北师大版七年级数学下册《6.2 频率的稳定性》教案

合集下载

北师大版数学七年级下册6.2《频率的稳定性》说课稿2

北师大版数学七年级下册6.2《频率的稳定性》说课稿2

北师大版数学七年级下册6.2《频率的稳定性》说课稿2一. 教材分析《频率的稳定性》是北师大版数学七年级下册第6.2节的内容,本节课主要让学生通过大量的实验和数据分析,了解频率的稳定性特点,培养学生运用统计方法处理数据的能力。

教材从生活实例出发,引导学生探究频率与概率之间的关系,进而引导学生认识频率的稳定性。

教材内容由浅入深,循序渐进,符合学生的认知规律。

二. 学情分析学生在学习本节课之前,已经学习了概率的基本概念,对随机事件有一定的认识。

但学生在运用统计方法处理数据方面还较为薄弱,因此,在教学过程中,教师需要关注学生的实际情况,引导学生通过实验、观察、分析等方法,深入理解频率的稳定性特点。

三. 说教学目标1.知识与技能:让学生了解频率的稳定性特点,学会运用统计方法处理数据。

2.过程与方法:培养学生动手实验、观察分析、归纳总结的能力。

3.情感态度与价值观:培养学生对数学的兴趣,增强学生的数据处理能力,提高学生在实际生活中的应用能力。

四. 说教学重难点1.教学重点:让学生通过实验和数据分析,理解频率的稳定性特点。

2.教学难点:如何引导学生运用统计方法处理数据,以及如何让学生理解频率与概率之间的关系。

五. 说教学方法与手段1.教学方法:采用实验教学法、案例教学法、分组讨论法、引导发现法等。

2.教学手段:利用多媒体课件、实验器材、统计图表等辅助教学。

六. 说教学过程1.导入新课:通过生活实例,引导学生思考频率与概率之间的关系。

2.实验探究:让学生分组进行实验,观察并记录实验结果,培养学生动手实验的能力。

3.数据分析:引导学生对实验数据进行处理和分析,归纳总结频率的稳定性特点。

4.知识拓展:通过案例分析,让学生了解频率稳定性在实际生活中的应用。

5.课堂小结:对本节课的内容进行总结,强化学生对频率稳定性的认识。

6.布置作业:让学生运用所学的统计方法处理实际问题,提高学生的应用能力。

七. 说板书设计板书设计要清晰、简洁,突出频率稳定性的核心概念。

2024北师大版数学七年级下册6.2《频率与概率》教学设计

2024北师大版数学七年级下册6.2《频率与概率》教学设计

2024北师大版数学七年级下册6.2《频率与概率》教学设计一. 教材分析《频率与概率》是北师大版数学七年级下册第六章第二节的内容。

本节内容是在学生已经学习了收集数据、整理数据和描述数据的基础上,进一步引导学生理解频率和概率的概念,掌握频率和概率的关系,并能够运用频率和概率解决一些简单的实际问题。

教材通过实例引入频率和概率的概念,引导学生通过实验探究频率和概率的关系,进而掌握概率的求法。

二. 学情分析学生在学习本节内容前,已经掌握了数据收集、整理和描述的基本方法,对数据有一定的认识。

但是,对于频率和概率的概念,学生可能比较陌生,需要通过实例和实验来理解和掌握。

另外,学生可能对概率的求法有一定的困难,需要通过练习和讲解来巩固。

三. 教学目标1.理解频率和概率的概念,掌握频率和概率的关系。

2.能够运用频率和概率解决一些简单的实际问题。

3.能够通过实验探究频率和概率的关系,掌握概率的求法。

四. 教学重难点1.重点:频率和概率的概念,频率和概率的关系。

2.难点:概率的求法,运用频率和概率解决实际问题。

五. 教学方法1.实例引入:通过实例引入频率和概率的概念,让学生直观地理解这两个概念。

2.实验探究:让学生通过实验探究频率和概率的关系,培养学生的实验操作能力和观察能力。

3.练习讲解:通过练习和讲解,让学生掌握频率和概率的求法,提高学生的解题能力。

4.实际应用:让学生运用频率和概率解决实际问题,提高学生的应用能力。

六. 教学准备1.教材和教学参考书。

2.实验器材:如骰子、卡片等。

3.PPT或黑板。

4.练习题。

七. 教学过程1.导入(5分钟)通过一个实例引入频率和概率的概念,如抛硬币实验,让学生直观地理解频率和概率。

2.呈现(10分钟)讲解频率和概率的定义,让学生明确频率和概率的关系。

3.操练(10分钟)让学生进行实验探究,如抛硬币实验,记录实验结果,计算频率和概率,培养学生的实验操作能力和观察能力。

4.巩固(10分钟)讲解频率和概率的求法,让学生通过练习题巩固所学知识。

北师大版数学七年级下册《非等可能事件频率的稳定性》教案

北师大版数学七年级下册《非等可能事件频率的稳定性》教案

北师大版数学七年级下册《非等可能事件频率的稳定性》教案一. 教材分析北师大版数学七年级下册《非等可能事件频率的稳定性》一课,主要让学生理解利用频率估计概率,通过大量实验,总结非等可能事件发生的频率稳定性,为学生提供利用概率解决实际问题的方法。

教材通过生活实例,引导学生发现非等可能事件频率的稳定性,进而引导学生利用这个性质解决实际问题。

二. 学情分析学生在学习本课之前,已经学习了概率的基本概念,如必然事件、不可能事件、随机事件等,对利用频率估计概率有一定的了解。

但学生对非等可能事件频率稳定性的理解还不够深入,需要通过实例让学生感受和理解这个概念。

三. 教学目标1.让学生理解非等可能事件频率的稳定性,学会利用频率估计概率。

2.培养学生解决实际问题的能力,提高学生对概率知识的理解和应用。

3.培养学生合作学习、积极探讨的精神,提高学生的数学素养。

四. 教学重难点1.非等可能事件频率稳定性的理解。

2.如何利用频率估计概率。

五. 教学方法采用探究式教学法、情境教学法和小组合作学习法,引导学生通过实例感受和理解非等可能事件频率的稳定性,培养学生解决实际问题的能力。

六. 教学准备1.准备相关的生活实例,如抽奖活动、投篮等。

2.准备实验材料,如球、卡片等。

3.制作课件,辅助教学。

七. 教学过程1.导入(5分钟)通过一个抽奖活动实例,引导学生关注非等可能事件。

提出问题:“在抽奖活动中,不同奖项的抽取概率是否相等?”让学生思考并回答。

2.呈现(10分钟)呈现几个非等可能事件的实例,如投篮、掷骰子等。

让学生观察并分析这些实例中,事件发生的频率是否稳定。

3.操练(10分钟)分组进行实验,每组选取一个非等可能事件进行观察和记录。

让学生自己发现事件频率的稳定性,并总结规律。

4.巩固(5分钟)让学生举例说明如何利用频率估计概率,教师进行点评和指导。

5.拓展(5分钟)引导学生思考:在实际生活中,如何运用非等可能事件频率的稳定性解决概率问题。

北师大版七年级数学下册课教案附教学反思6.2 频率的稳定性

北师大版七年级数学下册课教案附教学反思6.2 频率的稳定性

2 频率的稳定性【教学目标】1.知识与技能(1)理解概率的定义;(2)理解用统计来估计事件的概率及频率与概率的关系。

2.过程与方法通过对问题的分析,理解用频率来估计概率的方法,渗透转化和估算的思想方法。

3.情感态度和价值观进一步体会数学就在我们身边,发展学生的应用数学能力。

【教学重点】通过对事件发生的频率的分析来估计事件发生的概率【教学难点】理解概率与频率的关系,能够正确计算概率。

【教学方法】自学与小组合作学习相结合的方法。

【课前准备】教学课件、一元硬币若干。

【课时安排】1课时【教学过程】一、情景导入【过渡】上节课的学习中,我们通过掷图钉的小活动,理解了在实验次数很大时,频率趋于稳定的特点。

大家知道频率稳定性最早是由谁提出的吗?课件展示图片。

【过渡】就是由这个人提出的,频率的稳定性是由瑞士数学家雅布·伯努利(1654-1705)最早阐明的,他还提出了由频率可以估计事件发生的可能性大小。

【过渡】那么该如何通过频率估计事件发生的可能性大小呢?今天我们就来学习一下这个问题。

首先,我们同样先进行一个小游戏。

二、新课教学1.概率【过渡】硬币是我们大家经常能看到的,大家有时候也会玩一些抛硬币的游戏,抛掷一枚均匀的硬币,硬币落下后,会出现两种情况:正面朝下和正面朝上。

那大家有没有想过,掷一枚硬币,出现两种情况的可能性谁大谁小呢?现在我们就用刚刚老师发给大家的硬币,进行一下探究吧。

(学生两辆一组进行实验)【过渡】按照课本做一做的内容。

同桌两人做20次掷硬币的游戏,并将记录记载在下表中。

(老师巡视指导)【过渡】我看大家都已经进行完了,现在,我来找两个同学帮忙,像上节课一样,将全班同学的数据统计出来,然后我们汇总入表中。

【过渡】之后,我们画出折线图。

(学生自己根据数据画出折线图)课件展示提前准备好的图。

【过渡】大家看一下,你们手中的图和老师展示的图一样吗?(学生回答)【过渡】观察上面的折线统计图,你发现了什么规律?(学生回答)【过渡】刚刚大家都总结了规律,从图中,我们能够清楚的看出,当试验次数很大时, 正面朝上的频率折线差不多稳定在0.5 水平直线上。

6.2频率的稳定性 教案(表格式)2023-2024学年度北师大版数学七年级下册.doc

6.2频率的稳定性 教案(表格式)2023-2024学年度北师大版数学七年级下册.doc

6.2频率的稳定性活动2:(1)根据分组试验数据,在图1中绘制散点图.(2)表2是历史上部分数学家的试验数据,根据这些数据在图2中绘制散点图.试验者抛掷次数(n)“正面向上”的次数(m)“正面向上”的频率()棣莫弗 2 048 1 0610.518 1布丰 4 040 2 0480.506 9费勒10 000 4 9790.497 9皮尔逊12 000 6 0190.501 6皮尔逊24 000 1 20120.500 5表2提出问题:(1)这两个散点图反映出的规律是否相同?如果不同,为什么?(2)随着抛掷次数的增加,“正面向上”的频率在0.5的左右摆动幅度有何规律?(3)当“正面向上”的频率逐渐稳定到0.5时,“反面向上”的频率呈现什么规律?揭示规律:教师归纳总结:在重复投掷一枚硬币时,“正面向上”的频率在0.5左右摆动,随着投掷次数的增加,一般地,频率呈现出一定的稳定性:在0.5左右摆动的幅度会越来越小.这时我们称“正面向上”的频率稳定于0.5.容易看出,反面向上的频率也稳定于0.5.给出概率的定义:一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记作p(A)= p.提出问题:(1)频率与概率有什么区别与联系;(2)当事件A是必然发生的事件时,P(A)是多少?当事件A是不可能发生的事件时,P(A)是多少?当事件A是随机事件时,P(A)在什么范围?学生思考、讨论、相互交流,教师帮助理解,最后学生代表发言,教师给予适当的鼓励.教师指导1.一般地,频率是随着试验者试验次数的改变而变化的.2.概率是一个客观常数.3.频率是概率的近似值,概率是频率的稳定值.它是频率的科学抽象.当试验次数越来越多时,频率围绕概率摆动的平均幅度越来越小,即频率靠近概率.4.任何事件的发生都可以用概率来描述.其中必然事件的概率为1,不可能事件的概率为0,随机事件的概率大于0而小于1.当堂训练1.下列说法正确的是( )(A)“明天降雨的概率是80%”表示明天有80%的时间降雨(B)“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上(C)“彩票中奖的概率是1%”表示买100张彩票一定会中奖。

七年级数学北师大版下册初一数学--第六单元 6.2《频率的稳定性》第一课时-课件

七年级数学北师大版下册初一数学--第六单元 6.2《频率的稳定性》第一课时-课件
(1)由这张次数和频率表可知,机器人抛掷完5次时, 得到1次正面,正面出现的频率是20%,那么,也 就是说机器人抛掷完5次时,得到___4___次反面, 反面出现的频率是___8_0_%___.
知1-讲
(2)由这张次数和频率表可知,机器人抛掷完9 999次时, 得到__5_0_0_6___次正面,正面出现的频率约是__5_0_.1_%__. 那么,也就是说机器人抛掷完9 999次时,得到_4__9_9_3 次反面,反面出现的频率约是__4_9_.9_%___.
试验总次数 钉尖朝上的次数 钉尖朝下的次数
钉尖朝上的频率
钉尖朝上的次数 试验总次数
钉尖朝下的频率
钉尖朝下的次数 试验总次数
(来自《教材》)
知1-讲
定义:在n次重复试验中,不确定事件A发生了m次,
则比值
m n
称为事件 A发生的频率.
知1-讲
例1 〈长沙〉在一个不透明的盒子中装有n个小球,它们 只有颜色上的区别,其中有2个红球,每次摸球前先 将盒子中的球摇匀,随机摸出一个球记下颜色后再 放回盒中,通过大量重复摸球试验后发现,摸到红 球 的 频 率 稳 定 于 0.2 , 那 么 可 以 推 算 出 n 大 约 是 ___1_0____.
知2-练
3 某人在做掷硬币试验时,投掷m次,正面朝上有n次
(即正面朝上的频率是P=
n m
).
则下列说法中正确的
是( D )
1
A.P一定等于 2 B.P一定不等于
1 2
C.多投一次,P更接近
1 2
D.随投掷次数逐渐增加,P在
1
附近摆动
2
知2-练
4 在一个不透明的盒子里装着若干个白球,小明想估计其中

北师大版数学七年级下册6.2《频率的稳定性》教案

北师大版数学七年级下册6.2《频率的稳定性》教案

北师大版数学七年级下册6.2《频率的稳定性》教案一. 教材分析北师大版数学七年级下册6.2《频率的稳定性》是统计学的一个基本概念。

本节内容通过具体实例让学生了解频率的稳定性,掌握频率稳定性概念,并能够运用频率稳定性分析实际问题。

教材通过生活中的实例,引导学生探究频率的稳定性,培养学生的统计观念和数据分析能力。

二. 学情分析学生在学习本节内容前,已经学习了数据的收集、整理和表示方法,对统计学有了一定的了解。

但学生对频率稳定性的理解可能存在一定的困难,需要通过具体实例和活动让学生感受和理解频率的稳定性。

三. 教学目标1.让学生了解频率的稳定性概念,理解频率稳定性在实际问题中的应用。

2.培养学生收集、整理、分析数据的能力,发展学生的统计观念。

3.培养学生通过实例分析问题、解决问题的能力。

四. 教学重难点1.重点:频率稳定性的概念及其在实际问题中的应用。

2.难点:频率稳定性的理解和运用。

五. 教学方法1.采用问题驱动法,让学生在解决问题的过程中理解频率稳定性。

2.采用实例分析法,通过具体实例让学生感受频率稳定性。

3.采用小组合作学习法,培养学生的团队协作能力。

六. 教学准备1.准备相关的生活实例和数据,用于引导学生探究频率稳定性。

2.准备教学课件,用于辅助教学。

七. 教学过程1.导入(5分钟)教师通过引入生活中的一些实例,如抛硬币、掷骰子等,引导学生思考:在这些实验中,结果出现的频率是否会发生变化?从而引出频率稳定性的概念。

2.呈现(10分钟)教师呈现一些具体实例,如大量抛硬币实验的数据,让学生观察和分析频率的稳定性。

学生通过观察数据,发现频率在大量实验中趋近于一个稳定的值。

3.操练(10分钟)教师学生进行小组合作学习,让学生自己设计实验,收集数据,分析频率的稳定性。

学生通过自主探究,加深对频率稳定性的理解。

4.巩固(10分钟)教师提出一些问题,让学生回答,以巩固对频率稳定性的理解。

如:频率稳定性是什么意思?为什么频率会趋近于一个稳定的值?频率稳定性在实际问题中的应用等。

北师大版七下《6.2 频率的稳定性》课件4

北师大版七下《6.2 频率的稳定性》课件4

问题1:为了使估计结果较为准确,应该注意些什
么?
1、实验中,每次要摇匀棋子,不要主观的去拿棋子,要客观地 抽取.
2、在条件允许的情况下,进行更多次的抽取.
3、每次摸出球后都要放回去.
问题2:上述两种方法各有那些优缺点?
一次抽取一个的方法更准确. 一次抽取多个的方法更具有实际 可操作性.
如果箱子中只有若干个白球,没有其他颜 色的球,而且不许将球倒出来数,那么你如 何估计出白球的数目? 可以向箱子中另放几个黑球, 也可以从箱子中抽出几个球,并 将它们染成黑色或做上标记.
1、往一个装了很多黑球的袋子里放入10个白球, 每次倒出5个,记下所倒出的白球的数目,再把它 们放回去,共倒了120次,倒出白球共180个,袋 子里原有黑球约多少个? 2、小明是养鸭专业户,有一天小亮到他家去玩, 看到他家门前的水库里黑压压的一片鸭群,他先捕 了100只做上标志,然后放回水库,经过一段时间, 第二次捕了100只,其中带标记的鸭子有2只,小亮 很快估计出小明家有多少只鸭子?
你认办他的做法正确吗?独立思考,说明理由.
8 57 8 x 200
小亮的做法:
利用抽样调查方法,从口袋中一次摸出10个 球,求出黑球数与10的比值,再把球放回袋中.不 断重复上述过程,共摸了20次,黑球数与10的比 值的平均数为0.26,因此估计口袋中大约有24个 白球.
你认办他的做法正确吗?独立思考,说明理由.
6.2 频率的稳定性
独立思考,交流回答,说明理由.
在一所有2000名师生的学校随机调查了100 人,其中有80人上学前吃了早餐.在这所学 校里随便问一个人,上学前吃过早餐的概 率大约是( )
情境引入:
1、要知道一个鱼缸里有多少条鱼? 该怎么办呢? 只要数一数就可以了. 2、但要估计一个鱼塘里有多少条鱼? 该怎么办呢?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.2频率的稳定性
1.理解频率和概率的意义;
2.了解频率与概率的关系,能够用频率估计某一事件的概率.(重点,难点)
一、情境导入
养鱼专业户为了估计他承包的鱼塘里有多少条鱼(假设这个鱼塘里养的是同一种鱼),先捕上100条做上标记,然后放回塘里,过了一段时间,待带标记的鱼完全和塘里的鱼混合后,再捕上100条,发现其中带标记的鱼有10条,塘里大约有鱼多少条?
二、合作探究
探究点一:频率的稳定性
在一个不透明的布袋中装有红色、白色玻璃球共60个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在25%左右,则口袋中红色球可能有()
A.5个B.10个C.15个D.45个
解析:∵摸到红色球的频率稳定在25%左右,∴口袋中红色球的频率为25%,故红球的个数为60×25%=15(个).故选C.
方法总结:频率在一定程度上可以反映随机事件发生的可能性的大小,在大量重复试验的条件下才可以近似地作为这个事件的概率.解题时由“频数=数据总数×频率”计算即可.探究点二:用频率估计概率
【类型一】用频率估计概率
为了看图钉落地后钉尖着地的概率有多大,小明做了大量重复试验,发现钉尖着地的次数是实验总次数的40%,下列说法错误的是()
A.钉尖着地的频率是0.4
B.随着试验次数的增加,钉尖着地的频率稳定在0.4附近
C.钉尖着地的概率约为0.4
D.前20次试验结束后,钉尖着地的次数一定是8次
解析:A.钉尖着地的频率是0.4,故此选项说法正确;B.随着试验次数的增加,钉尖着地的频率稳定在0.4,故此选项说法正确;C.∵钉尖着地的频率是0.4,∴钉尖着地的概率大约是0.4,故此选项说法正确;D.前20次试验结束后,钉尖着地的次数应该在8次左右,故此选项说法错误.故选D.
【类型二】利用频率估计球的个数
王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行
):
________;
(2)估算袋中白球的个数.
解析:(1)用大量重复试验中事件发生的频率稳定到某个常数来表示该事件发生的概率即可;(2)根据概率公式列出方程求解即可.
解:(1)251÷1000≈0.25.∵大量重复试验事件发生的频率逐渐稳定到0.25附近,∴估计从袋中摸出一个球是黑球的概率是0.25;
(2)设袋中白球为x 个,
1
1+x
=0.25,x =3. 答:估计袋中有3个白球.
方法总结:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m
n
.
【类型三】 利用频率折线图估计概率
一粒木质中国象棋棋子“車”,它的正面雕刻一个“車”字,它的反面是平的,
将棋子从一定高度下抛,落地反弹后可能是“車”字面朝上,也可能是“車”字朝下.由于棋子的两面不均匀,为了估计“車”字朝上的机会,某实验小组做了棋子下抛实验,并把实频率
(1)请将表中数据补充完整,并画出折线统计图中剩余部分;
(2)如果实验继续进行下去,根据上表数据,这个实验的频率将接近于该事件发生的概率,请估计这个概率约是多少?
解析:(1)根据表中信息,用频数除以实验次数,得到频率,由于试验次数较多,可以用频率估计概率.描点连线,可得折线图;(2)根据表中数据,试验频率为0.70,0.45,0.63,0.59,0.52,0.55,0.56,0.55稳定在0.55左右,即可估计概率的大小.
解:(1)120×0.55=66,88÷160=0.55,故所填数字为66,0.55;补全折线图如下;
(2)如果实验继续进行下去,根据上表数据,这个实验的频率将接近于该事件发生的概率,这个概率约是0.55.
方法总结:用频率估计概率时,一般观察所计算的各频率数值的变化趋势,即观察各数值主要接近在哪个数附近,这个常数就是所求概率的估计值.
【类型四】 利用概率解决实际问题
(1)(2)这批篮球优等品的概率估计值是多少? 解析:(1)根据表中信息,用优等品频数m 除以抽取的篮球数n 即可;(2)根据表中数据,优等品频率为0.94,0.95,0.93,0.94,0.94,稳定在0.94左右,即可估计这批篮球优等品的概率.
解:(1)570600=0.95,744800=0.93,9401000=0.94,11281200=0.94,故表中依次填0.95,0.93,0.94,
0.94; (2)这批篮球优等品的概率估计值是0.94. 三、板书设计
1.频率及其稳定性:
在大量重复试验的情况下,事件的频率会呈现稳定性,即频率会在一个常数附近摆动.随着试验次数的增加,摆动的幅度有越来越小的趋势.
2.用频率估计概率:
一般地,在大量重复实验下,随机事件A 发生的频率会稳定到某一个常数p ,于是,我们用p 这个常数表示随机事件A 发生的概率,即P (A )=p .
教学过程中,学生通过对比频率与概率的区别,体会到两者间的联系,从而运用其解决实际生活中遇到的问题,使学生感受到数学与生活的紧密联系。

相关文档
最新文档