一元一次方程知识点总结
简易方程公式知识点总结

简易方程公式知识点总结一、一元一次方程1. 一元一次方程的定义:一元一次方程是指只含有一个未知数的一次方程。
一般地,一元一次方程可以用ax+b=0(a≠0)来表示,其中a和b是已知数,x是未知数。
2. 方程的解:方程ax+b=0的解即为x=-b/a。
其中,如果a=0且b≠0,那么方程无解;如果a=0且b=0,那么方程有无数解。
3. 解方程的方法:解一元一次方程可以通过如下几种方法:a. 移项法:将未知数的项移到等式的一边,其他项移到另一边。
b. 相消法:通过相等的两边增加或减少同一个量,使得方程两边的某个项相消掉。
c. 等价变形法:通过等式的加减乘除变形,使得方程的解变得更明显。
4. 例题:解方程3x+5=2x-7解:将未知数项移到左边去,得到3x-2x=-7-5,即x=-12。
二、一元二次方程1. 一元二次方程的定义:一元二次方程是指含有一个未知数的二次方程。
一般地,一元二次方程可以用ax^2+bx+c=0(a≠0)来表示,其中a、b和c是已知数,x是未知数。
2. 方程的解:一元二次方程的解可以用求根公式来表示,即x=[-b±√(b^2-4ac)]/(2a)。
其中,当Δ=b^2-4ac>0时,方程有两个不相等的实根;当Δ=0时,方程有两个相等的实根;当Δ<0时,方程没有实根。
3. 方程的图像:一元二次方程的图像是一个开口朝上或开口朝下的抛物线,其顶点坐标为(-b/2a,-Δ/4a)。
4. 例题:解方程x^2-5x+6=0解:根据求根公式,Δ=5^2-4*1*6=1,因此方程有两个不相等的实根,即x=[5±√1]/2=3或2。
三、一元三次方程1. 一元三次方程的定义:一元三次方程是指含有一个未知数的三次方程。
一般地,一元三次方程可以用ax^3+bx^2+cx+d=0(a≠0)来表示,其中a、b、c和d是已知数,x是未知数。
2. 方程的解:一般地,一元三次方程没有通用的求解公式,而是需要通过因式分解、配方法、换元等多种方法来求解。
高中数学方程的知识点总结

高中数学方程的知识点总结一、一元一次方程一元一次方程是高中数学中首先接触到的一种方程类型,也是最基础的方程类型之一。
一元一次方程的一般形式为ax+b=0,其中a和b为已知数,x为未知数。
解一元一次方程的基本方法是化简、变形,通过加减或乘除等运算得到方程的解。
1. 一元一次方程的解法(1)加减法,将方程化简成形如x=c的形式,即可求得x的值。
(2)代入法,将已知条件代入方程中,求出未知数的值。
(3)变形法,通过变形方程的形式或者将未知数移到方程的一侧,使方程等号两边相等,从而求得未知数的值。
(4)克莱姆法则,利用克莱姆法则可以得到一元一次方程的解,该方法通常适用于二元一次方程组求解。
2. 一元一次方程的应用(1)线性规划问题,通过建立一元一次方程模型,可以求解实际生活中的最优化问题。
(2)物品价格、消费等问题,通过一元一次方程可以解决生活中的购物、消费等实际问题。
二、一元二次方程一元二次方程是高中数学中比较重要的方程类型之一,一般形式为ax^2+bx+c=0,其中a、b、c为已知数,x为未知数。
一元二次方程的求解需要利用一元二次方程的求根公式或者配方法等方法。
1. 一元二次方程的求根(1)求根公式,即利用一元二次方程的一般形式ax^2+bx+c=0,通过求解二次方程的根公式x=\frac{-b±\sqrt{b^2-4ac}}{2a},得到方程的解。
(2)配方法,将一元二次方程利用配方法化为全平方或者差平方的形式,然后根据公式求解方程。
2. 一元二次方程的图像一元二次方程在平面直角坐标系中表示为一个抛物线的图像,通过方程的系数可以看出抛物线的开口方向、开口大小等特征。
3. 一元二次方程的应用(1)物理问题,通过一元二次方程可以解决流体力学、电磁学等领域的问题。
(2)几何问题,一元二次方程可以求解几何问题中的距离、面积等问题。
三、高次方程高次方程是指次数大于二的方程,一般形式为a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0=0。
一元一次方程(知识点完整版)

第三章:一元一次方程本章板块⎪⎪⎪⎩⎪⎪⎪⎨⎧程实际问题与一元一次方方程的解解方程等式的基本性质定义一元一次方程.5.4.3.2.1 知识梳理【知识点一:方程的定义】方程:含有未知数的等式就叫做方程.注意未知数的理解,n m x ,,等,都可以作为未知数。
题型:判断给出的代数式、等式是否为方程 方法:定义法例1、判定下列式子中,哪些是方程?(1)4=+y x (2)2>x (3)642=+(4)92=x (5)211=x【知识点二:一元一次方程的定义】一元一次方程:①只含有一个未知数(元);②并且未知数的次数都是1(次); ③这样的整式方程叫做一元一次方程。
题型一:判断给出的代数式、等式是否为一元一次方程 方法:定义法例2、判定下列哪些是一元一次方程?0)(22=+-x x x ,712=+x π,0=x ,1=+y x ,31=+xx ,x x 3+,3=a题型二:形如一元一次方程,求参数的值方法:2x 的系数为0;x 的次数等于1;x 的系数不能为0. 例3、如果()051=+-mx m 是关于x 的一元一次方程,求m 的值例4、若方程()05122=+--ax x a 是关于x 的一元一次方程,求a 的值【知识点三:等式的基本性质】等式的性质1:等式两边都加上(或减去)同个数(或式子),结果仍相等.即:若a=b ,则a ±c=b ±c等式的性质2:等式两边同时乘以同一个数,或除以同一个不为0的数,结果仍相等.即:若b a =,则bc ac =;若b a =,0≠c 且cb c a = 例5、运用等式性质进行的变形,不正确的是( )A 、如果a=b,那么a —c=b-cB 、如果a=b,那么a+c=b+cC 、如果a=b ,那么cbc a = D 、如果a=b,那么ac=bc 【知识点四:解方程】方程的一般式是:()00≠=+a b ax 题型一:不含参数,求一元一次方程的解例7、解方程284=-练习1、()()()35123452+--=-+-x x x x练习2、14.01.05.06.01.02.0=+--x x 练习3、x =+⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+221413223题型二:解方程的题中,有相同的含x 的代数式方法:利用整体思想解方程,将相同的代数式用另一个字母来表示,从而先将方程化简,并求值。
解方程知识点总结

解方程知识点总结一、方程的基本概念1. 方程的定义方程是表示两个数或者量相等的数学式子,其中包含一个或多个未知数。
方程主要用来解决“未知数”的问题。
2. 方程的解方程的解是使方程两边相等的数值或变量的集合。
解方程的过程就是寻找方程的解的过程。
3. 方程的根方程的解还可以称为方程的根,如果一个方程有解,那么就称该方程有根。
二、一元一次方程1. 一元一次方程的定义一元一次方程简单地说就是一个未知数与一个常数的乘积等于另一个常数。
2. 一元一次方程的解法解一元一次方程的方法有直接开平方、因式分解、配方法、代数法等。
其中代数法是最常用的一种方法。
3. 一元一次方程的应用一元一次方程在实际生活中有很多应用,比如用代数法解决物价问题、时间问题、速度问题等。
三、一元二次方程1. 一元二次方程的定义一元二次方程是二次项最高次数为1的方程,包含一个未知数和它的二次幂,最高次数为2。
2. 一元二次方程的解法解一元二次方程的方法主要有配方法、公式法、因式分解等。
公式法是最常用的一种方法。
3. 一元二次方程的应用一元二次方程在实际生活中也有很多应用,比如用公式法解决抛物线问题、悬链线问题等。
四、多项式方程1. 多项式方程的定义多项式方程是指含有未知数的单项式相加或相减所得到的方程。
2. 多项式方程的解法解多项式方程的方法主要有因式分解、辗转相除法、通解法等。
因式分解是最常用的一种方法。
3. 多项式方程的应用多项式方程在实际生活中也有很多应用,比如用因式分解解决整数分解问题、因数分解问题等。
五、分式方程1. 分式方程的定义分式方程就是含有未知数的分式式子相等的方程。
2. 分式方程的解法解分式方程的方法主要有通分法、消元法、合并同类项法等。
通分法是最常用的一种方法。
3. 分式方程的应用分式方程在实际生活中也有很多应用,比如用通分法解决分数加减问题、合并同类项解决分子有两项的分式问题等。
解方程是数学中很重要的一个知识点,它不仅是其他数学知识的基础,也常常在实际生活中应用。
一次方程与方程组知识点总结归纳

一次方程与方程组知识点总结归纳一、一元一次方程。
1. 定义。
- 只含有一个未知数(元),未知数的次数都是1,等号两边都是整式的方程叫做一元一次方程。
- 一般形式:ax + b=0(a≠0),其中a是未知数x的系数,b是常数项。
例如2x + 3 = 0就是一元一次方程。
2. 方程的解。
- 使方程左右两边相等的未知数的值叫做方程的解。
例如x = - (3)/(2)是方程2x+3 = 0的解。
3. 等式的性质。
- 性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果a=b,那么a±c = b±c。
- 性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
如果a = b,那么ac=bc;如果a=b(c≠0),那么(a)/(c)=(b)/(c)。
- 利用等式的性质可以求解一元一次方程,例如解方程2x+3 = 0,首先根据等式性质1,两边同时减3得2x=-3,再根据性质2,两边同时除以2得x = - (3)/(2)。
4. 一元一次方程的解法步骤。
- 去分母(若方程中存在分母时):根据等式性质2,在方程两边同时乘以各分母的最小公倍数,将分母去掉。
例如方程(x + 1)/(2)+(x - 1)/(3)=1,分母2和3的最小公倍数是6,方程两边同时乘以6得3(x + 1)+2(x - 1)=6。
- 去括号:根据乘法分配律将括号去掉。
如3(x + 1)+2(x - 1)=6去括号后变为3x+3 + 2x-2 = 6。
- 移项:把含未知数的项移到方程一边,常数项移到另一边,移项要变号。
例如3x+3 + 2x-2 = 6移项后得3x+2x=6 - 3+2。
- 合并同类项:将方程中同类项合并。
如3x+2x=6 - 3+2合并同类项得5x = 5。
- 系数化为1:根据等式性质2,方程两边同时除以未知数的系数。
如5x = 5两边同时除以5得x = 1。
二、二元一次方程(组)1. 二元一次方程。
一元一次方程知识点总结

牛娃出品、必属精品一元一次方程知识点总结一、等式与方程1.等式:(1)定义:含有等号的式子叫做等式.(2)性质:①等式两边同时加上(或减去)同一个整式,等式不变.若a b=那么a c b c+=+②等式两边同时乘以或除以同一个不为0的整式,等式不变.若a b=那么有ac bc=或a c b c÷=÷(0c≠)③对称性:若a b=,则b a=.④传递性:若a b=,b c=则a c=.(3)拓展:①等式两边取相反数,结果仍相等.如果a b=,那么a b-=-②等式两边不等于0时,两边取倒数,结果仍相等.如果0a b=≠,那么11 a b =③等式的性质是解方程的基础,很多解方程的方法都要运用到等式的性质.如移项,运用了等式的性质①;去分母,运用了等式的性质②.④运用等式的性质,涉及除法运算时,要注意转换后除数不能为0,否则无意义.2.方程:(1)定义:含有未知数的等式叫做方程.(2)说明:①方程中一定有含一个或一个以上未知数,且方程是等式,两者缺一不可.②未知数:通常设x、y、z为未知数,也可以设别的字母,全部小写字母都可以.未知数称为元,有几个未知数就叫几元方程.一道题中设两个方程时,它们的未知数不能一样!③“次”:方程中次的概念和整式的“次”的概念相似.指的是含有未知数的项中,未知数次数最高的项对应的次数,也就是方程的次数.未知数次数最高是几就叫几次方程.④方程有整式方程和分式方程.整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程.分式方程:分母中含有未知数的方程叫做分式方程.牛娃出品、必属精品二、一元一次方程1.一元一次方程的概念:(1)定义:只含有一个未知数(元)且未知数的指数是1(次)的整式方程叫做一元一次方程.(2)一般形式:0ax b+=(a,b为常数,x为未知数,且0a≠).(3)注意:①该方程为整式方程.②该方程有且只含有一个未知数.③该方程中未知数的最高次数是1.④化简后未知数的系数不为0.如:212x x-=,它不是一元一次方程.⑤未知数在分母中时,它的次数不能看成是1次.如13xx+=,它不是一元一次方程.2.一元一次方程的解法:(1)方程的解:能使方程左右两边相等的未知数的值叫做方程的解,一般写作:“?x=”的形式.(2)解方程:求出方程的解的过程,也可以说是求方程中未知数的值的过程,叫解方程.(3)移项:①定义:从方程等号的一边移到等号另一边,这样的变形叫做移项.②说明:Ⅰ移项的标准:看是否跨过等号,跨过“=”号才称为移项;移项一定改变符号,不移项的不变.Ⅱ移项的依据:移项实际上就是对方程两边进行同时加减,根据是等式的性质①.Ⅲ移项的原则:移项时一般把含未知数的项向左移,常数项往右移,使左边对含未知数的项合并,右边对常数项合并,方便求解.(4)解一元一次方程的一般步骤及根据:①去分母——等式的性质②②去括号——分配律③移项——等式的性质①④合并——合并同类项法则⑤系数化为1——等式的性质②⑥检验——把方程的解分别代入方程的左右边看求得的值是否相等(在草纸上)(5)一般方法:①去分母,程两边同时乘各分母的最小公倍数.②去括号,一般先去小括号,再去中括号,最后去大括号.但顺序有时可依据情况而定使计算简便,本质就是根据乘法分配律.③移项,方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了牛娃出品、必属精品要变号.(一般都是把未知数移到一起)④合并同类项,合并的是系数,将原方程化为ax ba≠)的形式.=(0⑤系数化1,两边都乘以未知数的系数的倒数.⑥检验,用代入法,在草稿纸上算.(6)注意:(对于一元一次方程的一般步骤要熟练掌握,更要观察所求方程的形式、特点,灵活变化解题步骤)①分母是小数时,根据分数的基本性质,把分母转化为整数,局部变形;②去分母时,方程两边各项都乘各分母的最小公倍数,Ⅰ此时不含分母的项切勿漏乘,即每一项都要乘Ⅱ分数线相当于括号,去分母后分子各项应加括号(整体思想);③去括号时,不要漏乘括号内的项,不要弄错符号;④移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项;⑤系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号(打草稿认真计算);⑥不要生搬硬套解方程的步骤,具体问题具体分析,找到最佳解法;⑦分数、小数运算时不能嫌麻烦,不要跳步,一步步仔细算.(7)补充:分数的基本性质:与等式基本性质②不同.分数的分子分母两个整体同时乘以同一个不为0的数或除以同一个不为0的数,分数的值不变.3.一元一次方程的应用:(1)解决实际应用题的策略:①审题:就是多读题,读懂题,读的时候一定沉下心去,不能慌不要急躁,要细,一个字一个字的精读,要慢,边读边思考.找到已知条件,未知条件,找到数量关系和等量关系,可以用笔在题目中标注下来重要信息和数量关系,审题往往伴随下个步骤.②设出适当未知数,往往问什么设什么,有时也间接设未知数,然后用未知数通过关系表示出其他相关的量.③找出等量关系,用符号语言表示就是列出方程.(2)分析问题方法:①文字关系分析法,找关键字词句分析实际问题中的数量关系②表格分析法,借助表格分析分析实际问题中的数量关系③示意图分析法,通过画图帮助分析实际问题中的数量关系(3)设未知量方法:一个应用题,往往涉及到几个未知量,为了利用一元一次方程来解应用题,我们总是设其中一个未知量为x,并用这个未知数的代数式去表示其他的未知量,然后列出方程.①设未知量的原则就是设出的量要便于分析问题,与其它量关系多,好表示其它量,好表示等量关系;②有直接设未知量和间接设未知量,还有不常见的辅助设未知量.牛娃出品、必属精品(4)找等量关系的方法:“等量关系”特指数量间的相等关系,是数量关系中的一种.数学题目中常含有多种等量关系,如果要求用方程解答时,就需找出题中的等量关系.①标关键词语,抓住关键句子确定等量关系.(比如多,少,倍,分,共)解题时只要找出这种关键语句,正确理解关键语句的含义,就能确定等量关系.②紧扣基本公式,利用基本关系确定等量关系就是根据常见的数量关系确定等量关系.(比如体积公式,单价×数量=总价,单产量×数量=总产量,速度×时间=路程,工效×时间=工作总量等.这些常见的基本数量关系,就是等量关系)③通过问题中不变的量,相等的量确定等量关系.就是用不同的方法表示同一个量,从而建立等量关系.④借助线段图确定等量关系。
初中数学知识点总结 一元一次方程

初中数学知识点总结一元一次方程一元一次方程知识点总结一、从算式到方程(一)方程:含有未知数的等式叫做方程。
1、方程必须具备的两个条件(1)是等式。
(2)含有未知数。
(二)解方程:就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。
二、等式的性质(一)等式的性质1:等式两边同加(或减)司一个数(或式子),结果仍相等。
符号语言:如果a=b,那么B土C=B土C。
(二)等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
符号语言:如果a=b,那么ac=bc;(三)等式的性质是解方程的依据。
三、一元一次方程(一)定义:只含有一个未知数(元),并且未知数的次数都是1,等号两边都是整式,形如ax+b=0,这样的方程就叫一元一次方程。
(二)列一元一次方程(三)解一元一次方程1、去分母:解含有分母的一元一次方程时,方程两边乘各自分母的最小分倍数,从而约去分母,这个过程叫做去分母。
依据:等式的性质2;2、去括号:解一元一次方程式时,按照去括号法则把方程中的括号去掉,这个过程叫做去括号。
依据:乘法分配律、去括号法则;3、移项:把等号一边的某项变号后移到另一边,叫做移项。
(1)依据:等式的性质1;(2)目的:将含有未知数的项移到等号的一边,将常数项移到等号的另一边;移项时,一般都习惯把含未知数的项数到等号的左边,把常数项移到等号的右边。
4、合并同类项:即将等号同侧的含未知数的项、常数项分别合并,把方程式转化为ax=b(a不等于0)的形式。
依据:合并同类项法则;5、系数化为1:即在方程两边同时除以未知数的系数(或乘以未知数系数的倒数,将未知数的系数为1,得到=—a不等于0)。
依据:等式的性质2;四、实际问题与一元一次方程(一)列一元一次方程解决实际问题的一般步骤1.审题找相等关系2、设未知数3、列方程4、解方程5、检验(1)检验所得结果是不是方程的解。
(2)检验方程的解是否符合实际意义。
6、写出答案。
人教版七年级上册数学第三章一元一次方程知识点总结归纳

人教版七年级上册数学第三章一元一次方程知识点总结归纳一元一次方程知识点总结一元一次方程1.方程的概念方程是含有未知数的等式,同时也是一个等式。
等式是由等号连接的两个式子。
2.一元一次方程的概念只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。
3.方程的解的概念能使方程中等号左右两边相等的未知数的值叫方程的解,也叫根。
4.主要性质等式的性质1:等式两边(或减)同一个数(或式子),结果仍相等。
等式的性质2:等式两边乘同一个数,或除以同一个不为零的数,结果仍相等。
5.解一元一次方程的步骤1) 去分母,去括号去分母:在方程的两边都乘以各自分母的最小公倍数。
去分母时不要漏乘不含分母的项。
当分母中含有小数时,先将小数化成整数。
去括号:先去大括号,在去中括号,最后小括号。
括号前负号时,去掉括号时里面各项应变号。
2) 移项方程中的任何一项,都可以在改变符号后,从方程的一边移到另一边。
这个法则叫做移项。
移项的根据是等式的性质。
注意:移项时一定要变号,不变号不能移项。
通过移项,含未知数的项与常数项分别列与方程的左右两边。
3) 合并同类项把两个能合并的式子的系数相加,字母和字母的指数不变。
4) 系数化为1指方程中未知数的系数化为1,他的理论依据是等式的性质。
实际问题与一元一次方程1.列方程解应用题的方法综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程,这是从部分到整体的一种思维过程,其思考方向是从已知到未知。
本文介绍了解一元一次方程的分析法,包括列方程解应用题的步骤。
首先要分析题意,确定已知条件和所求问题,然后设定未知数,并利用等量关系列出方程。
接着求解方程,将结果代回原题检验,得出答案。
文章还归纳了实际问题的分类,包括销售中盈亏问题、顺逆流问题、数字问题的应用题、工程效率问题、球赛积分问题和行程问题。
其中,销售中盈亏问题需要计算成本价、标价、打折和售价,利润率可以用利润除以进价乘以100%计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程知识点总结一、等式与方程
1.等式:
(1)定义:含有等号的式子叫做等式.
(2)性质:
①等式两边同时加上(或减去)同一个整式,等式的值不变.
若a b
=那么a c b c
+=+
②等式两边同时乘以一个数或除以同一个不为0的整式,等式的值不变.
若a b
=那么有ac bc
=或a c b c
÷=÷(0
c≠)
③对称性:若a b
=,则b a
=.
④传递性:若a b
=,b c
=则a c
=.
(3)拓展:
①等式两边取相反数,结果仍相等.
如果a b
=,那么a b
-=-
②等式两边不等于0时,两边取倒数,结果仍相等.
如果0
a b
=≠,那么11 a b =
③等式的性质是解方程的基础,很多解方程的方法都要运用到等式的性质.
如移项,运用了等式的性质①;去分母,运用了等式的性质②.
④运用等式的性质,涉及除法运算时,要注意转换后除数不能为0,否则无意义.
2.方程:
(1)定义:含有未知数的等式叫做方程.
(2)说明:
①方程中一定有含一个或一个以上未知数,且方程是等式,两者缺一不可.
②未知数:通常设x、y、z为未知数,也可以设别的字母,全部小写字母都可以.
未知数称为元,有几个未知数就叫几元方程.
一道题中设两个方程时,它们的未知数不能一样!
③“次”:方程中次的概念和整式的“次”的概念相似.
指的是含有未知数的项中,未知数次数最高的项对应的次数,也就是方程的次数.
未知数次数最高是几就叫几次方程.
④方程有整式方程和分式方程.
整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程.
分式方程:分母中含有未知数的方程叫做分式方程.
二、一元一次方程
1.一元一次方程的概念:
(1)定义:只含有一个未知数(元)且未知数的指数是1(次)的整式方程叫做一元一次方程.
(2)一般形式:0
ax b
+=(a,b为常数,x为未知数,且0
a≠).
(3)注意:
①该方程为整式方程.
②该方程有且只含有一个未知数.
③该方程中未知数的最高次数是1.
④化简后未知数的系数不为0.如:212
x x
-=,它不是一元一次方程.
⑤未知数在分母中时,它的次数不能看成是1次.如1
3x
x
+=,它不是一元一次方程.
2.一元一次方程的解法:
(1)方程的解:能使方程左右两边相等的未知数的值叫做方程的解,一般写作:“?
x=”的形式.
(2)解方程:求出方程的解的过程,也可以说是求方程中未知数的值的过程,叫解方程.
(3)移项:
①定义:从方程等号的一边移到等号另一边,这样的变形叫做移项.
②说明:
Ⅰ移项的标准:看是否跨过等号,跨过“=”号才称为移项;移项一定改变符号,不移项的不变.
Ⅱ移项的依据:移项实际上就是对方程两边进行同时加减,根据是等式的性质①.
Ⅲ移项的原则:移项时一般把含未知数的项向左移,常数项往右移,使左边对含未知数的项合并,右边对常数项合并,方便求解.
(4)解一元一次方程的一般步骤及根据:
①去分母——等式的性质②
②去括号——分配律
③移项——等式的性质①
④合并——合并同类项法则
⑤系数化为1——等式的性质②
⑥检验——把方程的解分别代入方程的左右边看求得的值是否相等(在草纸上)
(5)一般方法:
①去分母, 程两边同时乘各分母的最小公倍数.
②去括号,一般先去小括号,再去中括号,最后去大括号.
但顺序有时可依据情况而定使计算简便,本质就是根据乘法分配律.
③移项,方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了
要变号.(一般都是把未知数移到一起)
④合并同类项,合并的是系数,将原方程化为ax b
=(0
a≠)的形式.
⑤系数化1,两边都乘以未知数的系数的倒数.
⑥检验,用代入法,在草稿纸上算.
(6)注意:
(对于一元一次方程的一般步骤要熟练掌握,更要观察所求方程的形式、特点,灵活变化解题步骤)
①分母是小数时,根据分数的基本性质,把分母转化为整数,局部变形;
②去分母时,方程两边各项都乘各分母的最小公倍数,
Ⅰ此时不含分母的项切勿漏乘,即每一项都要乘
Ⅱ分数线相当于括号,去分母后分子各项应加括号(整体思想);
③去括号时,不要漏乘括号内的项,不要弄错符号;
④移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项;
⑤系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号(打草稿认真计算);
⑥不要生搬硬套解方程的步骤,具体问题具体分析,找到最佳解法;
⑦分数、小数运算时不能嫌麻烦,不要跳步,一步步仔细算.
(7)补充:分数的基本性质:与等式基本性质②不同.
分数的分子分母两个整体同时乘以同一个不为0的数或除以同一个不为0的数,分数的值不变.
3.一元一次方程的应用:
(1)解决实际应用题的策略:
①审题:就是多读题,读懂题,读的时候一定沉下心去,不能慌不要急躁,要细,一个字一个字的精读,
要慢,边读边思考.找到已知条件,未知条件,找到数量关系和等量关系,可以用笔在题目
中标注下来重要信息和数量关系,审题往往伴随下个步骤.
②设出适当未知数,往往问什么设什么,有时也间接设未知数,然后用未知数通过关系表示出其他
相关的量.
③找出等量关系,用符号语言表示就是列出方程.
(2)分析问题方法:
①文字关系分析法,找关键字词句分析实际问题中的数量关系
②表格分析法,借助表格分析分析实际问题中的数量关系
③示意图分析法,通过画图帮助分析实际问题中的数量关系
(3)设未知量方法:
一个应用题,往往涉及到几个未知量,为了利用一元一次方程来解应用题,我们总是设其中一个未知量为x,并用这个未知数的代数式去表示其他的未知量,然后列出方程.
①设未知量的原则就是设出的量要便于分析问题,与其它量关系多,好表示其它量,好表示等量关系;
②有直接设未知量和间接设未知量,还有不常见的辅助设未知量.
(4)找等量关系的方法:
“等量关系”特指数量间的相等关系,是数量关系中的一种.数学题目中常含有多种等量关系,如果
要求用方程解答时,就需找出题中的等量关系.
①标关键词语,抓住关键句子确定等量关系.(比如多,少,倍,分,共)解题时只要找出这种关键
语句,正确理解关键语句的含义,就能确定等量关系.
②紧扣基本公式,利用基本关系确定等量关系就是根据常见的数量关系确定等量关系.(比如体积
公式,单价×数量=总价,单产量×数量=总产量,速度×时间=路程,工效×时间=工作总量等.这
些常见的基本数量关系,就是等量关系)
③通过问题中不变的量,相等的量确定等量关系.就是用不同的方法表示同一个量,从而建立等量关
系.
④借助线段图确定等量关系。
线段图能使抽象的数量关系具体化,使隐蔽的数量关系明朗化.对
于较复杂的题目,同学们可借助线段图找等量关系.
(5)列一元一次方程解应用题的基本步骤及注意点:
①“审”要沉着冷静,耐下心去,慢读细读多读,透彻理解题意.即弄清已知量、未知量及其相
互关系.
②“设”设一个恰当的未知数,若有单位一定加单位,表示多项式加单位括号.
③“列”根据等量关系列出方程,即所列的方程应满足两边的量要相等;方程两边的代数式
的单位统一,用题目中的原数;题中条件应充分利用,不能漏也不能将一个条件重复
利用,重复用一个条件会得到恒等式,解不出来.
④“解”解出方程,一定在草纸上一步步认真计算,先化简往往会简化计算.
⑤“验”检验两方面,一是解得是否正确,用代入法;二是是否符合实际情况.
⑥“答”写出答案,一定要答完整,有单位要加单位.
(6)解应用题关键与核心:
根据题意找出能够表示应用题全部含义的一个相等关系(这是关键一步).就是抓住问题中的有关数量的相等关系,列出方程.核心是设出适当未知量,根据关系表示出其它量,表示出等量关系中的各个部分,从而列出方程.
(8)实际问题的常见题目类型:基本量、基本关系、等量关系:
①“和、差、倍、分类问题”:弄清和谁比,比谁多,比谁少
增长量=原有量×增长率,现有量=原有量+增长量.
②“等积变形问题”:锻造前的体积=锻造后的体积
长方体的体积=长×宽×高, 圆柱的体积=底面积×高.
③“打折利润问题”:利润是和成本比的
利润=售价-进价, 利润率=÷
利润进价,售价=标价×折扣.
④“行程问题”:(相遇问题和追及问题)
路程=时间×速度,时间=÷
路程速度,速度=÷
路程时间.
(注意单位:路程——米、千米;时间——秒、分、时;速度——米/秒、米/分、千米/小时)
⑤“销售问题”总价=单价×数量,总钱数=各部分钱数和.
⑥“利率(息)问题”本息和=本金+利息,利息=本金×利率×时间(期数).
⑦“工程问题”工作总量=工作时间×工作效率,工作总量=各部分工作量的和.
⑧数字问题(包括日历中数字规律) ⑨比例分配问题⑩调配问题
注意:应用题分类只是帮助同学们理解记忆,切不可死记题型,生搬硬套,实际上法无定法,要多加练习,培养分析问题解决问题的能力,熟练掌握列方程解应用题的一般方法.。