§74 不变子空间
74不变子空间1

§7.4 不变子空间教学目的本节要求掌握不变子空间的概念及其不变子空间的判断方法,掌握值域和核的概念以及它们都是σ的不变子空间的事实,了解σ的秩和零度的概念及其相关结论。
教学难点不变子空间的证明教学重点不变子空间的概念、值域和核的概念以及它们都是σ的不变子空间的证明教学过程备注教学内容一、不变子空间的定义为了解决不变子空间的问题,我们需要不变子空间的概念.先看一个例子.在3V中,设σ是数量变换,即有一个确定的数k,使得对任意αασαk)(,3=∈V,设W是3V中过原点的一个平面,W是3V的一个子空间,对W中每一个向量ξ,ξ在σ作用之下的像)(ξσ仍是W中的向量,这样的子空间W就是σ的不变子空间.定义1 设σ是F上向量空间V的一个线性变换,W是V的一个子空间,若W中向量在σ下的像仍在W中,即对于W中任一向量ξ,都有W∈)(ξσ,则称W是σ的一个不变子空间,或称W在σ之下不变.例1 向量空间V本身和零子空间是V的任一个线性变换的不变子空间,称它们为V的平凡不变子空间,其它不变子空间称为非平凡不变子空间.例2 向量空间V的任一子空间都是数量变换的不变子空间.例3 在R[x]中,令x)(f(f(x))'=σ,对任意][],[)(xRxRxfn∈是R[x]的子空间,并且]x[nR是σ的不变子空间.例4 设σ是3V中以过原点的一条直线L为轴,旋转θ角的变换,则L是σ的一维不变子空间;过原点且与L垂直的平面H是σ的一个二维不变子空间.二、不变子空间的判断下面给出一种判断不变子空间的方法定理7.4.1 设σ是n维向量空间V的一个线性变换,W是V的子空间,{}r21,,,ααα 是W的基.则W是σ的不变子空间的充要条件是)(,),(),(r21ασασασ 在W中.设W 是向量空间V 的关于线性变换σ的不变子空间,那么对于任意的W ∈α,必有W ∈)(ασ,因此σ也可看作是向量空间W 的一个线性变换,用Wσ表示,即对于任意W ∈ξ,)()(ξσξσ=W若W ∉ξ,那么)(ξσW就没有意义. Wσ叫做σ在W 上的限制.三、不变子空间与线性变换的矩阵的关系设σ是n 维向量空间V 的一个线性变换,W 是σ的一个非平凡不变子空间.在W 中取一个基{}r 21,,,ααα ,把它扩充成V 的一个基},,,,,,{1r 21n r ααααα +,由于),,2,1()(r i W i =∈ασ,故可设r r a a a αααασ12211111)(+++= r r a a a αααασ22221212)(+++=…………r r a a a αααασr 2r 21r 1r )(+++=n r n a a a a ααααασ1,1r 1r 1r r 1r r 11r 11r )(++++++++++++= ,,,,…………n nn r n r r rn n n a a a a ααααασ+++++=++ 1,111)(因此,σ关于这个基的矩阵为,00002311,,11,11,111,1111⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛++++++A A A a a a a a a a a a a a a nn r n n r r r rn r r rr r n r r这里1A 是Wσ关于W 的基{}r 21,,,ααα 的矩阵. 如果V 可以分解成两个非平凡不变子空间1W 与2W 的直和,21W W V ⊕=那么选取1W 的一个基{}r 21,,,ααα 和2W 的一个基{}n 1,,αα +r ,凑成V 的一个基{}n r ααααα,,,,,,1r 21 +,当1W 和2W 都在σ下不变时,σ关于这个基的矩阵是⎪⎪⎭⎫ ⎝⎛=2100A A A 这里1A 是r 阶矩阵,2A 是n-r 阶矩阵,它们分别是1W σ关于基{}r 21,,,ααα 的矩阵和2W σ关于基{}n 1,,αα +r 的矩阵. 若V 可分解成s 个非平凡子空间s 21,,,W W W 的直和,并且每一i W 都是σ的不变子空间,那么在每一子空间中取一个基,凑成V 的基,σ关于这个基的矩阵就为分块对角形矩阵其中i A 是i W σ关于iW 的基的矩阵,.,2,1s i =如果能将V 分解成n 个在σ下不变的一维子空间的直和,那么σ在适当选取的基下的 矩阵就是对角矩阵. σ的一维不变子空间的问题与线性变换的本征值和本征向量有密切关系,我们将在下一节进行讨论.四、线性变换的值域与核定义2 设是向量空间的一个线性变换,由V 中全体向量的像构成的集合称为的值域,记作或;有零向量在之下的全体原像作成的集合称为的核,记作,即定理7.4.2 设σ是向量空间V 的线性变换,那么σm I 和σKer 是V 的子空间,并且在σ之下不变.证 先证σm I 是σ的不变子空间因为,σσm 0)0(,0I V ∈=∈,所以Φ≠m I .由于对任意σηξIm ,,∈∈F k ,存在V ∈βα,,使得)(),(βσηασξ==,而σβασβσασηξIm )()()(∈+=+=+,σασασξIm )()(∈==k k k因此σm I 是V 的子空间.任取σζIm ∈,当然σξσζIm )(,∈∈V .所以σm I 是σ的不变子空间.再证σKer 是σ的不变子空间.因为σKer ∈0,所以σKer 非空.对任意σβαKer F k ∈∈,,,有0)(,0)(==βσασ,于是⎪⎪⎪⎪⎪⎭⎫ ⎝⎛s 21A A A0)()()(=+=+βσασβασ 0)()(==ασασk k即有,,σαβαKer k ∈+,所以σKer 是V 的子空间.由于σKer 中的向量在σ下的像都是零向量,因此σKer 是σ的不变子空间. 我们把σm I 的维数称为线性变换σ的秩,记作秩σ.把的维数称为线性变换的零度.定理7.4.3 设σ是n 维向量空间V 的一个线性变换,{}n 21,,,ααα 是V 的一个基,σ关于这个基的矩阵是A ,则(1) ))(,),(),((m 21n L I ασασασσ = (2) σ的秩等于A 的秩证 (1) σξm I ∈∀,存在n n a a a V αααηη+++=∈ 2211,,使得)(ησξ=. 于是))(,),(),(()()()()(212211n n n L a a a ασασασασασασησ ∈+++=故 ))(,),(),((Im 21n L ασασασσ ⊆又 σασασασIm ))(,),(),((21⊆n L ,所以(1)成立.(2) 由(1)知,(,),(),(())(,),(),((dim )dim (Im )(2121nn L ασασασασασασσσ 秩秩===而 A n n n ),,,())(,),(),((),,,(212121αααασασασααασ == 由定理5.2.14知,秩A n 秩=))(,),(),((21ασασασ ,所以A 秩秩=σ.定理7.4.4 设σ是n 维向量空间V 的一个线性变换,则n =+的零度秩σσ证 在V 中取定一个基{}n 21ααα,,, .设σ关于这个基的矩阵为A ,由定理7.4.3, σ的秩=秩A若σαααξKer a a a n n ∈+++= 2211,则0)(=ξσ.由于)(ξσ与0向量的坐标相同,即T T n A )0,,0,0(),,,(21 =ααα,因此ξ的坐标T n a a a ),,,(21 是齐次线性方程组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00021n x x x A(1)的在n F 中的解向量.反之,对齐次线性方程组(1)的每个解向量T n b b b ),,,(21 来说,σαααKer b b b n n ∈+++ 2211.令σKer 的任一向量ξ与它的坐标对应,这就得到了F 上向量空间σKer 与(1)的在F 上的解空间W 的同构映射.因此σσ秩秩-n dim dim =-==A n W Ker故n =+的零度秩σσ例5 设{}4321αααα,,,是四维向量空间V 的一个基,线性变换σ关于这个基的矩阵为A ,并且⎪⎪⎪⎪⎪⎭⎫⎝⎛=2-12-255213121-1201A 求σ的值域与核.解 先求ker , 设ker(), 关于{1,2,3,4}的坐标为(x 1, x 2, x 3, x 4), ()在{1,2,3,4}下的坐标为(0,0, 0, 0),由定理7.4.4,有⎪⎪⎪⎪⎪⎭⎫⎝⎛---2122552131211201 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛4321x x x x =⎪⎪⎪⎪⎪⎭⎫⎝⎛0000解得该齐次线性方程组的基础解系为X 1=(-2,-23,1,0), X 2=(-1,-2,0,1).令1=-2123-2+3 , 2=-1-22+4 那么ker ()=L (1, 2),σ的零度=2 .再求Im . 由定理7.4.3,Im =L ( (1), (2), (3), (4)).而由定理7.4.4, 的秩为 2. 因此,{})(,)(,)(,)(4321ασασασασ的极大无关组含有两个向量,又(1),(2)线性无关,所以Im=L( (1), (2)).作业:P332-333,习题七,第19,20,21,22,23,24,25,26题.教学小结本节内容分为下面四个问题讲:1. 加法运算2. 数乘运算3. 乘法运算(1). 乘法运算(2). 线性变换的方幂4. 可逆线性变换及线性变换可逆的充要条件本课作业本课教育评注。
§7.7%20%20不变子空间

σβ = σ ( kα ) = kσα = ( kλ0 )α ∈ W ,
故 W 是 σ -子空间。
第七章 线性变换
二、不变子空间的性质
性质1 设 σ , τ 都是线性空间V的线性变换,若 στ = τσ , 则 Im(τ ) 和 Ker (τ ) 都是 σ -子空间。同样,Im(σ ) 和 Ker (σ ) 都是 τ -子空间。 证明: ∀α ∈ Im(τ ), 则存在 α1 ∈ V , st . τ (α1 ) = α , 于是
,Wk
第七章 线性变换
定理7.6.2 若线性变换 σ 的特征多项式 f (λ ) 可分解成以
f (λ ) = (λ − λ1 )r1 (λ − λ2 )r2 下一次因式的乘积:
则V可分解成不变子空间的直和:V = V1 ⊕ V2 ⊕
(λ − λs )rs ,
⊕ Vk ,
其中
Vi = {ξ (σ − λi ε )ri ξ = 0, ξ ∈ V } 。
σα = σ (τα1 ) = (στ )(α1 ) = (τσ )α1 = τ (σα1 ) ∈ Im(τ ) 故 Im(τ ) 是 σ -子空间。
又ቤተ መጻሕፍቲ ባይዱ
∀β ∈ Ker (τ ), τ ( β ) = 0,
τ (σβ ) = (τσ )β = (στ )β = σ (τβ ) = σ (0) = 0
,r
⎞ ⎟ ⎟ ⎟ ⎟ λ⎠
矩阵为 λ Er , 这里 r = dim(Vλ ) 。 解:因为 r = dim(Vλ ), 设 α1 , α 2 ,
由于
(σ Vλ )α i = σα i = λα i , i = 1, 2,
σ ( α1 , α 2 ,
, α r ) = ( α1 , α 2 ,
不变子空间

例5 令F [x]是数域F上一切一元多项式所成的向量
空间, : f (x) f (x) 是求导数运对于每一自然数n,
令 Fn表[x示] 一切次数不超过n的多项式连同零多项
式所成的子空间. 那么
F在n [ xσ]不变.
设W是线性变换σ的一个不变子空间.只考虑σ
在W上的作用,就得到子空间E本身的一个线性变
换,称为σ在W上的限制,并且记作 | W . 这样,
对于任意 W ,
| W ( ) ( ) 然而如果 W , 那么 | W ( ) 没有意义。
7.4.2 不变子空间和线性变换的矩阵化简
设V是数域F上一个n维向量空间,σ是V的一个 线性变换。假设V有一个在σ之下的非平凡不变子空
7.4 不变子空间
一、内容分布
7.4.1 定义与基本例子 7.4.2 不变子空间和线性变换的矩阵化简 7.4.3 进一步的例子
二、教学目的
1.掌握不变子空间的定义及验证一个子空间是否某线 性变换下的不变子空间方法.
2.会求给定线性变换下的一些不变子空间.
三、重点难点
验证一个子空间是否某线性变换下的不变子空间、会求 给定线性变换下的一些不变子空间。
故 L(, (), , k1()) W , 即 L(, (), , k1())包含W的一个最小子空间.
例11 设 1, 2 , 3 , 4 是V的一给基,σ在 1, 2 , 3 ,下 4
的矩阵为
1 1 1 2
A
0 2 1
1 3 2
(W ) W 2 (W ) (W ) W
k (W ) W (k 1,2, , n) f ( )(W ) W
7.7 不变子空间

则在这组
A 1
A2
⋱ As
(4)
其中 Ai ( i = 1 , 2 , … , s ) 就是 A |W 在基 (3) 下的 矩阵. 矩阵. 反之,如果线性变换 A 在基 I 下的矩阵是准 反之, 对角形 (4) ,则由 (3) 生成的子空间 Wi 是A - 子空间. 子空间. 由此可知, 由此可知,矩阵分解为准对角形与空间分解为 不变子空间的直和是相当的. 不变子空间的直和是相当的.
变换,W 是 V 的子空间. 如果 W 中的向量在A 的子空间. 变换, 下 换句话说, 的像仍在 W 中,换句话说,对于 W 中任一向量 ξ 有 A ξ ∈ W,我们就称 W 是 A 的 不变子空间, 不变子空间, 简称 A - 子空间. 子空间.
二、举例
例 1 整个空间 V 和零子空间 { 0 },对于每个 ,
那么, 那么, A 在这组基下的矩阵就具有下列形状
(1)
a11 ⋮ a k1 0 ⋮ 0
⋯ a1k ⋮ ⋯ akk ⋯ 0 ⋮ ⋯ 0
a1,k+1 ⋮ ak,k+1 ak+1,k+1 ⋮ an,k+1
a1n ⋮ ⋯ akn A A2 = 1 O A . (2) ⋯ ak+1,n 3 ⋮ ⋯ ann ⋯
性质2 性质2
A 的属于特征值 λ0 的特征子空间 Vλ0
的不变子空间. 也是 A 的不变子空间
性质3 性质3 A - 子空间的和与交还是 A - 子空间 子空间.
四、子空间为 A - 子空间的条件
的子空间, 定理1 定理1 设 W 是线性空间 V 的子空间,且 W = L(α1 , α2 , … , αs ) . 则 W 是 A - 子空间的充分必要条件是
不变子空间的概念

则Vi都是 A 旳不变 子空间;且V具有直和分解: V V1 V2 Vs .
7.7 不变子空间
证:令
fi (
)
f () ( i )ri
( 1 )r1
(
i1 )ri1 (
)ri1 i 1
( s )rs ,
Wi fi ( A)V , 则Wi 是 fi ( A) 旳值域, Wi是 A旳不变子空间.
第七章 线性变换 §7.7 线性变换旳定义
一、不变子空间旳概念 二、线性变换在不变子空间上旳限制 三、不变子空间与线性变换旳矩阵化简 四、线性空间旳直和分解
7.7 不变子空间
一、不变子空间
1、定义
设 A是数域P上线性空间V旳线性变换,W是V旳
旳子空间,若 W ,有 A( ) W 即A(W ) W
则称W是 A 旳不变子空间,简称为 A -子空间.
注:
V旳平凡子空间(V及零子空间)对于V旳任意一
个变换 A来说,都是 A -子空间.
7.7 不变子空间
2、不变子空间旳简朴性质
1)两个 A-子空间旳交与和仍是 A -子空间.
2)设 W L(1,2 , s ), 则W是 A -子空间 A(1), A(2 ), , A(s ) W .
A 在特征子空间 V0上引起旳线性变换是数乘变换,
即有 A V0 o E .
7.7 不变子空间
三、不变子空间与线性变换旳矩阵化简
1、设 A 是 n 维线性空间V旳线性变换,W是V 旳
A-子空间,1, 2 , , k为W旳一组基,把它扩允为 V旳一组基: 1, 2 , , k , k1, n .
2 . 证明f1(V1),fV2(2), fVs (s是)直和1 .
§74不变子空间

§74不变⼦空间§7.4 不变⼦空间教学⽬的本节要求掌握不变⼦空间的概念及其不变⼦空间的判断⽅法,掌握值域和核的概念以及它们都是σ的不变⼦空间的事实,了解σ的秩和零度的概念及其相关结论。
教学难点不变⼦空间的证明教学重点不变⼦空间的概念、值域和核的概念以及它们都是σ的不变⼦空间的证明教学过程备注教学内容⼀、不变⼦空间的定义为了解决不变⼦空间的问题,我们需要不变⼦空间的概念.先看⼀个例⼦.在3V 中,设σ是数量变换,即有⼀个确定的数k ,使得对任意αασαk )(,3=∈V ,设W 是3V 中过原点的⼀个平⾯,W 是3V 的⼀个⼦空间,对W 中每⼀个向量ξ,ξ在σ作⽤之下的像)(ξσ仍是W 中的向量,这样的⼦空间W 就是σ的不变⼦空间.定义1 设σ是F 上向量空间V 的⼀个线性变换,W 是V 的⼀个⼦空间,若W 中向量在σ下的像仍在W 中,即对于W 中任⼀向量ξ,都有W ∈)(ξσ,则称W 是σ的⼀个不变⼦空间,或称W 在σ之下不变.例1 向量空间V 本⾝和零⼦空间是V 的任⼀个线性变换的不变⼦空间,称它们为V 的平凡不变⼦空间,其它不变⼦空间称为⾮平凡不变⼦空间.例2 向量空间V 的任⼀⼦空间都是数量变换的不变⼦空间.例3 在R [x]中,令x)(f (f(x))'=σ,对任意][],[)(x R x R x f n ∈是R [x]的⼦空间,并且]x [n R 是σ的不变⼦空间.例4 设σ是3V 中以过原点的⼀条直线L 为轴,旋转θ⾓的变换,则L 是σ的⼀维不变⼦空间;过原点且与L 垂直的平⾯H 是σ的⼀个⼆维不变⼦空间.⼆、不变⼦空间的判断下⾯给出⼀种判断不变⼦空间的⽅法定理7.4.1 设σ是n 维向量空间V 的⼀个线性变换,W 是V 的⼦空间,{}r 21,,,ααα是W 的基.则W 是σ的不变⼦空间的充要条件是)(,),(),(r 21ασασασ在W 中.设W 是向量空间V 的关于线性变换σ的不变⼦空间,那么对于任意的W ∈α,必有W ∈)(ασ,因此σ也可看作是向量空间W 的⼀个线性变换,⽤Wσ表⽰,即对于任意W ∈ξ,)()(ξσξσ=W若W ?ξ,那么)(ξσW就没有意义. Wσ叫做σ在W 上的限制.三、不变⼦空间与线性变换的矩阵的关系设σ是n 维向量空间V 的⼀个线性变换,W 是σ的⼀个⾮平凡不变⼦空间.在W 中取⼀个基{}r 21,,,ααα,把它扩充成V 的⼀个基},,,,,,{1r 21n r ααααα +,由于),,2,1()(r i W i =∈ασ,故可设r r a a a αααασ12211111)(+++= r r a a a αααασ22221212)(+++=…………r r a a a αααασr 2r 21r 1r )(+++=n r n a a a a ααααασ1,1r 1r 1r r 1r r 11r 11r )(++++++++++++= ,,,,…………n nn r n r r rn n n a a a a ααααασ+++++=++ 1,111)(因此,σ关于这个基的矩阵为,00002311,,11,11,111,1111=?++++++A A A a a a a a a a a a a a a nn r n n r r r rn r r rr r n r r这⾥1A 是Wσ关于W 的基{}r 21,,,ααα的矩阵.如果V 可以分解成两个⾮平凡不变⼦空间1W 与2W 的直和,21W W V ⊕=那么选取1W 的⼀个基{}r 21,,,ααα和2W 的⼀个基{}n 1,,αα +r ,凑成V 的⼀个基{}n r ααααα,,,,,,1r 21 +,当1W 和2W 都在σ下不变时,σ关于这个基的矩阵是=210A A A 这⾥1A 是r 阶矩阵,2A 是n-r 阶矩阵,它们分别是1W σ关于基{}r 21,,,ααα的矩阵和2W σ关于基{}n 1,,αα +r 的矩阵.若V 可分解成s 个⾮平凡⼦空间s 21,,,W W W 的直和,并且每⼀i W 都是σ的不变⼦空间,那么在每⼀⼦空间中取⼀个基,凑成V 的基,σ关于这个基的矩阵就为分块对⾓形矩阵其中i A 是i W σ关于i W 的基的矩阵,.,2,1s i =如果能将V 分解成n 个在σ下不变的⼀维⼦空间的直和,那么σ在适当选取的基下的矩阵就是对⾓矩阵. σ的⼀维不变⼦空间的问题与线性变换的本征值和本征向量有密切关系,我们将在下⼀节进⾏讨论.四、线性变换的值域与核定义2 设是向量空间的⼀个线性变换,由V 中全体向量的像构成的集合称为的值域,记作或;有零向量在之下的全体原像作成的集合称为的核,记作,即定理7.4.2 设σ是向量空间V 的线性变换,那么σm I 和σKer 是V 的⼦空间,并且在σ之下不变.证先证σm I 是σ的不变⼦空间因为,σσm 0)0(,0I V ∈=∈,所以Φ≠m I .由于对任意σηξIm ,,∈∈F k ,存在V ∈βα,,使得)(),(βσηασξ==,⽽σβασβσασηξIm )()()(∈+=+=+,σασασξIm )()(∈==k k k因此σm I 是V 的⼦空间.任取σζIm ∈,当然σξσζIm )(,∈∈V .所以σm I 是σ的不变⼦空间.再证σKer 是σ的不变⼦空间.s 21A A A因为σKer ∈0,所以σKer ⾮空.对任意σβαKer F k ∈∈,,,有0)(,0)(==βσασ,于是0)()()(=+=+βσασβασ 0)()(==ασασk k即有,,σαβαKer k ∈+,所以σKer 是V 的⼦空间.由于σKer 中的向量在σ下的像都是零向量,因此σKer 是σ的不变⼦空间. 我们把σm I 的维数称为线性变换σ的秩,记作秩σ.把的维数称为线性变换的零度.定理7.4.3 设σ是n 维向量空间V 的⼀个线性变换,{}n 21,,,ααα是V 的⼀个基,σ关于这个基的矩阵是A ,则(1) ))(,),(),((m 21n L I ασασασσ = (2) σ的秩等于A 的秩证 (1) σξm I ∈?,存在n n a a a V αααηη+++=∈ 2211,,使得)(ησξ=. 于是))(,),(),(()()()()(212211n n n L a a a ασασασασασασησ∈+++=故 ))(,),(),((Im 21n L ασασασσ ?⼜σασασασIm ))(,),(),((21?n L ,所以(1)成⽴.(2) 由(1)知,(,),(),(())(,),(),((dim )dim(Im )(2121nn L ασασασασασασσσ秩秩===⽽ A n n n ),,,())(,),(),((),,,(212121αααασασασααασ == 由定理5.2.14知,秩A n 秩=))(,),(),((21ασασασ ,所以A 秩秩=σ.定理7.4.4 设σ是n 维向量空间V 的⼀个线性变换,则n =+的零度秩σσ证在V 中取定⼀个基{}n 21ααα,,, .设σ关于这个基的矩阵为A ,由定理7.4.3,σ的秩=秩A若σαααξKer a a a n n ∈+++= 2211,则0)(=ξσ.由于)(ξσ与0向量的坐标相同,即T T n A )0,,0,0(),,,(21 =ααα,因此ξ的坐标T n a a a ),,,(21 是齐次线性⽅程组= 00021n x x x A(1)的在n F 中的解向量.反之,对齐次线性⽅程组(1)的每个解向量T n b b b ),,,(21 来说,σαααKer b b b n n ∈+++ 2211.令σKer 的任⼀向量ξ与它的坐标对应,这就得到了F 上向量空间σKer 与(1)的在F 上的解空间W 的同构映射.因此σσ秩秩-n dim dim =-==A n W Ker故n =+的零度秩σσ例5 设{}4321αααα,,,是四维向量空间V 的⼀个基,线性变换σ关于这个基的矩阵为A ,并且=2-12-255213121-121A求σ的值域与核.解先求ker σ, 设ξ∈ker(σ), ξ关于{α1,α2,α3,α4}的坐标为(x 1, x 2, x 3,x 4), σ (ξ)在{α1,α2,α3,α4}下的坐标为(0, 0, 0, 0),由定理7.4.4,有---2122552131211201 ??????? ??4321x x x x =??0000解得该齐次线性⽅程组的基础解系为X 1=(-2,-23,1,0), X 2=(-1,-2,0,1).令β1=-2α123-α2+α3 , β2=-α1-2α2+α4那么ker (σ)=L (β1, β 2),σ的零度=2 .再求Im σ. 由定理7.4.3,Im σ=L (σ (α1), σ (α2), σ (α3), σ (α4)).⽽由定理7.4.4, σ的秩为2. 因此,{})(,)(,)(,)(4321ασασασασ的极⼤⽆关组含有两个向量,⼜σ (α1), σ (α2)线性⽆关,所以Im σ =L (σ (α1), σ (α2)).作业:P332-333,习题七,第19,20,21,22,23,24,25,26题.教学⼩结本节内容分为下⾯四个问题讲: 1. 加法运算 2. 数乘运算3. 乘法运算(1). 乘法运算(2). 线性变换σ的⽅幂4. 可逆线性变换及线性变换可逆的充要条件本课作业本课教育评注。
7.7不变子空间

W
.
W 的几点说明
W 的几点说明
(6) 任一线性变换 在它核上引起的线性变换是零 变换,即
1 0
0 ;
0
在特征子空间 V 上引起的线性变换是数乘变换,
即有
V0
o E .
不变子空间与线性变换的矩阵化简
1、设 是 n 维线性空间V的线性变换,W是V 的
§7.7 不变子空间
一、不变子空间的概念
二、线性变换在不变子空间上的限制
三、不变子空间与线性变换的矩阵化简
四、线性空间的直和分解
不变子空间的定义
设 是数域P上线性空间V的线性变换,W是V的 的子空间,若 W , 有 ( ) W
即 (W ) W
则称W是 的不变子空间,简称为 -子空间.
A1 A2 . 0 A 3
A1 A2 反之,若 1 , 2 , , n 1 , 2 ,, n 0 A , 3
A1 P kk . 则由 1 , 2 , , k 生成的子空间必为 的
不变子空间.
( i E )ri f i ( ) V f V
( i E )ri Wi 0.
( 2)
下证 V V1 V2 Vs . 分三步:
1 . 证明 V W1 W2 Ws . 2 . 证明 V1 V2 Vs 是直和. 3 . 证明 Vi Wi , i 1,2,, s.
即, ( 1 ), ( 2 ),, ( k ) 均可被 1 , 2 , , k 线性表出.
设
( 1 ) a11 1 a21 2 ak 1 k ( 2 ) a12 1 a22 2 ak 2 k ( ) a a a k 1k 1 2k 2 kk k
不变子空间的概念

若 在基 W
1,下的2 ,矩L阵,为 k
,则
在基 1 , 2 ,下L的,矩阵n 具有下列形状:
§7.7 不变子空间
A1 0
A2 A3
.
A1 P kk
反之,若
1 , 2 ,L
,n
1 , 2 ,L
,n
A1 0
A2 A3
,
A1 P kk . 则由 1 , 2 ,生L成,的 k子空间必为 的
2)设 W L(1,则2 ,WL是 s-)子, 空间
(1), (2 ),L , (s ) W .
证: " 显然"成立.
" " 任取 设W , k11 k22 L kss ,
则 ( ) k1 (1) k2 (2 ) L ks (s ).
由于 (1), (2 ),L , (s ) W , ( ) W .
设 是线性空间V的线性变换,W是V的一个 的
不变子空间. 把 看作W上的一个线性变换,称作
在不变子空间W上引起的线性变换,或称作 在
不变子空间W上的限制 . 记作
. W
§7.7 不变子空间
注:
① 当 时,W W ( ) ( ).
当 时W,
无意W义(. )
② W W W .
③ 任一线性变换 在它核上引起的线性变换是零
一、不变子空间
1、定义
设 是数域P上线性空间V的线性变换,W是V的
的子空间,若
有 W , ( )W 即 (W ) W
则称W是 的不变子空间,简称为 -子空间.
注:
V的平凡子空间(V及零子空间)对于V的任意一
个变换 来说,都是 -子空间.
§7.7 不变子空间是 -子空间.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§7.4 不变子空间教学目的 本节要求掌握不变子空间的概念及其不变子空间的判断方法,掌握值域和核的概念以及它们都是σ的不变子空间的事实,了解σ的秩和零度的概念及其相关结论。
教学难点 不变子空间的证明教学重点不变子空间的概念、值域和核的概念以及它们都是σ的不变子空间的证明 教 学 过 程备 注教学内容一、不变子空间的定义为了解决不变子空间的问题,我们需要不变子空间的概念.先看一个例子.在3V 中,设σ是数量变换,即有一个确定的数k ,使得对任意αασαk )(,3=∈V ,设W 是3V 中过原点的一个平面,W 是3V 的一个子空间,对W 中每一个向量ξ,ξ在σ作用之下的像)(ξσ仍是W 中的向量,这样的子空间W 就是σ的不变子空间.定义1 设σ是F 上向量空间V 的一个线性变换,W 是V 的一个子空间,若W 中向量在σ下的像仍在W 中,即对于W 中任一向量ξ,都有W ∈)(ξσ,则称W 是σ的一个不变子空间,或称W 在σ之下不变.例1 向量空间V 本身和零子空间是V 的任一个线性变换的不变子空间,称它们为V 的平凡不变子空间,其它不变子空间称为非平凡不变子空间.例2 向量空间V 的任一子空间都是数量变换的不变子空间.例3 在R [x]中,令x)(f (f(x))'=σ,对任意][],[)(x R x R x f n ∈是R [x]的子空间,并且]x [n R 是σ的不变子空间.例4 设σ是3V 中以过原点的一条直线L 为轴,旋转θ角的变换,则L 是σ的一维不变子空间;过原点且与L 垂直的平面H 是σ的一个二维不变子空间.二、不变子空间的判断下面给出一种判断不变子空间的方法定理7.4.1 设σ是n 维向量空间V 的一个线性变换,W 是V 的子空间,{}r 21,,,ααα 是W 的基.则W 是σ的不变子空间的充要条件是)(,),(),(r 21ασασασ 在W 中.设W 是向量空间V 的关于线性变换σ的不变子空间,那么对于任意的W ∈α,必有W ∈)(ασ,因此σ也可看作是向量空间W 的一个线性变换,用Wσ表示,即对于任意W ∈ξ,)()(ξσξσ=W若W ∉ξ,那么)(ξσW就没有意义. Wσ叫做σ在W 上的限制.三、不变子空间与线性变换的矩阵的关系设σ是n 维向量空间V 的一个线性变换,W 是σ的一个非平凡不变子空间.在W 中取一个基{}r 21,,,ααα ,把它扩充成V 的一个基},,,,,,{1r 21n r ααααα +,由于),,2,1()(r i W i =∈ασ,故可设r r a a a αααασ12211111)(+++= r r a a a αααασ22221212)(+++=…………r r a a a αααασr 2r 21r 1r )(+++=n r n a a a a ααααασ1,1r 1r 1r r 1r r 11r 11r )(++++++++++++= ,,,,…………n nn r n r r rn n n a a a a ααααασ+++++=++ 1,111)(因此,σ关于这个基的矩阵为,00002311,,11,11,111,1111⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛++++++A A A a a a a a a a a a a a a nn r n n r r r rn r r rr r n r r这里1A 是Wσ关于W 的基{}r 21,,,ααα 的矩阵.如果V 可以分解成两个非平凡不变子空间1W 与2W 的直和,21W W V ⊕=那么选取1W 的一个基{}r 21,,,ααα 和2W 的一个基{}n 1,,αα +r ,凑成V 的一个基{}n r ααααα,,,,,,1r 21 +,当1W 和2W 都在σ下不变时,σ关于这个基的矩阵是⎪⎪⎭⎫ ⎝⎛=210A A A 这里1A 是r 阶矩阵,2A 是n-r 阶矩阵,它们分别是1W σ关于基{}r 21,,,ααα 的矩阵和2W σ关于基{}n 1,,αα +r 的矩阵.若V 可分解成s 个非平凡子空间s 21,,,W W W 的直和,并且每一i W 都是σ的不变子空间,那么在每一子空间中取一个基,凑成V 的基,σ关于这个基的矩阵就为分块对角形矩阵其中i A 是i W σ关于i W 的基的矩阵,.,2,1s i =如果能将V 分解成n 个在σ下不变的一维子空间的直和,那么σ在适当选取的基下的 矩阵就是对角矩阵. σ的一维不变子空间的问题与线性变换的本征值和本征向量有密切关系,我们将在下一节进行讨论.四、线性变换的值域与核定义2 设是向量空间的一个线性变换,由V 中全体向量的像构成的集合称为的值域,记作或;有零向量在之下的全体原像作成的集合称为的核,记作,即定理7.4.2 设σ是向量空间V 的线性变换,那么σm I 和σKer 是V 的子空间,并且在σ之下不变.证 先证σm I 是σ的不变子空间因为,σσm 0)0(,0I V ∈=∈,所以Φ≠m I .由于对任意σηξIm ,,∈∈F k ,存在V ∈βα,,使得)(),(βσηασξ==,而σβασβσασηξIm )()()(∈+=+=+,σασασξIm )()(∈==k k k因此σm I 是V 的子空间.任取σζIm ∈,当然σξσζIm )(,∈∈V .所以σm I 是σ的不变子空间.再证σKer 是σ的不变子空间.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛s 21A A A因为σKer ∈0,所以σKer 非空.对任意σβαKer F k ∈∈,,,有0)(,0)(==βσασ,于是0)()()(=+=+βσασβασ 0)()(==ασασk k即有,,σαβαKer k ∈+,所以σKer 是V 的子空间.由于σKer 中的向量在σ下的像都是零向量,因此σKer 是σ的不变子空间. 我们把σm I 的维数称为线性变换σ的秩,记作秩σ.把的维数称为线性变换的零度.定理7.4.3 设σ是n 维向量空间V 的一个线性变换,{}n 21,,,ααα 是V 的一个基,σ关于这个基的矩阵是A ,则(1) ))(,),(),((m 21n L I ασασασσ = (2) σ的秩等于A 的秩证 (1) σξm I ∈∀,存在n n a a a V αααηη+++=∈ 2211,,使得)(ησξ=. 于是))(,),(),(()()()()(212211n n n L a a a ασασασασασασησ ∈+++=故 ))(,),(),((Im 21n L ασασασσ ⊆又 σασασασIm ))(,),(),((21⊆n L ,所以(1)成立.(2) 由(1)知,(,),(),(())(,),(),((dim )dim(Im )(2121nn L ασασασασασασσσ 秩秩===而 A n n n ),,,())(,),(),((),,,(212121αααασασασααασ == 由定理5.2.14知,秩A n 秩=))(,),(),((21ασασασ ,所以A 秩秩=σ.定理7.4.4 设σ是n 维向量空间V 的一个线性变换,则n =+的零度秩σσ证 在V 中取定一个基{}n 21ααα,,, .设σ关于这个基的矩阵为A ,由定理7.4.3, σ的秩=秩A若σαααξKer a a a n n ∈+++= 2211,则0)(=ξσ.由于)(ξσ与0向量的坐标相同,即T T n A )0,,0,0(),,,(21 =ααα,因此ξ的坐标T n a a a ),,,(21 是齐次线性方程组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00021n x x x A(1)的在n F 中的解向量.反之,对齐次线性方程组(1)的每个解向量T n b b b ),,,(21 来说,σαααKer b b b n n ∈+++ 2211.令σKer 的任一向量ξ与它的坐标对应,这就得到了F 上向量空间σKer 与(1)的在F 上的解空间W 的同构映射.因此σσ秩秩-n dim dim =-==A n W Ker故n =+的零度秩σσ例5 设{}4321αααα,,,是四维向量空间V 的一个基,线性变换σ关于这个基的矩阵为A ,并且⎪⎪⎪⎪⎪⎭⎫⎝⎛=2-12-255213121-121A求σ的值域与核.解 先求ker σ, 设ξ∈ker(σ), ξ关于{α1,α2,α3,α4}的坐标为(x 1, x 2, x 3,x 4), σ (ξ)在{α1,α2,α3,α4}下的坐标为(0, 0, 0, 0),由定理7.4.4,有⎪⎪⎪⎪⎪⎭⎫⎝⎛---2122552131211201 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛4321x x x x =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0000解得该齐次线性方程组的基础解系为X 1=(-2,-23,1,0), X 2=(-1,-2,0,1).令 β1=-2α123-α2+α3 , β2=-α1-2α2+α4那么ker (σ)=L (β1, β 2),σ的零度=2 .再求Im σ. 由定理7.4.3,Im σ=L (σ (α1), σ (α2), σ (α3), σ (α4)).而由定理7.4.4, σ的秩为2. 因此,{})(,)(,)(,)(4321ασασασασ的极大无关组含有两个向量,又σ (α1), σ (α2)线性无关,所以Im σ =L (σ (α1), σ (α2)).作 业:P332-333,习题七,第19,20,21,22,23,24,25,26题.教学小结本节内容分为下面四个问题讲: 1. 加法运算 2. 数乘运算3. 乘法运算(1). 乘法运算(2). 线性变换σ的方幂4. 可逆线性变换及线性变换可逆的充要条件本课作业本课教育评注。