三重积分柱坐标与极坐标ppt课件
合集下载
课件:9.3三重积分

4) 根据2) 3)写出的积分限.
注 : xoy面上g j (x, y) 0( j 1,2,, s)的各截痕所围区域 若为闭区域,则不需要考虑Fi (x , y, 0) 0(i 1,2)各截痕.
2. 由曲面Fi (x, y, z) 0(i 1,2)所围
1). 作出F1(x, y, z) 0 的交线在xoy面上的投影L. F2 (x, y, z) 0
2) 确定Dxy :由L所围.
3) 确定z的上下限: 从Fi (x, y, z) 0(i 1,2)中解出 z fi (x, y)(i 1,2), 在Dxy中比较fi (x, y)(i 1,2)的
大小, 大的即为上限, 小的即为下限. 4) 根据2) 3)写出的积分限.
例 4 化三重积分 I f ( x, y, z)dxdydz为三
i1
f
(xi , yi , zi )Vi
其中 “ ” 称为三重积分号, 称为积分区域, f (x, y, z) 称为被积函数, dv称为体积元素, 直角坐标系下三重积分也
记为 f (x, y, z)dxdydz.
三重积分的性质与二重积分性质完全类似,
比如若 f (x, y, z)在上连续, 则 f (x, y, z)在上
含有x2+y2,则可考虑用
2
或z 1 r 2
柱面坐标积分.
2
o
y
令x=rcos, y=rsin, z=z,
则z 2, z 1 (x2 y2 )
x x2+y2=4 或 r=2
2
的柱面坐标方程分别为z 2, z 1 r 2 ,
且
1 r 2 z 2, 0 r 2,
2
0 2.
2
(x2 y2)dxdydz
注 : xoy面上g j (x, y) 0( j 1,2,, s)的各截痕所围区域 若为闭区域,则不需要考虑Fi (x , y, 0) 0(i 1,2)各截痕.
2. 由曲面Fi (x, y, z) 0(i 1,2)所围
1). 作出F1(x, y, z) 0 的交线在xoy面上的投影L. F2 (x, y, z) 0
2) 确定Dxy :由L所围.
3) 确定z的上下限: 从Fi (x, y, z) 0(i 1,2)中解出 z fi (x, y)(i 1,2), 在Dxy中比较fi (x, y)(i 1,2)的
大小, 大的即为上限, 小的即为下限. 4) 根据2) 3)写出的积分限.
例 4 化三重积分 I f ( x, y, z)dxdydz为三
i1
f
(xi , yi , zi )Vi
其中 “ ” 称为三重积分号, 称为积分区域, f (x, y, z) 称为被积函数, dv称为体积元素, 直角坐标系下三重积分也
记为 f (x, y, z)dxdydz.
三重积分的性质与二重积分性质完全类似,
比如若 f (x, y, z)在上连续, 则 f (x, y, z)在上
含有x2+y2,则可考虑用
2
或z 1 r 2
柱面坐标积分.
2
o
y
令x=rcos, y=rsin, z=z,
则z 2, z 1 (x2 y2 )
x x2+y2=4 或 r=2
2
的柱面坐标方程分别为z 2, z 1 r 2 ,
且
1 r 2 z 2, 0 r 2,
2
0 2.
2
(x2 y2)dxdydz
微积分:利用柱坐标计算三重积分

a Dxy
r
,
cos
x
o
y
z x2 y2
I
4
a
2 4 cos
d d r 2 sin2 r 2 sin dr
x r sin cos
y
r
sin
sin
z r cos
00 0
dv r2 sin drdd
I ( x2 y2 )dxdydz
2
a
d 4 d cos r 2 sin2 r 2 sin dr
2
2
dz d
ze z2 rdr
1
0 0r
2 2 ez2 zdz (e4 e). 1
z
z2
z x2 y2
z1
O
y
x
y Dz
x
x2 y2 z2
计算(x y z)2dv,
其中是抛物面 z
x2
y2和 球 面x2
y2
z
z2
2
所围成的空间闭区域.
解 ( x y z)2 x2 y2 z2 2( xy yz zx)
且 当( x, y) Dxy时, x2 y2 z 2 x2 y2 ,
Dxy : x2 y2 1,
y Dxy
x
x2 y2 z 2 x2 y2,
x2 y2 1
2 x2 y2
V 1 dv dxdy
1 dz
x2 y2
Dxy
(2 2 x 2 2 y 2 )dxdy
Dxy
2
2
d
1 (1 r 2 )rdr
0
0
0
0
t (0, )
0 r t
所以,F (t)在(0, )内 单调增加.
高等数学《三重积分》课件

3
注: 1.可积性: f 连续 可积
2.物理意义
如果f(x,y,z)表示某物体在点(x,y,z)处的体密度,Ω 是该物体所占的空间闭区域,f(x,y,z)在Ω上连续, 则
物体的质量 M f ( x, y, z)dv 3.几何意义
的体积 V dxdydz
4.性质 同二重积分 4
8.3.2、直角坐标系下的三重积分的计算法
f (z, x,
y)]dV
若为球面x 2 y 2 z 2 R2所围,则
x 2dV
y 2dV
z2dV
1 3
[ x 2
y2
z 2 ]dV
13
例 3 利用对称性简化计算
z ln( x2 y2 z2 1)
x2 y2 z2 1 dxdydz 其中积分区域 {(x, y, z) | x2 y2 z2 1}.
其中A(z)是Dz的面积
习题8.3.1
20
o
y
或D(z),即
x
{( x, y, z)( x, y) Dz ,c1 z c2}
f ( x, y, z)dv c2 dz f ( x, y, z)dxdy (3)
c1 Dz
15
f (x, y, z)dv c2 dz
z
f ( x, y, z)dxdy
c1
Dz
上式的适用范围:
其中在每vi表个示v第i上i个任小取闭一区点域(,i ,也i表, 示i)它,的作体乘积积。f ( i ,
i,
i)
vi
(i=1,2,…
n
,n)
,
并作和 f (i ,i , i )vi。
如果当各i 1小闭区域直径的最大值 趋于零时
这个和的极限总存在, 则称此极限为函数
计算三重积分详细方法

一般,先对 z 积分,再对 r ,最后对 积分。 6
例1 利用柱面坐标计算三重积分 zdxdyd, z 其中
是由z曲 x2面 y2与平 z面 4所围成的闭
解 (1) 画 图
z
(2) 确定 z,r, 的上下限
44
将 向 xoy 面投影,得
D :x2y24
或
02,
D:
0r2.
o•(r,)
yy
xx
就叫M 点 的柱面坐标. z
规定: 0r,
02 ,
•M (x,y,z)
z . 简单地说,柱面坐标就是
or
y
•
P(r,)
x
xoy 面上的极坐标 + z 坐标
4
如图,三坐标面分别为
r 为常数
为常数
z 为常数
圆柱面; 半平面; 平 面.
柱面坐标与直角坐标的 关系为
x r cos ,
y
r
sin
,
z
z.
z
z
or
y
x
z
M (x ,y,z)
•
o
x
r
y
• P(r,) 5
如图,柱面坐标系中的 体积元素为
d v rdd rd, z
z
rd
dr r dz
于是,
o
y
f(x,y,z)dxdydz
x d
f (r c o ,r ssi,z n )r d dr d . z
再根据 中 z,r, 的关系,化为三次积分。
z
R
任取一 [0,2],过 z
轴作半平面,得
04.
在半平面上,任取一
[0, 4],
x
三重积分ppt课件

M
n
lim
0
f(xi, yi,zi) v i
(xi , yi,zi)
i1
f(x, y,z)dv 精品课件
定义 设函数 f (x,y,z)在有界闭区域Ω上有界,
(1)分割 将Ω为 n 个区域 v1,v2,,vn
(2)近似 (x i,y i,z i) v i( i 1 ,2 ,,n )
(3)求和 (4)取极限
(1)Ω:平行于z轴且穿过区域的直线与区域边界的交点
不多于两个.
zz2(x,y)
zz2(x,y)
zz1(x,y) D (x, y)
z精品z课1件(x,y) D (x, y)
步骤: zz2(x,y)
1、求Ω在xoy面的投影区域D xy ;
2、过(x, y)Dxy做平行与 z轴的
zz1(x,y)
射线 ,确定 z1 (x ,y)zz2(x ,y)
精品课件
y
D (i ,i )
n
Mlim 0
f (i ,i ) i
i1
f(x, y)dxdy
x
D
(3)空间立体:
密度为 f(x,y,z)0, M
(xi , yi,zi)
n
lim
0 i1
f(xi, yi,zi) v i
f(x, y,z)dv 精品课件
(3)空间立体:
密度为 f(x,y,z)0,
第三节 三重积分
一、三重积分的概念与性质
二、三重积分的计算
1、直角坐标(投影法、截面法)
2、柱面坐标
精品课件
3、球面坐标
一、三重积分的概念与性质
讨论密度分布不均匀的物体的质量:
(1)一根细棒 :
三重积分在柱坐标和球坐标系下的计算 ppt课件

zz2(,)
(2)求区域Ω在xoy面的投影Dρθ . (3)定出z的上限和下限.
在Dρθ内作平行于z 轴的直线,
o
穿入区域时, Ω的边界曲面F(ρ,θ,z)=0确定
的z=z1(ρ,θ)为z的下限.
x
穿出区域时, Ω的边界曲面G(ρ,θ,z)=0确定
的z=z2(ρ,θ)为z的下限.
(4)将二重积分化为极坐标系下的累次积分.
2020/12/2
20
三重积分在柱坐标和球坐标系下的计算
一、三重积分在柱坐标系下的计算 二、三重积分在球坐标系下的计算
2020/12/2
21
二、三重积分在球坐标系下的计算
(一)球坐标系 (二)球坐标系的适用条件 (三)三重积分计算公式 (四)化为累次积分的方法
2020/12/2
22
二、三重积分在球坐标系下的计算
2020/12/2
6
一、三重积分在柱坐标系下的计算
(一)柱坐标系 (二)柱坐标系的适用条件 (三)三重积分计算公式 (四)化为累次积分的方法
2020/12/2
7
➢柱坐标系 平面极坐标系添加oz轴得到的空间坐标系
➢柱坐标
设 M (x,y,z) R 3, x , y
,
x, y, z
, , z
2020/12/2
9
一、三重积分在柱坐标系下的计算
(一)柱坐标系 (二)柱坐标系的适用条件 (三)三重积分计算公式 (四)化为累次积分的方法
2020/12/2
10
一般地 在 f (x, y, z)dv中 若
➢Ω在xoy面的投影为圆或圆的一部分 ➢f(x,y,z)中含有 x 2 y 2或 a r c t a n y 的项
极坐标与球面坐标计算三重积分

方向转到有向线段
的角.
OP
这样的三个数r、围为
x
0 r<,0 j <,0q 2.
r j
O
q x
M(x, y, z)
y
y
P
坐标面rr0,jj 0,q q 0的意义: z
j O
q
x
ry
点的直角坐标与球面坐标的关系:
x r sin j cosq ,
一、利用柱面坐标计算三重积分
设M(x, y, z)为空间内一点,则点M与数 r、q 、z相对应, 其中P(r, q )为点M在xOy面上的投影的极坐标.
三个数 r、q 、z 叫做点M 的柱面坐标.
这里规定r、q 、z的变化范围为: 0 r<, 0 q 2 , < z<.
z z
M(x, y, z)
O
2
dq
a
dj
2a cosj r 2 sin jdr
0
0
0
jr
2
a
s in jdj
2a cosj r 2 dr
0
0
a
16a3 a cos3 j sinjdj 30
O
y
4a3 (1 cos4 a) .
x
3
例3 求均匀半球体的重心.
z
解 取半球体的对称轴为 z 轴, 原点取在球心上,又设球半径为a.
坐标面rr0,q q 0,zz0的意义:
x
z
z0
rr0 O
r0 q0
zz0
q q 0 y
直角坐标与柱面坐标的关系:
z
x r cosq ,
y
r
sin
q
,
z z.
利用柱面坐标计算三重积分

`z
z
j r
zdv
dvΒιβλιοθήκη zdvO
dv
a 2 0 2
.
q
x
a y
dv 2 dj dq
2
0
0
2a 3 , r sin jdr 3
a
1 a4 , zdv 2 dj dq r cos j r 2 sin jdr 2 0 0 0 2 4 3a 3a 因此`z .重心为(0,0, ). 8 8
§9.5 利用柱面坐标和球面坐标计算三重积分
一、利用柱面坐标计算三重积分
柱面坐标、 柱面坐标系的坐标面 直角坐标与柱面坐标的关系、柱面坐标系中的体积元素
柱面坐标系中的三重积分
二、利用球面坐标计算三重积分
球面坐标、球面坐标系的坐标面 直角坐标与球面坐标的关系、球面坐标系中的体积元素 球面坐标系中的三重积分
,r sin q ,z) rdrdqdz.
例1 例1 利用柱面坐标计算三重积分 zdxdydz,其中是由曲
面 zx2y2 与平面 z4 所围成的闭区域.
z 4 zx2y2 或 zr2
解 闭区域可表示为:
r 2z4,0r2,0q2. 于是
zdxdydz zrdrdqdz
2 r sin jdrdjdq dq sin j dj r 4 dr a 2 M , 0 0 0 5
4 3
2
3
a
4 3 其中 M a 为球体的质量. 3
一、利用柱面坐标计算三重积分
设M(x, y, z)为空间内一点,则点M与数 r、q 、z相对应, 其中P(r, q )为点M在xOy面上的投影的极坐标. 三个数 r、q 、z 叫做点M 的柱面坐标. z 这里规定r、q 、z的变化范围为: 0 r<, 0 q 2 , < z<. O x r y P(r, q ) y z
z
j r
zdv
dvΒιβλιοθήκη zdvO
dv
a 2 0 2
.
q
x
a y
dv 2 dj dq
2
0
0
2a 3 , r sin jdr 3
a
1 a4 , zdv 2 dj dq r cos j r 2 sin jdr 2 0 0 0 2 4 3a 3a 因此`z .重心为(0,0, ). 8 8
§9.5 利用柱面坐标和球面坐标计算三重积分
一、利用柱面坐标计算三重积分
柱面坐标、 柱面坐标系的坐标面 直角坐标与柱面坐标的关系、柱面坐标系中的体积元素
柱面坐标系中的三重积分
二、利用球面坐标计算三重积分
球面坐标、球面坐标系的坐标面 直角坐标与球面坐标的关系、球面坐标系中的体积元素 球面坐标系中的三重积分
,r sin q ,z) rdrdqdz.
例1 例1 利用柱面坐标计算三重积分 zdxdydz,其中是由曲
面 zx2y2 与平面 z4 所围成的闭区域.
z 4 zx2y2 或 zr2
解 闭区域可表示为:
r 2z4,0r2,0q2. 于是
zdxdydz zrdrdqdz
2 r sin jdrdjdq dq sin j dj r 4 dr a 2 M , 0 0 0 5
4 3
2
3
a
4 3 其中 M a 为球体的质量. 3
一、利用柱面坐标计算三重积分
设M(x, y, z)为空间内一点,则点M与数 r、q 、z相对应, 其中P(r, q )为点M在xOy面上的投影的极坐标. 三个数 r、q 、z 叫做点M 的柱面坐标. z 这里规定r、q 、z的变化范围为: 0 r<, 0 q 2 , < z<. O x r y P(r, q ) y z
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
xO y dv d ddz
适用范围:
1) 积分域表面用柱面坐标表示时方程简单 ;
2) 被积函数用柱面坐标表示时变量互相分离.
9
目录 上页 下页 返回 结束
常见曲面的柱面坐标方程
曲面 半球面
直角坐标方程 z a2 x2 y2
圆锥面
z x2 y2
旋转抛物面 z x2 y2
圆柱面 圆柱面 圆柱面
x2 y2 a2 x2 y2 2ax x2 y2 2ay
积分次序:一般先r后φ再θ.
定限方法:观察、想象.
计算累次积分
注意 对一个变量积分时,将其余变量
视为常数.
2
目录 上页 下页 返回 结束
三重积分的定义和计算
(计算时将三重积分化为三次积分)
在直角坐标系下的体积元素
dv dxdydz
方法1. “先一后二”
dxdy z2 (x,y) f (x, y, z)d z
柱面坐标方程 z a2 r2
zr z r2
ra
r 2a cos r 2asin
10
目录 上页 下页 返回 结束
常见曲面的柱面坐标方程
11
目录 上页 下页 返回 结束
用柱面坐标计算三重积分的一般步骤:次序为:zr
1、将区域往xoy面上投影,确定平面区域D
2、利用公式 x r cos , y r sin , z z.
柱面 与 d;
半平面与 d;
平面z与z dz
在柱面坐标系中体积元素为
d v d dd z
因此
f (x, y, z)dxdydz
z
o
x
dv z dz
z
y
d
d
d d dz
d d d
当积分域的投影域D为与圆域有关的区域时,
一般选用柱面坐标,此时曲面应表示为z z(r, ).
8
目录 上页 下页 返回 结束
z
d v d dd z
z
因此 f (x, y, z)dxdydz
d d dz
dz
O
y
其中
F(, , z) f ( cos , sin , z )
x d
d
d d d
利用柱坐标计算三重积分的步骤
考虑是否用柱坐标计算
Ω的投影为圆或圆的一部分 f(x,y,z)中含有x2 y2或arctan y
x
f ( x, y, z)dxdydz
三 变
积分区域 Ω
化为柱坐标系下 三重积分
、 被积函数f (x, y, z)
一 勿
体积元素 dxdydz
忘 一个勿忘
柱坐标表示 f ( cos, sin, z) d d dz
D
z1 ( x, y )
O
Dxy
y
x
如果积分区域 在坐标面上的投影区域 D 是圆域
则二重积分应当考虑用极坐标计算.
这就等于用柱面坐标计算三重积分.
6
目录 上页 下页 返回 结束
设 M (x, y, z) R3,将x, y用极坐标, 代替, 则(, , z)
就称为点M 的柱坐标. 直角坐标与柱面坐标的关系:
将的边界曲面、被积函数 f(x,y,z)、体积元
素、三重积分化为柱面坐标系下形式;
3、过D内任一点(x,y)做平行于z 轴的直线,穿区 域确定z的上下限;
4、在 D上分别确定r、上下限(类同于平面极坐标)
柱面坐标常用于:圆柱体和圆锥体上的三重积分。
12
目录 上页 下页 返回 结束
例1. 计算三重积分
x cos y sin
zz
坐标面分别为
0 0 2π
z
z z
M (x, y, z)
常数 常数
z 常数
圆柱面 半平面 平面
O
y
x
(x,
y,0)
7
目录 上页 下页 返回 结束
元素区域由六个坐标面围成
D
z1(x, y)
方法2. “先二后一”
b
a d zDZ f (x, y, z)dxdy
3
目录 上页 下页 返回 结束
先一后二”积分法的基本步骤:
z
1. 把Ω往xoy平面上投影,得积分区域D;
2. 确定上下曲面函数,得 z的积分限;
3. 4.
先求关于z的定积分,得x,y的二元函数;
再求关于x,y的二重积分.
化为累次积分
f ( cos , sin , z)dddz
积分次序:一般先z后ρ再θ
定限方法:投影、发射
计算累次积分
注意 对一个变量积分时,将其余变量
视为常数
1
目录 上页 下页 返回 结束
利用球坐标计算三重积分的步骤
考虑是否用球坐标计算
Ω的球或球的一部分 f(x,y,z)中含有x2 y2 z2
其中 由抛物面
z x2 y2 与平面 z 4 所围成 .
解: 在xOy面上的投影区域D:
z
上边界曲面为z 4 下边界曲面为z .
4
在柱面坐标系下
64 .
3
原式 =
2π
d
0
2
d
0
4
zd z
2
2 π 1 2 (16 2 )d 20
f ( x, y, z)dxdydz
三 变
积分区域 Ω
化为球坐标系下 三重积分
、 被积函数f (x, y, z)
一 勿
体积元素 dxdydz
忘 一个勿忘 r2 sin
球坐标表示 F (r,, ) r2 sindrdd
化为累次积分
f (r sin sin , r sin cos , r cos )r2 sindrdd
z
O x
Dxy
y
“先二后一”积分法的基本步骤: b
1. 把Ω向z轴投影,得z的积分限[a,b];
z Dz
2. 对z∈[a,b]用过点(0,0,z)且平行
a
xOy平面的平面去截Ω ,得截面Dz; x
y
3. 先求关于x,y的二重积分,得F(z) f (x, y, z)dxdy
4. 最后计算单积分
b
F (z)dz
a
Dz
4
目录 上页下页 返回 结束
三重积分
一、三重积分的概念 二、三重积分的计算
第十章
5
目录 上页 下页 返回 结束
2. 利用柱坐标计算三重积分
z
回忆用投影法(先一后二)计算三重积分
f (x, y, z)dV dxdy z2 (x,y) f (x, y, z)dz