数学建模概率模型解析

合集下载

数学建模-概率模型

数学建模-概率模型

如对均值为mu、标准差为sigma的正态分布,举例如下:
1.密度函数:p=normpdf(x,mu,sigma) (当mu=0,sigma=1时可缺省)
例 1 画出正态分布 N (0,1) 和 N (0,22 ) 的概率密度函数图形.
在MATLAB中输入以下命令: x=-6:0.01:6; y=normpdf(x); z=normpdf(x,0,2); plot(x,y,x,z)
9.1 传送系统的效率

传送带
景 挂钩
产品
工作台
工人将生产出的产品挂在经过他上方的空钩上运走,若 工作台数固定,挂钩数量越多,传送带运走的产品越多。
在生产进入稳态后,给出衡量传送带效 率的指标,研究提高传送带效率的途径
模型分析
• 进入稳态后为保证生产系统的周期性运转,应 假定工人们的生产周期相同,即每人作完一件产 品后,要么恰有空钩经过他的工作台,使他可将 产品挂上运走,要么没有空钩经过,迫使他放下 这件产品并立即投入下件产品的生产。 • 工人们生产周期虽然相同,但稳态下每人生产 完一件产品的时刻不会一致,可以认为是随机的, 并且在一个周期内任一时刻的可能性相同。
例:现有100个零件,其中95个长度合格,94个直径和格, 92个两个尺寸都合格。任取一个,发现长度合格,问直径 合格的概率。
设A=‘长度合格’,B=‘直径合
格’
P( A) 95 , P( AB) 92
100
100
P(B | A) P( AB) 92 P( A) 95
全概率公式和贝叶斯公式
u0 u0
L(
x)
c 2
x
0
(
x
r
)
p(r
)dr

数学建模—概率模型 ppt课件

数学建模—概率模型 ppt课件

数学建模—概率模型
v3统计图(examp05-03) v箱线图(判断对称性) v频率直方图(最常用) v经验分布函数图 v正态概率图(+越集中在参考线附近,越近似正态分布)
v4分布检验 vChi2gof,jbtest,kstest,kstest2,lillietest等 vChi2gof卡方拟合优度检验,检验样本是否符合指定分布。它把观测数据分 组,每组包含5个以上的观测值,根据分组结果计算卡方统计量,当样本够 多时,该统计量近似服从卡方分布。 vjbtest,利用峰度和偏度检验。
3 单因素一元方差分析步骤
( example07_01.m 判断不同院系成绩均值是否相等)
数据预处理
正态性检验 lillietest (p>0.05接受)
方差齐性检验 vartestn (p>0.05接受)
方差分析
anoval (p=0 有显著差别)
多重比较:两两比较,找出存在显著差异的学院,multcompare
构造观测值矩阵,每一列对应因素A的一个水平,每一行对应因素B的一个
水平
方差分析
anova2 得到方差分析表
方差分析表把数据差异分为三部分(或四部分): 列均值之间的差异引起的变差 列均值之间的差异引起的变差 行列交互作用引起的变差 (随机误差) 后续可以进行多重比较,multcompare,找出哪种组合是最优的
Computer Science | Software Engineering & Information System
数学建模—概率模型
目的:用一个函数近似表示变量之间的不确定关系。 1 一元线性回归分析 做出散点图,估计趋势;计算相关系数矩阵; regress函数,可以得到回归系数和置信区间,做残差分析,剔除异常点,重 新做回归分析 Regstats 多重线性或广义回归分析,它带有交互式图形用户界面,可以处 理带有常数项、线性项、交叉项、平方项等模型 robustfit函数:稳健回归(加权最小二乘法)

数学建模-概率模型

数学建模-概率模型

确定性现象的特征
条件完全决定结果
随机现象
在一定条件下可能出现也可能不出现的现象.
实例1 在相同条件下掷一枚均匀的硬币,观察 正反两面出现的情况.
结果有可能出现正面也可能出现反面.
实例2 明天的天气可
特征: 条件不能完全决定结果
能是晴 , 也可能是多云
或雨.
说明 1. 随机现象揭示了条件和结果之间的非确定性联 系 , 其数量关系无法用函数加以描述. 2. 随机现象在一次观察中出现什么结果具有偶然 性, 但在大量试验或观察中, 这种结果的出现具有 一定的统计规律性 , 概率论就是研究随机现象这 种本质规律的一门数学学科. 如何来研究随机现象?
P( A)
m n
A
所包含样本点的个数 样本点总数
.
古典概型的基本模型:摸球模型
(1) 无放回地摸球
(2) 有放回地摸球
例1 某接待站在某一周曾接待过 12次来访,已知 所有这 12 次接待都是在周二和周四进行的,问是 否可以推断接待时间是有规定的.
解 假设接待站的接待时间没有
规定,且各来访者在一周的任一天
0.0000003 .
小概率事件在实际中几乎是不可能发生的 , 从 而可知接待时间是有规定的.
例2 假设每人的生日在一年 365 天中的任一天 是等可能的 , 即都等于 1/365 ,求 64 个人中至少 有2人生日相同的概率.
解 64 个人生日各不相同的概率为
p1
365
364
(365 36564
2. 假设遗传基因是由两个基因A和B控制的,则有 三种可能基因型:AA、AB和BB。
例如:金鱼草是由两个基因决定它开花的颜色,AA 型开红花,AB型开粉花,而BB型开白花。这里AA型 和AB型表示了同一外部特征,此时可以认为基因A 支配了基因B,也可以说基因B对基因A是隐性的。

数学建模中的概率统计模型1

数学建模中的概率统计模型1
x1 2,F1统计量和与χ y1 对应的概率p。 相关系数 R 回归系数 a , b 以及它们的置信区间 0 残差向量e=Y-Y 及它们的置信区间 X , Y 1 xn yn
残差及其置信区间可以用rcoplot(r,rint)画图。
3、将变量t、x、y的数据保存在文件data中。 save data t x y 4、进行统计分析时,调用数据文件data中的数 据。 load data 方法2 1、输入矩阵:
data=[78,79,80,81,82,83,84,85,86,87; 23.8,27.6,31.6,32.4,33.7,34.9,43.2,52.8,63.8,73.4; 41.4,51.8,61.7,67.9,68.7,77.5,95.9,137.4,155.0,175.0]
线性模型 (Y , X , I n ) 考虑的主要问题是: (1) 用试验值(样本值)对未知参数 和 2 作点估计和假设检验,从而建立 y 与
x1 , x 2 ,..., x k 之间的数量关系;
(2)在 x1 x01 , x2 x02 ,..., xk x0 k , 处对 y 的值作预测与控制,即对 y 作区间估计.
1 ( x0 x ) 2 ˆ 1 d n t (n 2) n Lxx 2
Q ˆ n2
2
设y在某个区间(y1, y2)取值时, 应如何控制x 的取值范围, 这样的问题称为控制问题。
可线性化的一元非线性回归 需要配曲线,配曲线的一般方法是: • 先对两个变量x和y 作n次试验观察得画出 散点图。 • 根据散点图确定须配曲线的类型。 • 由n对试验数据确定每一类曲线的未知参数 a和b采用的方法是通过变量代换把非线性 回归化成线性回归,即采用非线性回归线 性化的方法。

数学建模第五章随机模型

数学建模第五章随机模型

05
随机模拟
随机模拟的基本原理
随机模拟是一种基于概率统计的数值计算方法,通过模拟随机事件或过程来求解实 际问题。
随机模拟的基本原理包括抽样、统计推断和误差分析,其中抽样是随机模拟的核心 步骤,通过从概率分布中抽取样本,模拟随机事件的概率特征。
随机模拟的精度取决于样本数量和分布的准确性,样本数量越多,模拟结果越接近 真实情况。
THANKS FOR WATCHING
感谢您的观看
蒙特卡洛积分
蒙特卡洛积分是一种基于随机抽样的 数值积分方法,通过将积分转化为求 和的形式,利用大数定律和中心极限 定理来估计积分值。
蒙特卡洛积分在金融、物理、工程等 领域有广泛应用,可以用于求解复杂 的高维积分问题。
蒙特卡洛积分的精度与样本数量和积 分的可积性有关,对于不可积的积分, 可以通过增加样本数量来提高估计精 度。
马尔科夫链蒙特卡洛方法
总结词
马尔科夫链蒙特卡洛方法是一种基于马尔科夫链的随机抽样方法,常用于求解复杂数学 问题的不确定性。
详细描述
马尔科夫链蒙特卡洛方法通过构造一个马尔科夫链,使其平稳分布为目标分布,从而通 过抽样得到目标分布的近似解。这种方法在统计学、物理、经济学等领域有广泛应用, 可以用于求解复杂数学问题的不确定性,如概率论中的积分、统计推断中的参数估计等。
描述随机变量取值概率分布的函数称 为随机变量的分布函数。常见的分布 函数有离散型分布和连续型分布,如 二项分布、泊松分布、正态分布等。
03
随机过程
随机过程的定义与分类
定义
随机过程是随机变量在时间或空间上的扩展,描述了一个随机现象在连续时间或 离散时间上的变化。
分类
根据过程的性质和特点,随机过程可以分为平稳随机过程、非平稳随机过程、离 散随机过程和连续随机过程等。

数学建模 四大模型总结

数学建模 四大模型总结

四类基本模型1 优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。

1.2 微分方程组模型阻滞增长模型、SARS 传播模型。

1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。

1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。

1.5 组合优化经典问题● 多维背包问题(MKP)背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。

如何将尽可能多的物品装入背包。

多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。

如何选取物品装入背包,是背包中物品的总价值最大。

多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。

该问题属于NP 难问题。

● 二维指派问题(QAP)工作指派问题:n 个工作可以由n 个工人分别完成。

工人i 完成工作j 的时间为ij d 。

如何安排使总工作时间最小。

二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。

二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。

● 旅行商问题(TSP)旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。

● 车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。

TSP 问题是VRP 问题的特例。

● 车间作业调度问题(JSP)车间调度问题:存在j 个工作和m 台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。

数学建模 概率模型案例

数学建模 概率模型案例

因为


0
pr dr 1
pr dr
n 0

n
pr dr 1

n
0
a b p ( r )dr ac
因为当购进
售不完的 概率
n 份报纸时,

n
0
p ( r ) dr
n
a b bc p ( r ) dr
P 1
售完的 概率
ቤተ መጻሕፍቲ ባይዱ
n
0
pr dr是需求量 r 不超过 n的概率
2.确定目标函数的表达式
寻找设计变量与目标变量之间的关系
3.寻找约束条件
设计变量所受的限制
若每天购进 0 份, 则收入为 0。 若每天购进 1 份,
售出,则收入为 a-b。
退回,则收入为 –(b-c)。 售出1份,则收入为 a-b –(b-c) 。 售出2份,则收入为 2(a-b) 。 退回,则收入为 –2(b-c)。
r 0
n
r n 1
(a b)nf (r )
求 n 使 G(n) 最大
将r视为连续变量 f (r ) p(r ) (概率密度)
G(n) 0 [( a b)r (b c)( n r )] p(r )dr n (a b)np(r )dr
dG (a b)np(n) n (b c) p(r )dr 0 dn (a b)np(n) (a b) p(r )dr
退回n r 赔(b c)(n r )
r n 售出n 赚(a b)n
每天的收入函数记为U(n),则
(a b)r (b c)(n r ) U (n, r ) (a b)n nr nr

三种数学模型进行总结归纳

三种数学模型进行总结归纳

三种数学模型进行总结归纳数学模型是现代科学研究和实践中的重要工具,它们能够对真实世界中的问题进行抽象和数学描述,帮助我们理解和解决复杂的问题。

在本文中,我将对三种常见的数学模型进行总结归纳,分别是线性模型、非线性模型和概率模型。

一、线性模型线性模型是数学中最基本也是最简单的模型之一。

在线性模型中,变量之间的关系是线性的,可以用一条直线或者一个超平面来刻画。

线性模型的基本形式可以表示为:Y = β0 + β1X1 + β2X2 + ... + βnXn其中,Y表示因变量,X1、X2、...,Xn表示自变量,β0、β1、β2、...,βn表示系数。

线性模型的关键是确定合适的系数,可以通过最小二乘法等统计方法进行估计。

线性模型在很多领域都有广泛的应用,例如线性回归模型可以用来建立变量之间的关系模型,在市场营销中可以用来预测销售量与广告费用之间的关系;线性分类模型可以用来进行二分类或多分类,广泛应用于图像识别、信用评估等领域。

二、非线性模型与线性模型相对应的是非线性模型,非线性模型是一类不能用线性关系表示的模型。

在非线性模型中,变量之间的关系是非线性的,可能呈现出曲线、二次曲线、指数函数等形态。

非线性模型的基本形式可以表示为:Y = f(X, β)其中,Y表示因变量,X表示自变量,β表示参数,f(·)表示一个非线性的函数。

非线性模型在很多实际问题中有重要的应用,例如生物学中的生长模型、物理学中的运动模型等。

非线性模型的参数估计通常需要通过数值方法或者迭代算法来进行求解。

三、概率模型概率模型是一种利用概率理论描述随机现象的数学模型。

概率模型通过引入随机变量和概率分布来描述不确定性和随机性。

概率模型可以分为两类:参数模型和非参数模型。

参数模型是一类具有固定参数的概率模型,可以用有限个参数来刻画变量之间的关系。

参数模型的应用非常广泛,例如正态分布模型、泊松分布模型等。

参数模型的参数通常可以通过最大似然估计等方法进行估计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1.1 随机试验定义
在概率论中,把具有以下三个特征的试验称 为随机试验.
(1) 可以在相同的条件下重复地进行; (2) 每次试验的可能结果不止一个,并且能 事先明确试验的所有可能结果; (3) 进行一次试验之前不能确定哪一个结果 会出现.
说明 (1) 随机试验简称为试验, 是一个广泛的术语.它包 括各种各样的科学实验, 也包括对客观事物进行 的 “调查”、“观察”或 “测量” 等. (2) 随机试验通常用 E 来表示. 实例 “抛掷一枚硬币,观 察字面,花面出现的情况”.
1812年, Laplace(拉普拉斯,法) —《概率的分析理论 》实现了实现了从组合技巧向分析方法的过渡,开辟了概 率论发展的新时期。
19世纪(1866), Chebyhev(切比雪夫,俄) — 中心 极限理论。是概率论理论的又一次飞跃,为后来数理统计 的产生和应用奠定了基础。
20世纪(1933),kolmogorov (柯尔莫哥洛夫,俄) — 概率公理化定义得到了数学家们的普遍承认。由于公理化 ,概率论成为一门严格的演绎科学,取得了与其他数学学科 同等的地位,并通过集合论与其他数学分支密切的联系。
通俗地讲 随机事件是指随机试验中可能发生也可能不
发生的事件. 根据这个说法不难发现 随机事件和样本空间的子集有 一一对应关系!
实例 抛掷一枚骰子, 观察出现的点数.
“点数不大于4”,“点数为偶数” 等都为随机事件.
它们分别可以对应了样本空间 ={1,2,3,4,5,6} 的子集{1,2,3,4}和{2,4,6}.
第四讲 概率模型
1.概率论的诞生及应用 2. 随机事件及其概率 3. 随机变量及其分布 4. 随机变量的数字特征 5. 统计方法的基本概念 6. 参数估计法 7 回归分析法
1 概率论的诞生及应用
起源 —博弈
1654年,一个名叫梅累的骑士就“两个赌徒约定赌若 干局, 且谁先赢 c 局便算赢家, 若在一赌徒胜 a 局 ( a<c ), 另一赌徒胜b局(b<c)时便终止赌博,问应如何分赌本” 为 题求教于Pascal(帕斯卡, 法), 帕斯卡与Fermat(费玛)通信 讨论这一问题,并用组合的方法给出了正确的解答。
定义 随机试验 E 的所有可能结果组成的集合
称为 E 的样本空间, 记为 .
样本空间的元素 , 即试验E 的每一个结 果, 称为
样本点,常用 表示.
实例1 抛掷一枚硬币,观察正面,反面出现的情况.
1 {H ,T}.
H 正面朝上 T 反面朝上
实例2 抛掷一枚骰子,观察出现的点数.
2 {1, 2, 3, 4, 5, 6}.
例如 对于同一试验: “将一枚硬币抛掷三 次若”观.察正面 H、反面 T 出现的情况 ,则样本空间 为
{HHH , HHT , HTH , THH , HTT , TTH , THT , TTT }.
若观察出现正面的次数 , 则样本空间为
{0,1, 2, 3}.
3. 建立样本空间,事实上就是建立随机现 象的数学 模型. 因此 , 一个样本空间可以 概括许多内容大不 相同的实际问题.
结果有可能出现正面也可能出现反面.
随机现象的特征
条件不能完全决定结果
说明 (1) 随机现象揭示了条件和结果之间的非确定性 联系 , 其数量关系无法用函数加以描述. (2) 随机现象在一次观察中出现什么结果具有偶 然性, 但在大量试验或观察中, 这种结果的出现具 有一定的统计规律性 , 概率论就是研究随机现象 规律性的一门数学学科. 如何来研究随机现象? 随机现象是通过随机试验来研究的. 问题 什么是随机试验?
实例3 从一批产品中,依次任选三件,记录出 现正品与次品的情况.
记 N 正品, D 次品.
则 Ω3 { NNN, NND, NDN, DNN, NDD, DDN, DND, DDD}.
说明 1. 试验不同, 对应的样本空间也不同. 2. 同一试验 , 若试验目的不同,则对应的样 本空 间也不同.
反过来, 的每个子集都对应了该试验的一个随机 事件.
随机事件的定义 随机试验 E 的样本空间 的子集称为 E
分析
(1) 试验可以在相同的条件下重复地进行;
(2) 试验的所有可能结果: 正面、反面;
(3) 进行一次试验之前不能 确定哪一个结果会出现.
故为随机试验.
同理可知下列试验都为随机试验.
(1) 抛掷一枚骰子,观察出现的点数.
(2) 从一批产品中,依次任选三件,记 录出现正品与次品的件数.Βιβλιοθήκη 2.1.2 样本空间 样本点
在公理化的基础上, 现代概率论不仅在理论上取得了 一系列突破, 在应用上也取得了巨大的成就,其应用几乎 遍及所有的科学领域,例如天气预报、 地震预报、产品的 抽样调查、经济研究等,在通讯工程中概率论可用以提高 信号的抗干扰性、分辨率等等.
2. 随机事件及其概率 2.1 随机事件
自然界所观察到的现象: 确定性现象 随机现象
例如 只包含两个样本点的样本空间
{H , T}
它既可以作为抛掷硬币出现正面或出现反面的 模型 , 也可以作为产品检验中合格与不合格的 模型 , 又能用于排队现象中有人排队与无人排 队的模型等.
在具体问题的 研究中 , 描述随机 现象的第一步就是 建立样本空间.
2 .2 随机事件
(1) 基本概念
(1) 确定性现象(必然现象)
在一定条件下必然发生 的现象称为确定性现象.
实例
“太阳不会从西边升起”,
“水从高处流向低处”,
确定性现象的特征
条件完全决定结果
(2) 随机现象(偶然现象)
在一定条件下可能出现也可能不出现的现 象 即在相同条件下重复进行试验,每次结果 实未必例相1同在相同条件下掷一枚均匀的硬币,观察 正反两面出现的情况.
1657年Huygens(惠更斯,荷)发表的《论赌博中的计 算》是最早的概率论著作,论著中第一批概率论概念( 如数学期望)与定理(如概率加法、乘法定理)标志着 概率论的诞生。
18世纪初,Bernoulli(伯努利,法)、De. Moivre (棣 莫费,法)、蒲丰、 Laplace(拉普拉斯,法) 、Gauss(高斯, 德)和泊松等一批数学家对概率论作了的奠基性的贡献。
相关文档
最新文档