最新工业机器人工作站系统集成技术教学大纲

合集下载

《工业机器人技术》课程教学大纲

《工业机器人技术》课程教学大纲

《工业机器人技术》课程教学大纲课程名称:工业机器人技术英文名称:Industry Robot Technology课程编码:学时/学分:18/1课程性质:选修适用专业:机械设计制造及其自动化先修课程:理论力学,机械原理,机械设计,液压传动,自动控制理论一、课程的目的与任务《工业机器人技术》是一门培养学生具有机器人设计和使用方面基础知识的专业选修课,本课程主要研究机器人的结构设计与基本理论。

通过本课程的学习,可使学生掌握工业机器人基本概念、机器人运动学理论、工业机器人机械系统设计、工业机器人控制等方面的知识。

其主要任务是培养学生:1、掌握工业机器人运动系统设计方法,具有进行总体设计的能力;2、掌握工业机器人整体性能、主要部件性能的分析方法;3、掌握工业机器人常用的控制理论与方法,具有进行工业机器人控制系统设计的能力;4、了解工业机器人的新理论,新方法及发展趋向。

二、教学内容及基本要求第一章绪论教学目的和要求:了解工业机器人的发展及现状,结构原理及应用情况。

教学重点和难点:介绍工业机器人的产生和发展过程,掌握机器人的概念、特点、工业机器人的基本分类、工业机器人的应用、工业机器人的组成以及主要性能参数,工业机器人的手部、腕部、臂部、机座的结构原理和实例。

教学方法与手段:课堂教学第一节机器人的分类第二节工业机器人的应用和发展1.2.1 工业机器人的应用1.2.2 工业机器人的发展第三节工业机器人的基本组成及技术参数1.3.1 工业机器人的基本组成1.3.2 工业机器人的技术参数1.3.3 工业机器人的坐标1.3.4 工业机器人的参考坐标系习题第二章工业机器人机构教学目的和要求:本部分介绍常用机器人机构,要求学生掌握常用机器人机构设计形式。

教学重点和难点:主要介绍机器人末端操作器、手腕、手臂及机器人驱动与传动形式。

教学方法与手段:课堂教学第一节机器人末端操作器2.1.1 夹钳式取料手2.1.2 吸附式取料手2.1.3 专用操作器及转换器2.1.4 仿生多指灵巧手2.1.5 其它手第二节机器人手腕2.2.1 手腕的分类2.2.2 手腕的典型结构2.2.3 柔顺手腕结构第三节机器人手臂第四节机器人机座2.4.1 固定式机器人2.4.2 移动式机器人第五节工业机器人的驱动与传动2.5.1 直线驱动机构2.5.2 旋转驱动机构2.5.3 直线驱动和旋转驱动的选用和制动2.5.4 工业机器人的传动2.5.5 新型的驱动方式2.5.6 驱动传动方式的应用习题第三章机器人运动学教学目的和要求:机器人运动学主要研究两个问题:一个是运动学问题,即给定机器人手臂、腕部等各个构件的几何参数及各个关节变量求机器人手部对参考坐标系的位置和姿态;介绍机器人的微移动和微转动概念、两坐标系间的微分运动关系、变换式(方程)中的微分关系、机器人雅可比矩阵的概念、求法——微分变换法;了解逆雅可比矩阵的概念和求解。

工业机器人课程教学大纲

工业机器人课程教学大纲

工业机器人课程教学大纲《工业机器人》课程教学大纲一(课程的性质与任务课程性质:本课程综合介绍了机器人技术,设计思想和发展趋势主要任务:本课程是要求学生通过学习、课堂教育,能了解机器人发展的最新技术与现状;初步掌握机器人技术的基本知识。

二(课时分配序号课题小计讲课实验机动一绪言 2 2 二机器人学的数学基础 4 4 三机器人运动方程的表示与求解 8 8 四机器人动力学 6 6机器人的控制五 4 4 六机器人学的现状、未来 2 2合计 28 26 2三(课程教学内容第一章绪言简述机器人学的起源与发展,讨论机器人学的定义,分析机器人的特点、结构与分类。

第二章机器人学的数学基础空间任意点的位置和姿态变换、坐标变换、齐次坐标变换、物体的变换和逆变换,以及通用旋转变换等。

第三章机器人运动方程的表示与求解机械手运动姿态、方向角、运动位置和坐标的运动方程以及连杆变换矩阵的表示,欧拉变换、滚-仰-偏变换和球面变换等求解方法,机器人微分运动及其雅可比矩阵等第四章机器人动力学机器人动力学方程、动态特性和静态特性;着重分析机械手动力学方程的两种求法,即拉格朗日功能平衡法和牛顿-欧拉动态平衡法;然后总结出建立拉格朗日方程的步骤第五章机器人的控制机器人控制与规划第六章机器人学的现状、未来包括国内外机器人技术和市场的发展现状和预测、21世纪机器人技术的发展趋势、我国新世纪机器人学的发展战略等。

不同类型机器人的研究发展状况等。

四(教学的基本要求采用启发式教学,培养学生思考问题、分析问题、解决问题的能力;理论以够用为度,且从应用的角度,尽量简化定量分析。

五(建议教材与教学参考书1、机器人学、蔡自兴、清华大学出版社、20002、机器人学导论,约翰J.克雷格、西北工业大学出版社、1987 六(说明1( 本课程的教学原则上须由一定工作经验的讲师及讲师以上的教师担任,以保证理论知识和实践操作技能教学的需要。

2( 本课程适用于高职数控技术应用、机电一体化、机电工程及自动化、机械工程与自动化等专业。

工业机器人 教学大纲

工业机器人 教学大纲

工业机器人教学大纲工业机器人教学大纲引言工业机器人是一种能够自动执行各种任务的机器人系统,它在现代制造业中扮演着重要的角色。

为了培养适应工业机器人应用需求的人才,制定一份全面的工业机器人教学大纲是至关重要的。

本文将探讨工业机器人教学大纲的内容和结构,以及其在培养学生技能和知识方面的重要性。

一、基础知识在工业机器人教学大纲中,首先应包括工业机器人的基础知识。

这包括机器人的定义、分类和应用领域。

学生需要了解机器人的基本构造和工作原理,以及机器人在制造业、物流和医疗等领域的应用。

此外,还应介绍机器人的安全性和维护保养方面的知识,以确保学生能够正确操作和维护机器人系统。

二、编程与控制工业机器人的编程与控制是培养学生技能的关键部分。

教学大纲应包括机器人编程语言的介绍,如G代码和Rapid语言。

学生需要学习如何编写程序,以实现机器人的自动化操作。

此外,还需要教授机器人的运动控制和路径规划技术,使学生能够精确控制机器人的运动轨迹和速度。

三、传感器与视觉系统工业机器人的传感器和视觉系统在实际应用中起着重要的作用。

教学大纲应包括传感器的种类和原理,以及它们在机器人系统中的应用。

学生需要学习如何选择和配置传感器,并利用传感器获取环境信息,实现机器人的自主感知和决策能力。

此外,还应介绍机器人的视觉系统,包括图像处理和目标识别技术,以提高机器人的视觉感知能力。

四、应用案例分析为了帮助学生更好地理解工业机器人的应用,教学大纲应包括一些实际的应用案例分析。

通过分析不同行业中的机器人应用案例,学生可以了解机器人在不同环境下的工作方式和应用效果。

此外,还可以让学生思考机器人在未来的发展趋势和应用前景。

五、实践操作与项目工业机器人的实践操作和项目是培养学生实际操作能力的重要环节。

教学大纲应包括一些实践操作的内容,如机器人系统的组装与调试,以及编写简单程序实现基本操作。

此外,还可以设计一些机器人应用项目,让学生通过实际操作来解决实际问题,提高他们的创新能力和解决问题的能力。

工业机器人教学大纲

工业机器人教学大纲

工业机器人教学大纲工业机器人教学大纲随着科技的不断进步,工业机器人在现代生产中扮演着越来越重要的角色。

工业机器人的应用范围广泛,从汽车制造到电子设备组装,从食品加工到药品生产,都离不开它们的帮助。

然而,要想充分发挥工业机器人的作用,就需要对其进行系统的教学和培训。

本文将探讨工业机器人教学的大纲,以帮助人们更好地理解和使用这一技术。

一、工业机器人的基本原理在开始学习工业机器人之前,首先需要了解它们的基本原理。

工业机器人是由多个部件组成的复杂系统,包括机械结构、电子控制、传感器和软件等。

学习者需要了解机器人的结构和工作原理,以及各个部件之间的协调和配合。

此外,还需要学习机器人的编程语言和编程方法,以便能够对其进行控制和操作。

二、工业机器人的应用领域工业机器人的应用领域非常广泛,不同的行业和工作环境都需要不同类型的机器人。

学习者需要了解各个行业的特点和需求,以便能够根据实际情况选择合适的机器人。

例如,在汽车制造行业,机器人主要用于焊接、喷涂和装配等工作;在电子设备组装行业,机器人主要用于精密组装和测试等工作。

学习者还需要了解机器人在各个行业中的具体应用案例,以便能够更好地理解和应用机器人技术。

三、工业机器人的编程和操作工业机器人的编程和操作是学习的重点内容。

学习者需要学习机器人的编程语言和编程方法,以便能够编写程序来控制机器人的运动和动作。

此外,还需要学习机器人的操作方法和技巧,以便能够熟练地操作机器人进行各种工作。

学习者还需要学习机器人的安全操作规范,以确保机器人的安全运行和人员的安全。

四、工业机器人的维护和保养工业机器人的维护和保养是保证其正常运行和延长使用寿命的关键。

学习者需要学习机器人的日常维护和保养方法,包括清洁、润滑、更换零部件等。

此外,还需要学习机器人的故障排除和维修方法,以便能够及时解决机器人出现的故障和问题。

学习者还需要了解机器人的安全维护规范,以确保机器人的安全运行和人员的安全。

五、工业机器人的发展趋势工业机器人技术在不断发展和演进,学习者需要了解工业机器人的最新发展趋势和应用前景。

工业机器人工作站系统集成与应用教案

工业机器人工作站系统集成与应用教案

工业机器人工作站系统集成与应用教案嘿,今天咱们来唠唠工业机器人工作站系统集成与应用教案这档子事儿。

这听起来是不是有点高大上、让人有点晕乎乎的?别担心,等我给你细细道来。

我曾经去一家汽车制造工厂参观,那可真是让我对工业机器人工作站有了超深刻的认识。

刚进工厂大门,就听到一阵有规律的嗡嗡声和机械运转的声音,仿佛是机器人在集体演奏一首独特的工业交响曲。

我跟着工作人员来到了一个汽车焊接车间,这里就是工业机器人工作站大显身手的地方。

只见一个个高大威猛的工业机器人挥舞着它们的机械臂,那机械臂就像是超级英雄的手臂一样灵活有力。

有个机器人正在进行汽车车身框架的焊接工作,它的焊接枪头闪烁着耀眼的火花,就像一个正在施展魔法的精灵。

旁边有个技术员小李,他正全神贯注地盯着机器人的操作面板,眼睛都不敢多眨一下。

我凑过去问他在看啥呢,他说:“这可不能马虎啊,每一个焊接参数都得精确设置,就像给机器人设定一套完美的舞蹈动作步骤,稍微差一点,这焊接出来的车身可能就不牢固了。

”我看到机器人旁边有一些复杂的传送带和定位装置,这些都是工作站系统集成的一部分。

这些传送带就像一条条高速公路,把需要焊接的汽车部件准确无误地送到机器人面前。

有一次,传送带上的一个传感器好像出了点小故障,结果一个部件的位置稍微偏了那么一点点,机器人的机械臂就有点不知所措了。

这时候,小李和他的团队成员们就像一群急救医生一样,迅速围了过来。

他们拿着各种检测工具,又是测量,又是调试,小李还趴在地上查看传送带下面的线路连接情况。

他那认真的模样,头发都被汗水浸湿了,嘴里还不停地念叨着:“到底是哪里出了问题呢,这小家伙可不能掉链子啊。

”经过一番紧张的排查,原来是一个线路接头松动了,重新接好后,机器人又欢快地工作起来。

在这个工作站里,还有一些安全防护装置。

像那些光幕,只要有人靠近机器人的工作区域,光幕就会感应到,然后机器人就会立马停止工作。

我好奇地试着靠近了一下,机器人果然瞬间就停住了,就像一个听话的孩子。

工业机器人系统集成与应用 - 教案

工业机器人系统集成与应用 - 教案

工业系统集成与应用教案一、引言1.1技术的发展历程1.1.1工业革命对自动化需求的影响1.1.220世纪中叶技术的诞生1.1.3当代工业的多样化和智能化1.1.4工业对现代工业的重要意义1.2工业集成的概念1.2.1集成的基本定义1.2.2工业集成的关键要素1.2.3集成技术在工业自动化中的应用1.2.4集成对提高生产效率和降低成本的作用1.3课程的目的与意义1.3.1培养学生对工业集成的理解1.3.2提升学生的实际操作和问题解决能力1.3.3为学生未来在自动化领域的职业发展打下基础1.3.4强化学生对工业4.0和智能制造的认识二、知识点讲解2.1工业的基本构成2.1.1的机械结构2.1.2控制系统的作用与原理2.1.3传感器在中的应用2.1.4工业的分类和特点2.2工业集成的核心技术2.2.1编程与控制技术2.2.2机器视觉系统的集成与应用2.2.3工业的通信网络2.2.4人机交互界面的发展与重要性2.3工业系统的维护与管理2.3.1系统的日常维护2.3.2常见故障的诊断与处理2.3.3预防性维护策略的制定2.3.4安全标准和操作规程的遵守三、教学内容3.1工业系统的组成3.1.1机械臂的结构与功能3.1.2末端执行器的种类与应用3.1.3驱动系统和执行机构的协调3.1.4控制系统的硬件与软件配置3.2工业编程基础3.2.1编程语言的选择与特点3.2.2基本编程指令的学习与应用3.2.3程序调试与优化技巧3.2.4编程在系统集成中的重要性3.3工业集成案例研究3.3.1案例选择的标准与依据3.3.2集成方案的设计与实施3.3.3集成过程中的问题与解决策略3.3.4集成效果的评估与反馈四、教学目标4.1知识与理论目标4.1.1掌握工业的基本组成和分类4.1.2理解工业集成的基本概念和核心技术4.1.3了解工业系统的维护与管理策略4.1.4认识工业在现代工业中的应用与重要性4.2技能目标4.2.1能够进行简单的工业编程4.2.2能够分析并解决工业集成中的常见问题4.2.3能够参与工业系统的维护与管理4.2.4能够评估工业集成方案的效果4.3态度与价值观目标4.3.1培养对工业技术的好奇心和探究精神4.3.2强化对工业自动化和智能制造的认识和重视4.3.3培养团队合作和问题解决的能力4.3.4强调遵守安全标准和操作规程的重要性五、教学难点与重点5.1教学难点5.1.1工业编程的复杂性和技巧性5.1.2工业集成中的问题分析与解决5.1.3工业系统的维护与管理策略的制定5.1.4工业集成效果的评估与反馈5.2教学重点5.2.1工业的基本组成和分类5.2.2工业集成的基本概念和核心技术5.2.3工业系统的维护与管理策略5.2.4工业在现代工业中的应用与重要性六、教具与学具准备6.1教具准备6.1.1工业模型或实物6.1.2编程软件和控制系统6.1.3多媒体教学设备6.1.4安全防护装备七、教学过程7.1导入新课7.1.1通过视频展示工业在现代工业中的应用场景7.1.2引导学生思考工业集成的重要性7.1.3提出问题,激发学生对本节课的兴趣和好奇心7.1.4阐述本节课的学习目标和内容7.2知识讲解7.2.1详细讲解工业的基本组成和分类7.2.2深入解析工业集成的基本概念和核心技术7.2.3介绍工业系统的维护与管理策略7.2.4通过案例分析,展示工业在现代工业中的应用与重要性7.3实践操作7.3.1指导学生进行工业编程练习7.3.2组织学生进行工业集成实验7.3.3引导学生分析和解决实践中遇到的问题7.3.4鼓励学生进行创新和改进,提高集成效果八、板书设计8.1工业的基本组成和分类8.1.1机械结构8.1.2控制系统8.1.3传感器8.1.4分类和特点8.2工业集成的基本概念和核心技术8.2.1编程与控制技术8.2.2机器视觉系统8.2.3通信网络8.2.4人机交互界面8.3工业系统的维护与管理策略8.3.1日常维护8.3.2故障诊断与处理8.3.3预防性维护8.3.4安全标准和操作规程九、作业设计9.1工业编程练习9.1.1编写简单的运动程序9.1.2调试和优化程序9.1.3实现特定任务的运动控制9.1.4记录编程过程中的问题和解决方法9.2工业集成实验报告9.2.1描述实验目的和内容9.2.2记录实验过程和结果9.2.3分析实验中遇到的问题和解决策略9.2.4提出改进意见和建议9.3工业系统集成方案设计9.3.1选择一个实际应用场景9.3.2设计集成方案9.3.3分析方案的可行性和优化空间9.3.4提交设计方案和说明文档十、课后反思及拓展延伸10.1教学反思10.1.1反思教学过程中的优点和不足10.1.2分析学生的学习情况和反馈意见10.1.3思考如何改进教学方法和提高教学效果10.1.4制定下一步的教学计划和策略10.2拓展延伸10.2.1探索工业在其他领域的应用10.2.2研究工业技术的最新发展和趋势10.2.3学习相关的交叉学科知识,如和机器学习10.2.4鼓励学生参加相关的竞赛和项目,提升实践能力重点和难点解析在工业系统集成与应用的教学过程中,有几个环节需要特别关注,以确保学生能够深入理解并掌握相关知识和技能。

工业机器人系统集成技术 - 教案

工业机器人系统集成技术 - 教案

教案工业系统集成技术教案一、引言1.1工业发展背景1.1.1工业革命与自动化需求的增长1.1.2工业在生产流程中的应用1.1.3工业技术的国际发展趋势1.1.4工业系统集成技术的必要性1.2工业系统集成技术的定义1.2.1集成技术的概念解析1.2.2工业系统集成的关键要素1.2.3系统集成技术在工业中的应用领域1.2.4系统集成技术对工业生产的积极影响1.3教案的目的与意义1.3.1培养学生掌握工业系统集成技术的能力1.3.2提升学生对工业自动化解决方案的理解1.3.3促进学生对工业行业发展趋势的把握1.3.4增强学生的实践操作能力和创新思维二、知识点讲解2.1工业的基本构成2.1.1的机械结构2.1.2控制系统与编程2.1.3传感器与执行器2.1.4人机交互界面2.2工业系统的集成2.2.1系统集成的设计原则2.2.2工业与外部设备的连接2.2.3软件与硬件的集成2.2.4系统的测试与优化2.3工业系统集成技术的应用案例2.3.1汽车制造领域的应用2.3.2电子组装行业的集成解决方案2.3.3物流自动化中的系统集成2.3.4医疗设备中的工业系统集成三、教学内容3.1工业系统集成基础理论3.1.1系统集成的概念与类型3.1.2工业系统的基本组成3.1.3系统集成的设计流程3.1.4系统集成的技术要求与标准3.2工业系统集成技术实践3.2.1编程与操作技能3.2.2系统集成中的故障诊断与维护3.2.3系统的模拟与仿真3.2.4实际案例分析与实践操作3.3工业系统集成技术的未来趋势3.3.1智能化与自适应集成技术3.3.2云计算与大数据在系统集成中的应用3.3.3人机协作集成技术的发展3.3.4系统集成技术在新兴领域的应用四、教学目标4.1知识目标4.1.1理解工业系统集成的基本概念4.1.2掌握工业系统的组成与工作原理4.1.3了解工业系统集成的设计流程与技术要求4.1.4熟悉工业系统集成技术的应用领域4.2技能目标4.2.1具备工业编程与操作的能力4.2.2能够进行系统集成中的故障诊断与维护4.2.3能够运用模拟与仿真技术进行系统集成4.2.4能够分析和解决实际系统集成中的问题4.3情感态度与价值观目标4.3.1培养学生对工业系统集成技术的兴趣与热情4.3.2增强学生的团队合作意识与沟通能力4.3.3培养学生的创新思维与问题解决能力4.3.4增强学生对工业自动化行业发展的认识与责任感五、教学难点与重点5.1教学难点5.1.1工业系统集成的设计原则与方法5.1.2工业与外部设备的连接与通信5.1.3工业系统集成中的故障诊断与维护5.1.4工业系统集成技术的应用案例分析5.2教学重点5.2.1工业系统的基本组成5.2.2工业编程与操作技能5.2.3系统集成中的故障诊断与维护5.2.4实际案例分析与实践操作六、教具与学具准备6.1教具准备6.1.1工业模型或实物6.1.2编程软件与模拟器6.1.3多媒体教学设备6.1.4实验室安全与操作手册6.2学具准备6.2.1笔记本电脑或平板电脑6.2.2学习资料与教材6.2.3编程软件安装包6.2.4实验报告与作业模板6.3教学辅助材料6.3.1工业系统集成技术相关案例研究6.3.2工业系统集成的行业标准与规范6.3.3工业系统集成的最新研究论文与技术动态6.3.4系统集成技术的在线学习资源与论坛七、教学过程7.1导入新课7.1.1引入工业系统集成技术的实际应用案例7.1.2提问与讨论:工业系统集成的优势与挑战7.2知识讲解与演示7.2.1讲解工业系统集成的概念与类型7.2.2演示工业编程与操作的基本步骤7.2.3展示工业系统集成的实际应用案例7.3实践操作与讨论7.3.1学生分组进行编程与操作练习7.3.2学生进行系统集成中的故障诊断与维护7.3.3学生展示实践成果,进行讨论与交流7.4.2反思实践操作中的问题与不足7.4.3提出改进措施与下一步的学习计划八、板书设计8.1知识讲解板书8.1.1工业系统集成技术的概念与类型8.1.2工业系统的基本组成与工作原理8.1.3工业系统集成的设计流程与技术要求8.2实践操作板书8.2.1工业编程与操作的基本步骤8.2.2系统集成中的故障诊断与维护方法8.2.3实际案例分析与实践操作要点8.3.2实践操作中的问题与不足反思8.3.3改进措施与下一步学习计划九、作业设计9.1课后练习题9.1.1工业系统集成技术的概念与类型选择题9.1.2工业系统的基本组成与工作原理填空题9.1.3工业系统集成的设计流程与技术要求问答题9.2实践操作报告9.2.1编写工业编程与操作的实验报告9.2.2分析系统集成中的故障诊断与维护的实验报告9.3拓展阅读与讨论9.3.1阅读工业系统集成技术的相关论文与案例研究9.3.2参与在线论坛讨论,分享工业系统集成的经验与心得9.3.3调研工业系统集成技术在新兴领域的应用与发展趋势十、课后反思及拓展延伸10.1教学反思10.1.1反思教学过程中的优点与不足10.1.2分析学生学习效果与参与度10.1.3提出教学改进措施与方案10.2拓展延伸10.2.1探索工业系统集成技术的最新研究与发展动态10.2.2深入研究工业重点和难点解析一、重点关注环节1.工业系统集成技术的基本概念与类型2.工业系统的基本组成与工作原理3.工业系统集成的设计流程与技术要求4.工业编程与操作技能5.系统集成中的故障诊断与维护6.实际案例分析与实践操作二、详细补充和说明1.工业系统集成技术的基本概念与类型工业系统集成技术是指将不同的、设备、软件和硬件等整合为一个完整的系统,以实现特定的生产或服务目标。

《工业机器人系统集成》课标

《工业机器人系统集成》课标

工业机器人系统集成》课标考查学分总学时348二、课程概述一)课程性质与功能定位本课程是自动控制工程专业的一门专业课程,旨在培养学生掌握工业机器人系统集成的基本理论和技术,具备工业机器人系统集成的能力和实践操作技能。

通过本课程的学习,学生将了解工业机器人系统的工作原理、结构组成和控制方法,能够进行工业机器人系统的设计、调试和维护等工作。

二)课程设计理念与思路本课程采用“理论与实践相结合”的教学模式,注重培养学生的实践能力和创新思维。

通过理论课教学、实验实训和课程设计等多种教学手段,使学生能够全面掌握工业机器人系统集成的基础知识和实践技能,为将来从事自动化控制相关工作打下坚实的基础。

三、课程目标一)总体目标本课程旨在培养学生掌握工业机器人系统集成的基本理论和技术,具备工业机器人系统集成的能力和实践操作技能。

通过本课程的学习,学生将了解工业机器人系统的工作原理、结构组成和控制方法,能够进行工业机器人系统的设计、调试和维护等工作。

二)具体目标1.理解工业机器人系统的工作原理和结构组成;2.掌握工业机器人系统的控制方法和编程技术;3.能够进行工业机器人系统的设计、调试和维护等工作;4.具备工业机器人系统集成的能力和实践操作技能。

四、课程内容标准安排一)学习项目及工作任务1.工业机器人系统的概述和分类;2.工业机器人系统的结构组成和工作原理;3.工业机器人系统的控制方法和编程技术;4.工业机器人系统的设计、调试和维护。

二)工作任务及标准表表2工作任务及标准表工作任务工作标准1.工业机器人系统的概述和分类1.1 理解工业机器人系统的定义和分类;1.2 掌握工业机器人系统的发展历程和应用领域。

2.工业机器人系统的结构组成和工作原理2.1 理解工业机器人系统的结构组成和工作原理;2.2 掌握工业机器人系统的传感器、执行器和控制器等关键技术。

3.工业机器人系统的控制方法和编程技术3.1 理解工业机器人系统的控制方法和编程技术;3.2 掌握工业机器人系统的编程语言和程序设计技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新工业机器人工作站系统集成技术教学大纲工业机器人工作站系统集成技术一、说明1.课程的性质和内容《工业机器人工作站系统集成技术》课程是技师学院工业机器人应用与维护专业的专业课。

主要内容包括:模块一工业机器人码垛工作站系统集成、模块二工业机器人涂胶装配工作站系统集成、模块三工业机器人装配工作站系统集成。

2.课程的任务和要求本课程的主要任务是培养学生熟练操作ABB机器人,能够独立完成机器人的基本操作,能够根据工作任务对ABB机器人进行程序编写,为学生从事专业工作打下必要的专业基础。

(1)通过本课程的学习,学生应该达到以下几个方面的专业基础。

(2)熟悉ABB机器人安全注意事项,掌握示教器的各项操作。

(3)掌握ABB机器人的基本操作,理解系统参数配置;学会手动操纵。

(4)掌握ABB机器人的I/O标准板的配置,学会定义输入、输出信号,了解Profibus适配器的连接。

(5)掌握ABB机器人的各种程序数据类型,熟悉工具数据、工件坐标、有效载荷数据的设定。

(6)掌握RAPID程序及指令,并能对ABB机器人进行编程和调试。

(7)熟悉ABB机器人的硬件连接。

3.教学中应该注意的问题(1)本课程的教学以ABB机器人的应用。

维护为主,注意培养学生对机器人编程和维护的能力。

(2)在本课程的教学中应该注意培养学生的逻辑思维能力。

(3)编程教学时,应让学生重点掌握机器人的数据类型和指令功能。

二、学时分配表三、课程内容及要求教学要求1.了解工业机器人码垛工作站的组成。

2.掌握码垛工作站的机械装配。

3.掌握码垛工作站系统编程。

教学内容任务1 认识码垛工业机器人工作站任务2 筛选皮带机构的组装、接线与调试任务3 立体码垛单元的组装、程序设计与调试任务4 步进升降机构的组装、接线与调试任务5 检测排列单元的程序设计与调试任务6 机器人单元的程序设计与调试任务7 机器人自动换夹具的程序设计与调试任务8 机器人轮胎码垛入仓的程序设计与调试任务9 机器人车窗分拣及码垛程序设计与调试任务10 工作站整机程序设计与调试教学建议本项目的主要教学目标是使学生对码垛工作的有系统认识和形成编程逻辑。

讲授是,注意结合简单的实例阐述本课程的作用,对于理论的知识可以先作简单的介绍,在后面的教学中再进一步深化。

模块二工业机器人涂胶装配工作站系统集成教学要求1.了解工业机器人涂胶工作站的组成。

2.掌握涂胶工作站的机械装配。

3.掌握涂胶工作站系统编程。

教学内容任务1 认识涂装工业机器人任务2 上料涂胶单元的组装、程序设计与调试任务3 多工位旋转工作台的组装、程序设计与调试任务4 机器人单元的程序设计与调试任务5 机器人自动换夹具的程序设计与调试任务6 汽车车窗框架预涂胶的程序设计与调试任务7 机器人拾取车窗并涂胶的程序设计与调试任务8 机器人装配车窗的程序设计与调试任务9 工作站整机程序设计与调试教学建议本项目的主要教学目标是使学生对涂胶工作的有系统认识和形成编程逻辑。

讲授是,注意结合简单的实例阐述本课程的作用,对于理论的知识可以先作简单的介绍,在后面的教学中再进一步深化。

教学要求1.了解工业机器人手机装配工作站的组成。

2.掌握手机装配工作站的机械装配。

3.掌握手机装配工作站系统编程。

教学内容任务1 认识装配工业机器人任务2 上料整列单元的组装、接线与调试任务3 手机加盖单元的组装、程序设计与调试任务4 机器人装配手机按键的程序设计与调试任务5 机器人装配手机盖的程序设计与调试任务6 工作站整机程序设计与调试教学建议本项目的主要教学目标是使学生对手机装配工作的有系统认识和形成编程逻辑。

讲授是,注意结合简单的实例阐述本课程的作用,对于理论的知识可以先作简单的介绍,在后面的教学中再进一步深化。

最新ABB-机器人-RAPID-常用指令详解-中文(1)ABB 机器人RAPID 常用指令详解-中文1.88.MoveAbsJ—把机器人移动到绝对轴位置用途:MoveAbsJ(绝对关节移动)用来把机器人或者外部轴移动到一个绝对位置,该位置在轴定位中定义。

使用实例:终点是一个单一点对于I R6400C 中的不明确的位置,例如携带超过机器人范围的工具运动。

MoveAbsJ 指令中机器人的最终位置,既不受工具或者工作对象的影响,也不受激活程序更换的影响。

但是机器人要用到这些数据来计算负载、TCP 速度和转角点。

相同的工具可以被用在相邻的运动指令中。

机器人和外部轴沿着一个非直线的路径移动到目标位置。

所有轴在同一时间运动到目标位置。

该指令只能被用在主任务T_ROB1 中,或者在多运动系统中的运动任务中。

基本范例:该指令的基本范例说明如下。

也可参看第207 页更多范例。

例1 MoveAbsJ p50, v1000, z50, tool2;机器人将携带工具t ool2 沿着一个非线性路径到绝对轴位置p50,以速度数据v1000 和zone 数据z50。

例2 MoveAbsJ *, v1000\T:=5, fine, grip3;机器人将携带工具grip3 沿着一个非线性路径到一个停止点,该停止点在指令中作为一个绝对轴位置存储(用*标示)。

整个运动需要5秒钟。

项目:MoveAbsJ [\Conc] ToJointPos [\ID] [\NoEOffs] Speed [\V] | [\T] Zone [\Z] [\Inpos]Tool [\Wobj] [\Conc]:并发事件数据类型:switch当机器人正在移动的时候执行的后续指令。

该项目通常不使用,但是当和外部设备通讯、不需要同步的时候可以用来缩短循环周期。

当使用项目\Conc 的时候,连续运动指令的数量限制为5。

在包含S torePath-RestoPath 的程序段中不允许包含项目\Conc 的运动指令。

如果该项目忽略并且T oJointPos 不是一个停止点,在机器人到达程序z one 之前一段时间后续指令就开始执行了。

该项目不能用在多运动系统的坐标同步运动中。

ToJointPos:到达的关节位置。

数据类型:jointtarget机器人和外部轴的绝对目标轴位置。

它被定义为一个命名的位置或者直接存储在指令中(在指令中用*标示)。

[\ID]:同步I D 数据类型:identno 该项目必须使用在多运动系统中,如果并列了同步运动,则不允许在其他任何情况下使用。

指定的I D 号在所有协同的程序任务中必须相同。

该I D 号保证在r outine 中运动不会混乱。

[\NoEOffs]:没有外部偏移量数据类型:switch如果项目\NoEOffs 设为1,MoveAbsJ 运动将不受外部轴的激活偏移量的影响。

Speed:数据类型:speeddata运动所用的速度数据。

速度数据定义了T CP、工具再定位和外部轴的速度。

[\V]:速度数据类型:num该项目用来在指令中直接指定T CP 的速度,单位m m/s,它替代在速度数据中指定的相应的速度。

[\T]:时间数据类型:num该项目用来指定机器人运动的总时间,单位秒。

它替代相应的速度数据。

Zone:数据类型:zonedata运动的z one 数据。

Zone 数据描述了产生的转角路径的大小。

[\z ]:Zone数据类型:num该项目用来在指令中直接指定机器人TCP 的位置精度。

转角路径的长度用毫米给出,替代zone数据中指定的相应数据。

[\Inpos ]:到位数据类型:stoppointdata(停止点数据)改项目用来指定机器人TCP 在停止点位置的收敛性判别标准。

该停止点数据代替在zone 参数中指定的zone。

Tool:数据类型:tooldata 运动过程中所携带的工具。

TCP 的位置和工具的负载在工具数据中定义。

TCP 位置用来计算运动的速度和转角路径。

[\Wobj ]:工作对象数据类型:wobjdata在运动过程中使用的工作对象。

如果机器人抓着工具的时候,该项目可以忽略。

但是,如果机器人抓着工作对象,也就是说工具是静止的,或者带有外部轴,那么该项目必须指定。

在有并列工具或者有并列外部轴的情况下,系统使用该数据计算运动的速度和转角路径,该数据在工作对象中定义。

程序执行:MoveAbsJ 运动不会受激活的程序转移的影响,并且如果使用了可选项目\NoEOffs,将没有外部轴的偏移。

如果不使用\NoEOffs,外部轴的目标位置将会受到激活的外部轴偏移的影响。

工具按照轴角度插补移动到绝对轴目标位置。

这就是说每一个轴都按照固定的速度运动,并且所有轴都在同一时间到达目标位置,这样就形成一个非线性的路径。

总的来说,TCP 大约按照编程的速度运动。

在T CP 运动的同时,工具重新定向,并且外部轴也在运动。

如果重新定向的或者外部轴的程序要求的速度不能达到,TCP 的速度将被减小。

当转换到路径的下一段的时候通常会产生转角路径。

如果停止点在Zone 数据中指定,只有在机器人和外部轴到达合适的轴位置的时候程序才能继续执行。

更多范例:关于如何使用该指令,更多范例说明如下:例1 MoveAbsJ *, v2000\V:=2200, z40 \Z:=45, grip3;Grip3 沿着一个非线性路径运动到一个存储在指令中的一个绝对轴位置。

执行的运动数据为v2000 和z40。

TCP 的速度大小是2200mm/s,zone 的大小是45mm。

例2 MoveAbsJ p5, v2000, fine\Inpos :=inpos50, grip3;Grip3 沿着一个非线性路径运动到绝对轴位置p5。

当停止点fine 的50%的位置条件和50%的速度条件满足的时候,机器人认为它已经到达位置。

它等待条件满足最多等 2 秒。

参看stoppointdata 类型的预定义数据inpos50。

例3 MoveAbsJ \Conc, *, v2000, z40, grip3;Grip3 沿着一个非线性路径运动到一个存储在指令中的一个绝对轴位置。

当机器人运动的时候,也执行了并发的逻辑指令。

例4 MoveAbsJ \Conc, * \NoEOffs, v2000, z40, grip3;和以上的指令相同的运动,但是它不受外部轴的激活的偏移量的影响。

例5 GripLoad obj_mass;MoveAbsJ start, v2000, z40, grip3\Wobj:=obj;机器人把和固定工具grip3 相关的工作对象obj 沿着一个非线性路径移动到绝对轴位置s tart。

限制:为了能够后台运行中包括指令M oveAbsJ,并且避免单一点和模糊区的问题,并发指令满足以下的要求是很必要的(参看下图)下图显示了后台运行MoveAbsJ 指令的一些限制。

语法:MoveAbsJ [‘\’ Conc ‘,’ ] [ ToJointPos’ :=’ ] <关节目标表达式(IN)> [ ‘\’ ID ‘:=’ <identno 类型的表达式(IN)> ] [ ‘\’NoEOffs ] ‘,’[ Speed ‘:=’ ] <speeddata 类型的表达式(IN)> [ ‘\’ V ‘:=’ <num 类型的表达式(IN)> ]| [ ‘\’ T’ :=’ <num 类型的表达式(IN)> ] ‘,’[‘\’ Z ‘:=” ] <num 类型的表达式(IN)>[ ‘\’ Inpos’ :=’ <stoppointdata 类型的表达式(IN)>] ‘,’[Tool ‘:=’ ]<tooldata 类型的恒量(PERS)>[‘\’Wobj’ :=’ wobjdata 类型的恒量(PRS)> ] ‘;’相关信息:1.89.MoveC—让机器人做圆周运动用途:该指令用来让机器人T CP 沿圆周运动到一个给定的目标点。

相关文档
最新文档