的条件:(1)同种正多边形镶嵌成一个平面的条件:周角是否是这种正多边形的一个内角的整倍数.在正多边形里只有正三角形、正四边形、正六边形可以镶嵌.(2)n 种正多边形组合起来镶嵌成一个平面的条件: ①n 个正多边形中的一个内角的和的倍数是360°;②n 个正多边形的边长相等,或其中一个或n 个正多边形的边长是另一个或n 个正多边形的边长的整数倍.【典型例题】类型一、特殊的四边形1.如图所示,已知P 、R 分别是矩形ABCD 的边BC 、CD 上的点,E 、F 分别是PA 、PR 的中点,点P在BC 上从B 向C 移动,点R 不动,那么下列结论成立的是( ) A .线段EF 的长逐渐增大 B .线段EF 的长逐渐变小C .线段EF 的长不变D .无法确定ABCD EF PR【思路点拨】此题的考点是矩形的性质;三角形中位线定理. 【答案】C.【解析】点R 固定不变,点P 在BC 上从B 向C 移动,在这个过程中△APR 的AR 边不变,EF 是△APR 的中位线,EF =12AR ,所以EF 的长不变. 【总结升华】本题考查矩形的性质及三角形中位线定理,难度适中,根据中位线定理得出EF=12AR 是解题的突破口.2.(2015•绵阳模拟)正方形ABCD 中,P 为AB 边上任一点,AE⊥DP 于E ,点F 在DP 的延长线上,且DE=EF ,连接AF 、BF ,∠BAF 的平分线交DF 于G ,连接GC . (1)求证:△AEG 是等腰直角三角形; (2)求证:AG+CG=;(3)若AB=2,P 为AB 的中点,求BF 的长.【思路点拨】(1)由条件可以得出∠AFD=∠PAE,再由直角三角形的性质两锐角互余及角平分线的性质就可以得出2∠GAP+2∠PAE=90°,从而求出结论;(2)如图2,作CH⊥DP,交DP于H点,可以得出△ADE≌△DCH根据全等三角形的性质就可以得出△GHC是等腰直角三角形,由其性质就可以得出CG=GH,AG=EG,再根据线段转化就看以得出结论;(3)如图3,延长DF,CB交于点K,根据正方形的性质可以得出△ADP≌△BKP,再由勾股定理就可以得出F是KG的中点,由三角形的中位线的性质就可以求出结论.【答案与解析】(1)证明:如图1,∵DE=EF,AE⊥DP,∴AF=AD,∴∠AFD=∠ADF,∵∠ADF+∠DAE=∠PAE+∠DAE=90°,∴∠AFD=∠PAE,∵AG平分∠BAF,∴∠FAG=∠GAP.∵∠AFD+∠FAE=90°,∴∠AFD+∠PAE+∠FAP=90°∴2∠GAP+2∠PAE=90°,即∠GAE=45°,∴△AGE为等腰直角三角形;(2)证明:如图2,作CH⊥DP,交DP于H点,∴∠DHC=90°.∵AE⊥DP,∴∠AED=90°,∴∠AED=∠DHC.∵∠ADE+∠CDH=90°,∠CDH+∠DCH=90°,∴∠ADE=∠DCH.∵在△ADE和△DCH中,,∴△ADE≌△DCH(AAS),∴CH=DE,DH=AE=EG.∴EH+EG=EH+HD,即GH=ED,∴GH=CH.∴CG=GH.∵AG=EG,∴AG=DH,∴CG+AG=GH+HD,∴CG+AG=(GH+HD),即CG+AG=DG;(3)如图3,延长DF,CB交于点K,∵P是AB的中点,∴AP=BP=1.∵四边形ABCD是正方形,∴AD=AB=BC=CD,∠DAB=∠ABC=∠ABK=90°.∵在△ADP和△BKP中,∴△ADP≌△BKP(ASA),∴AD=KB=BC=2.在Rt△ADP中由勾股定理,得PD=,∴AE=PA•AD,∴AE=,DE=,∴EG=,DF=,∴FG=.在Rt△KCD中,由勾股定理,得KD=2,∴KF=,∴KF=FG,∵KB=BC,∴FB∥CG,BF=CG,∴BF=•CH=DE=.【总结升华】本题考查了等腰三角形的性质的运用,直角三角形的性质的运用,勾股定理的运用,全等三角形的判定及性质的运用,正方形的性质的运用,三角形的中位线的判定及性质的运用,解答时合理运用全等是重点,运用三角形的中位线的性质求解是难点.举一反三:【变式】如图,E是正方形ABCD外的一点,连接AE、BE、DE,且∠EBA=∠ADE,点F在DE上,连接AF,BE=DF.(1)求证:△ADF≌△ABE;(2)小明还发现线段DE、BE、AE之间满足等量关系:DE-BE=2AE.请你说明理由.【答案】证明:(1)∵四边形正ABCD是正方形,∴AB=AD,∵在△ADF 和△ABE 中,AD AB ADF EBA DF BE =⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△ABE ;(2)理由如下:由(1)有△ADF ≌△ABE , ∴AF=AE ,∠1=∠2,在正方形ABCD 中,∠BAD=90°, ∴∠BAF+∠3=90°, ∴∠BAF+∠4=90°, ∴∠EAF=90°,∴△EAF 是等腰直角三角形,∴EF 2=AE 2+AF 2,∴EF 2=2AE 2, ∴EF=2AE ,即DE-DF=2AE , ∴DE-BE=2AE . 【四边形综合复习 例2】3.如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,AB=8,34tan =∠CAD ,CA=CD ,E 、F 分别是线段AD 、AC 上的动点(点E 与点A 、D 不重合),且∠FEC=∠ACB ,设DE=x ,CF=y. (1)求AC 和AD 的长; (2)求y 与x 的函数关系式;(3)当△EFC 为等腰三角形时,求x 的值.【思路点拨】本题涉及到的考点有相似三角形的判定与性质;等腰三角形的判定;直角梯形;锐角三角函数的定义. 【答案与解析】F CBDAE(1)∵AD ∥BC ,∠B=90°, ∴∠ACB=∠CAD . ∴tan ∠ACB=tan ∠CAD=43. ∴AB BC =43. ∵AB=8,∴BC=6.则AC=10. 过点C 作CH ⊥AD 于点H , ∴CH=AB=8,则AH=6. ∵CA=CD ,∴AD=2AH=12. (2)∵CA=CD , ∴∠CAD=∠D .∵∠FEC=∠ACB ,∠ACB=∠CAD , ∴∠FEC=∠D .∵∠AEC=∠1+∠FEC=∠2+∠D , ∴∠1=∠2.∴△AEF ∽△DCE . ∴DE CDAF AE=,即101012x y x =--. ∴y=21610105x x -+. (3)若△EFC 为等腰三角形.①当EC=EF 时,此时△AEF ≌△DCE , ∴AE=CD .∵12-x=10,∴x=2.②当FC=FE 时,有∠FCE=∠FEC=∠CAE , ∴CE=AE=12-x .在Rt △CHE 中,由(12-x )2=(6-x )2+82,解得x=113. ③当CE=CF 时,有∠CFE=∠CEF=∠CAE ,此时点F 与点A 重合,故点E 与点D 也重合,不合题意,舍去. 综上,当△EFC 为等腰三角形时,x=2或x=113. 【总结升华】本题考查了相似三角形的判定和性质、等腰三角形的判定、直角梯形及锐角三角形函数的定义等知识;应用相似的性质,得到比例式,借助比例式解题是很重要的方法,做题时注意应用,对于等腰三角形问题要注意分类讨论也是比较重要的,注意掌握.举一反三:【变式】在直角梯形ABCD 中,AB ∥DC ,AB ⊥BC ,∠A =60°,AB =2CD ,E 、F 分别为AB 、AD 的中点,连结EF 、EC 、BF 、CF .⑴判断四边形AECD 的形状(不证明);⑵在不添加其它条件下,写出图中一对全等的三角形,用符号“≌”表示,并证明. ⑶若CD =2,求四边形BCFE 的面积.【答案】(1)平行四边形;(2)△BEF ≌△CDF 或(△AFB ≌△EBC ≌△EFC ) 证明:连接DE ,∵AB=2CD ,E 为AB 中点, ∴DC=EB , 又∵DC ∥EB ,∴四边形BCDE 是平行四边形, ∵AB ⊥BC ,∴四边形BCDE 为矩形,∴∠AED=90°,∠CDE=∠BED=90°,BE=CD , 在Rt △AED 中,∠A=60°,F 为AD 的中点, ∴AF=12AD=EF , ∴△AEF 为等边三角形,∴∠DFE=180°-60°=120°, ∵EF=DF ,∴∠FDE=∠FED=30°. ∴∠CDF=∠BEF=120°, 在△BEF 和△FDC 中,120DF EF CDF BEF DC BE =⎧⎪∠=∠=︒⎨⎪=⎩,∴△BEF≌△CDF(SAS).(3)若CD=2,则AD=4,∵∠A=60°,∴sin60°=DEAD=32,∴DE=AD•32=23∴DE=BC=23,∵四边形AECD为平行四边形,∴S△ECF与S四边形AECD等底同高,∴S△ECF=12S四边形AECD=12CD•DE=12×2×23=23,S△CBE=12BE•BC=12×2×23=23,∴S四边形BCFE=S△ECF+S△EBC=23+23=43.类型二、四边形与其他知识的综合运用4. 有矩形纸片ABCD,AB=2,AD=1,将纸片折叠,使顶点A与边CD上的点E重合.(1)如果折痕FG分别与AD、AB交于点F、G,AF=23,求DE的长;(2)如果折痕FG分别与CD、DA交于点F、G,△AED的外接圆与直线BC相切,求折痕FG的长.【思路点拨】(1)根据AF,AD的长可以求得DF的长,根据折叠知EF=AF,再根据勾股定理即可计算得到DE的长;(2)根据直角三角形的外接圆的圆心是斜边的中点,则折痕与AE的交点O即是其外接圆的圆心.设DE=x,根据三角形ADE的中位线定理求得OM=12x,进一步表示出ON的长.根据直线和圆相切,则圆心到直线的距离等于圆的半径得到AE=2ON,在直角三角形ADE中,根据勾股定理列方程求解.再根据直角三角形FOE相似于直角三角形ADE,求得OF的长,从而根据轴对称的性质得到FG=2OF.【答案与解析】(1)在矩形ABCD中,AB=2,AD=1,AF=23,∠D=90°.根据轴对称的性质,得EF=AF=23.3在Rt △DEF 中,DE=22213-=333()().(2)设AE 与FG 的交点为O .根据轴对称的性质,得AO=EO .取AD 的中点M ,连接MO . 则MO=12DE ,MO ∥DC . 设DE=x ,则MO=12x , 在矩形ABCD 中,∠C=∠D=90°,∴AE 为△AED 的外接圆的直径,O 为圆心.延长MO 交BC 于点N ,则ON ∥CD .∴∠CNM=180°-∠C=90°.∴ON ⊥BC ,四边形MNCD 是矩形.∴MN=CD=AB=2.∴ON=MN-MO=2-12x . ∵△AED 的外接圆与BC 相切,∴ON 是△AED 的外接圆的半径.∴OE=ON=2-12x ,AE=2ON=4-x . 在Rt △AED 中,AD 2+DE 2=AE 2,∴12+x 2=(4-x )2.解这个方程,得x=158. ∴DE=158,OE=2-12x=1716. 根据轴对称的性质,得AE ⊥FG .∴∠FOE=∠D=90°.可得FO=1730. 又AB ∥CD ,∴∠EFO=∠AGO ,∠FEO=∠GAO .∴△FEO ≌△GAO .∴FO=GO .15∴折痕FG的长是17 15.【总结升华】本题通过矩形纸片折叠,利用轴对称图形的性质,在丰富的图形关系中,考查学生获取信息和利用所得信息认识新事物的能力,本题对图形折叠前后的不变量的把握、直线与圆位置关系的准确理解、方程思想的运用意识和策略等具有可再抽象性.【四边形综合复习例3】5.(2015•黄岛区校级模拟)如图,在Rt△ABC中,∠C=90°,AC=3,AB=5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动;点Q从点A出发沿AB以每秒1个单位长的速度向点B 匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交BC于点E.点P、Q同时出发,当点P到达点A时停止运动,点Q也随之停止.设点P、Q运动的时间是t秒(t>0).(1)当t为何值时,DE∥AB?(2)求四边形BQPC的面积s与t的函数关系式;(3)是否存在某一时刻t,使四边形BQPC的面积与Rt△ABC的面积比为13:15?若存在,求t的值.若不存在,请说明理由;(4)若DE经过点C,试求t的值.【思路点拨】(1)根据DE∥AB,得到△AQP∽△ACB,根据相似三角形的对应边成比例,求出t;(2)根据四边形BQPC的面积=△ABC的面积﹣△AQP的面积,列出关于x、y的函数关系式;(3)根据(2)中的函数关系式和面积比,求出t;(4)DE经过点C,作QH⊥BC于H,得到DH∥AC,用t表示出QH、EH,根据垂直平分线的性质和勾股定理列出关系式求出t.【答案与解析】解:(1)当DE∥AB时,∠AQP=90°,则△AQP∽△ACB,=,=,t=;(2)∠C=90°,AC=3,AB=5,根据勾股定理得,BC=4,S△ABC=×3×4=6,作QF⊥BC于F,则QF∥BC,=,即=,QF=t,S△AQP=×(3﹣t)×t=﹣t2+t,S=6﹣(﹣t2+t)=t2﹣t+6;(3)(t2﹣t+6):6=13:15,整理得,t2﹣3t+2=0解得:t1=1,t2=3(舍去);当t=1时,四边形BQPC的面积与Rt△ABC的面积比为13:15;(4)如图,DE经过点C,作QH⊥BC于H,∵DH∥AC,∴==,=,QH=,=,BH=,HC=t,∵DE垂直平分PQ,∴PC=CQ,()2+(t)2=t2,90t=225,t=.【总结升华】本题考查的是相似三角形的判定和性质,灵活运用相似三角形的判定定理和性质定理是解题的关键,解答时,注意方程思想的正确运用.6 .如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(-8,0),直线BC经过点B(-8,6),C(0,6),将四边形OABC绕点O按顺时针方向旋转а度得到四边形OAB'C',此时直线OA’、直线B’C’分别与直线BC相交于点P、Q.(1)四边形OABC的现状是,当а=90°时,BP:PQ的值是;(2)①如图,当四边形OA’B’C’的顶点B’落在y轴正半轴时,求BP:BQ的值;②如图,当四边形OA’B’C’的顶点B’落在直线BC上时,求△OPB'的面积;(3)在四边形OA’B’C’旋转过程中,当0<а°≤180°时,是否存在这样的点P和点Q,使BP=0.5BQ?若存在,请直接写出点P的坐标;若不存在,请说明理由.【思路点拨】(1)根据有一个角是直角的平行四边形进行判断当α=90°时,就是长与宽的比;(2)①利用相似三角形求得CP的比,就可求得BP,PQ的值;②根据勾股定理求得PB′的长,再根据三角形的面积公式进行计算.【答案与解析】(1)四边形OA′B′C′的形状是矩形;根据题意即是矩形的长与宽的比,即43.(2)①∵∠POC=∠B′OA′,∠PCO=∠OA′B′=90°,∴△COP∽△A′OB′.∴CPA B''=OCOA',即6CP=68,∴CP=92,BP=BC-CP=72.同理△B′CQ∽△B′C′O,∴CQC O'=B CB C''',即6CQ=1068-,∴CQ=3,BQ=BC+CQ=11.∴BP PQ =72932+=715; ②在△OCP 和△B ′A ′P 中,90OPC B PA OCP A OC B A ''∠=∠⎧⎪'∠=∠=︒⎨⎪''=⎩,∴△OCP ≌△B ′A ′P (AAS ).∴OP=B ′P .设B ′P=x ,在Rt △OCP 中,(8-x )2+62=x 2,解得x=254. ∴S △OPB′=12×254×6=754; (3)过点Q 画QH ⊥OA ′于H ,连接OQ ,则QH=OC ′=OC ,∵S △POQ =12PQ •OC ,S △POQ =12OP •QH , ∴PQ=OP . 设BP=x ,∵BP=12BQ , ∴BQ=2x ,如图1,当点P 在点B 左侧时,OP=PQ=BQ+BP=3x ,在Rt △PCO 中,(8+x )2+62=(3x )2,解得 x 1=1+362,x 2=1-362(不符实际,舍去). ∴PC=BC+BP=9+362, ∴P 1(-9-362,6). 如图2,当点P 在点B 右侧时,∴OP=PQ=BQ-BP=x ,PC=8-x .在Rt △PCO 中,(8-x )2+62=x 2,解得x=254. ∴PC=BC-BP=8-254=74, ∴P 2(-74,6), 综上可知,点P 1(-9-362,6),P 2(-74,6),使BP=12BQ . 【总结升华】本题考查了旋转的性质;勾股定理;矩形的判定与性质;相似三角形的判定与性质.举一反三:【变式】如图,直角梯形ABCD 中,BC AD ∥,90BCD ∠=°,且2tan 2CD AD ABC =∠=,,过点D 作AB DE ∥,交BCD ∠的平分线于点E ,连接BE .(1)求证:BC CD =;(2)将BCE △绕点C ,顺时针旋转90°得到DCG △,连接EG..求证:CD 垂直平分EG.(3)延长BE 交CD 于点P .求证:P 是CD 的中点.【答案】(1)延长DE 交BC 于F ,∵AD ∥BC ,AB ∥DF ,∴AD=BF ,∠ABC=∠DFC .在Rt △DCF 中,∵tan ∠DFC=tan ∠ABC=2,∴2CD CF=, 即CD=2CF ,∵CD=2AD=2BF ,∴BF=CF ,∴BC=BF+CF=12CD+12CD=CD .即BC=CD .A DGEC B。