不等式选讲专题(文科)

合集下载

全国通用2020_2022三年高考数学真题分项汇编专题20不等式选讲(含答案及解析)

全国通用2020_2022三年高考数学真题分项汇编专题20不等式选讲(含答案及解析)

全国通用2020_2022三年高考数学真题分项汇编:20 不等式选讲1.【2022年全国甲卷】已知a,b,c均为正数,且a2+b2+4c2=3,证明:(1)a+b+2c≤3;(2)若b=2c,则1a +1c≥3.【答案】(1)见解析(2)见解析【解析】【分析】(1)根据a2+b2+4c2=a2+b2+(2c)2,利用柯西不等式即可得证;(2)由(1)结合已知可得0<a+4c≤3,即可得到1a+4c ≥13,再根据权方和不等式即可得证.(1)证明:由柯西不等式有[a2+b2+(2c)2](12+12+12)≥(a+b+2c)2,所以a+b+2c≤3,当且仅当a=b=2c=1时,取等号,所以a+b+2c≤3;(2)证明:因为b=2c,a>0,b>0,c>0,由(1)得a+b+2c=a+4c≤3,即0<a+4c≤3,所以1a+4c ≥13,由权方和不等式知1a +1c=12a+224c≥(1+2)2a+4c=9a+4c≥3,当且仅当1a =24c,即a=1,c=12时取等号,所以1a +1c≥3.2.【2022年全国乙卷】已知a,b,c都是正数,且a32+b32+c32=1,证明:(1)abc≤19;(2)ab+c +ba+c+ca+b≤2√abc;【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)利用三元均值不等式即可证明;(2)利用基本不等式及不等式的性质证明即可.(1)证明:因为a >0,b >0,c >0,则a 32>0,b 32>0,c 32>0, 所以a 32+b 32+c 323≥√a 32⋅b 32⋅c 323,即(abc )12≤13,所以abc ≤19,当且仅当a 32=b 32=c 32,即a =b =c =√193时取等号.(2)证明:因为a >0,b >0,c >0,所以b +c ≥2√bc ,a +c ≥2√ac ,a +b ≥2√ab , 所以a b+c≤2√bc=a 322√abc,b a+c≤2√ac=b 322√abc,ca+b≤2√ab =322√abc a b +c +b a +c +ca +b ≤a 322√abc +b 322√abc c 322√abc=a 32+b 32+c 322√abc=12√abc当且仅当a =b =c 时取等号.3.【2021年甲卷文科】已知函数()2,()2321f x x g x x x =-=+--.(1)画出()y f x =和()y g x =的图像; (2)若()()f x a g x +≥,求a 的取值范围. 【答案】(1)图像见解析;(2)112a ≥ 【解析】 【分析】(1)分段去绝对值即可画出图像;(2)根据函数图像数形结和可得需将()y f x =向左平移可满足同角,求得()y f x a =+过1,42A ⎛⎫⎪⎝⎭时a 的值可求.【详解】(1)可得2,2()22,2x x f x x x x -<⎧=-=⎨-≥⎩,画出图像如下:34,231()232142,2214,2x g x x x x x x ⎧-<-⎪⎪⎪=+--=+-≤<⎨⎪⎪≥⎪⎩,画出函数图像如下:(2)()|2|f x a x a +=+-,如图,在同一个坐标系里画出()(),f x g x 图像,()y f x a =+是()y f x =平移了a 个单位得到,则要使()()f x a g x +≥,需将()y f x =向左平移,即0a >,当()y f x a =+过1,42A ⎛⎫⎪⎝⎭时,1|2|42a +-=,解得112a =或52-(舍去),则数形结合可得需至少将()y f x =向左平移112个单位,112a ∴≥.【点睛】关键点睛:本题考查绝对值不等式的恒成立问题,解题的关键是根据函数图像数形结合求解. 4.【2021年乙卷文科】已知函数()3f x x a x =-++. (1)当1a =时,求不等式()6f x ≥的解集; (2)若()f x a >-,求a 的取值范围. 【答案】(1)(][),42,-∞-+∞.(2)3,2⎛⎫-+∞ ⎪⎝⎭. 【解析】 【分析】(1)利用绝对值的几何意义求得不等式的解集.(2)利用绝对值不等式化简()f x a >-,由此求得a 的取值范围. 【详解】(1)[方法一]:绝对值的几何意义法当1a =时,()13f x x x =-++,13x x -++表示数轴上的点到1和3-的距离之和, 则()6f x ≥表示数轴上的点到1和3-的距离之和不小于6,当4x =-或2x =时所对应的数轴上的点到13-,所对应的点距离之和等于6, ∴数轴上到13-,所对应的点距离之和等于大于等于6得到所对应的坐标的范围是4x ≤-或2x ≥,所以()6f x ≥的解集为(][),42,-∞-+∞.[方法二]【最优解】:零点分段求解法 当1a =时,()|1||3|f x x x =-++. 当3x ≤-时,(1)(3)6-+--≥x x ,解得4x ≤-; 当31x -<<时,(1)(3)6-++≥x x ,无解; 当1≥x 时,(1)(3)6-++≥x x ,解得2x ≥. 综上,|1||3|6-++≥x x 的解集为(,4][2,)-∞-+∞. (2)[方法一]:绝对值不等式的性质法求最小值 依题意()f x a >-,即3a x a x -+>-+恒成立,333x a x x a a x -++-+=≥++,当且仅当()()30a x x -+≥时取等号,()3min f x a ∴=+, 故3a a +>-,所以3a a +>-或3a a +<, 解得32a >-.所以a 的取值范围是3,2⎛⎫-+∞ ⎪⎝⎭.[方法二]【最优解】:绝对值的几何意义法求最小值由||x a -是数轴上数x 表示的点到数a 表示的点的距离,得()|||3||3|f x x a x a =-++≥+,故|3|a a +>-,下同解法一. [方法三]:分类讨论+分段函数法 当3a ≤-时,23,,()3,3,23,3,x a x a f x a a x x a x -+-<⎧⎪=--≤≤-⎨⎪-+>-⎩则min [()]3=--f x a ,此时3-->-a a ,无解. 当3a >-时,23,3,()3,3,23,,x a x f x a x a x a x a -+-<-⎧⎪=+-≤≤⎨⎪-+>⎩则min [()]3=+f x a ,此时,由3a a +>-得,32a >-.综上,a 的取值范围为32a >-.[方法四]:函数图象法解不等式由方法一求得()min 3f x a =+后,构造两个函数|3|=+y a 和y a =-,即3,3,3,3a a y a a --<-⎧=⎨+≥-⎩和y a =-, 如图,两个函数的图像有且仅有一个交点33,22⎛⎫- ⎪⎝⎭M ,由图易知|3|a a +>-,则32a >-.【整体点评】(1)解绝对值不等式的方法有几何意义法,零点分段法. 方法一采用几何意义方法,适用于绝对值部分的系数为1的情况, 方法二使用零点分段求解法,适用于更广泛的情况,为最优解;(2)方法一,利用绝对值不等式的性质求得()3min f x a =+,利用不等式恒成立的意义得到关于a 的不等式,然后利用绝对值的意义转化求解;方法二与方法一不同的是利用绝对值的几何意义求得()f x 的最小值,最有简洁快速,为最优解法方法三利用零点分区间转化为分段函数利用函数单调性求()f x 最小值,要注意函数()f x 中的各绝对值的零点的大小关系,采用分类讨论方法,使用与更广泛的情况;方法四与方法一的不同在于得到函数()f x 的最小值后,构造关于a 的函数,利用数形结合思想求解关于a 的不等式.5.【2020年新课标1卷理科】已知函数()|31|2|1|f x x x =+--. (1)画出()y f x =的图像;(2)求不等式()(1)f x f x >+的解集. 【答案】(1)详解解析;(2)7,6⎛⎫-∞- ⎪⎝⎭.【解析】 【分析】(1)根据分段讨论法,即可写出函数()f x 的解析式,作出图象; (2)作出函数()1f x +的图象,根据图象即可解出. 【详解】(1)因为()3,1151,1313,3x x f x x x x x ⎧⎪+≥⎪⎪=--<<⎨⎪⎪--≤-⎪⎩,作出图象,如图所示:(2)将函数()f x 的图象向左平移1个单位,可得函数()1f x +的图象,如图所示:由()3511x x --=+-,解得76x =-.所以不等式()(1)f x f x >+的解集为7,6⎛⎫-∞- ⎪⎝⎭.【点睛】本题主要考查画分段函数的图象,以及利用图象解不等式,意在考查学生的数形结合能力,属于基础题.6.【2020年新课标2卷理科】已知函数2()|21|f x x a x a =-+-+.(1)当2a =时,求不等式()4f x ≥的解集;(2)若()4f x ≥,求a 的取值范围.【答案】(1)32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭;(2)(][),13,-∞-+∞.【解析】 【分析】(1)分别在3x ≤、34x <<和4x ≥三种情况下解不等式求得结果;(2)利用绝对值三角不等式可得到()()21f x a ≥-,由此构造不等式求得结果. 【详解】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解; 当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥; 综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭.(2)()()()()22222121211f x x a x a x a x a a a a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号), ()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞.【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型. 7.【2020年新课标3卷理科】设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c }. 【答案】(1)证明见解析(2)证明见解析. 【解析】 【分析】(1)方法一:由()22222220a b c a b c ab ac bc ++=+++++=结合不等式的性质,即可得出证明;(2)方法一:不妨设{}max ,,a b c a =,因为0,1a b c abc ++==,所以0,a >0,b <0,c <()()a b c=-+-≥34,a ≥a【详解】(1)[方法一]【最优解】:通性通法()22222220a b c a b c ab ac bc ++=+++++=,()22212ab bc ca a b c ∴++=-++. 1,,,abc a b c =∴均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<. [方法二]:消元法由0a b c ++=得()b a c =-+,则()ab bc ca b a c ca ++=++()2a c ac =-++()22a ac c =-++223024c a c ⎛⎫=-+-≤ ⎪⎝⎭,当且仅当0a b c ===时取等号,又1abc =,所以0ab bc ca ++<. [方法三]:放缩法方式1:由题意知0,a ≠0,a b c ++=(),a c b =-+()222224a c b c b cb bc =+=++≥,又()ab bc ca a b c bc ++=++2a bc =-+224a a ≤-+2304a =-<,故结论得证.方式2:因为0a b c ++=,所以()22220222a b c a b c ab bc ca =++=+++++ ()()()22222212222a b b c c a ab bc ca ⎡⎤=++++++++⎣⎦()()122222232ab bc ca ab bc ca ab bc ca ≥+++++=++. 即0ab bc ca ++≤,当且仅当0a b c ===时取等号, 又1abc =,所以0ab bc ca ++<. [方法四]:因为0,1a b c abc ++==,所以a ,b ,c 必有两个负数和一个正数,不妨设0,a b c ≤<<则(),a b c =-+()20ab bc ca bc a c b bc a ∴++=++=-<.[方法五]:利用函数的性质方式1:()6b a c =-+,令()22f c ab bc ca c ac a =++=---,二次函数对应的图像开口向下,又1abc =,所以0a ≠, 判别式222Δ430a a a =-=-<,无根, 所以()0f c <,即0ab bc ca ++<.方式2:设()()()()()31f x x a x b x c x ab bc ca x =---=+++-,则()f x 有a ,b ,c 三个零点,若0ab bc ca ++≥,则()f x 为R 上的增函数,不可能有三个零点, 所以0ab bc ca ++<.(2)[方法一]【最优解】:通性通法不妨设{}max ,,a b c a =,因为0,1a b c abc ++==,所以0,a >0,b <0,c <()()a b c =-+-≥则34,a a ≥≥.故原不等式成立. [方法二]:不妨设{}max ,,a b c a =,因为0,1a b c abc ++==,所以0a >,且,1,b c a bc a +=-⎧⎪⎨=⎪⎩则关于x 的方程210x ax a++=有两根,其判别式24Δ0a a =-≥,即a故原不等式成立. [方法三]:不妨设{}max ,,a b c a =,则0,a >(),b a c =-+1,abc =()1,a c ac -+=2210ac a c ++=,关于c 的方程有解,判别式()22Δ40a a =-≥,则34,a a ≥≥.故原不等式成立. [方法四]:反证法假设{}max ,,a b c0a b ≤<<1ab c =>a b c --=1132a b ---≥=={}max ,,a b c ≥证. 【整体点评】(1)方法一:利用三项平方和的展开公式结合非零平方为正数即可证出,证法常规,为本题的通性通法,也是最优解法;方法二:利用消元法结合一元二次函数的性质即可证出;方法三:利用放缩法证出;方法四:利用符号法则结合不等式性质即可证出;方法五:利用函数的性质证出.(2)方法一:利用基本不等式直接证出,是本题的通性通法,也是最优解;方法二:利用一元二次方程根与系数的关系以及方程有解的条件即可证出;方法三:利用消元法以及一元二次方程有解的条件即可证出;方法四:利用反证法以及基本不等式即可证出.。

(23)2022年高考真题——文科数学(全国乙卷) 答案(1)

(23)2022年高考真题——文科数学(全国乙卷) 答案(1)
当 时, , 单调递减;
所以 ;
【小问2详解】
,则 ,
当 时, ,所以当 时, , 单调递增;
当 时, , 单调递减;
所以 ,此时函数无零点,不合题意;
当 时, ,在 上, , 单调递增;
在 上, , 单调递减;
又 ,当x趋近正无穷大时, 趋近于正无穷大,
所以 仅在 有唯一零点,符合题意;
当 时, ,所以 单调递增,又 ,
【分析】根据古典概型计算即可
【详解】从5名同学中随机选3名的方法数为
甲、乙都入选的方法数为 ,所以甲、乙都入选的概率
故答案为:
15.过四点 中的三点的一个圆的方程为____________.
【答案】 或 或 或 ;
【解析】
【分析】设圆的方程为 ,根据所选点的坐标,得到方程组,解得即可;
【详解】解:依题意设圆的方程为 ,
(2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);
(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为 .已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.
附:相关系数 .
【答案】(1) ;
(2)
在区间 上 ,即 单调递减,
又 , , ,
所以 在区间 上的最小值为 ,最大值为 .
故选:D
12.已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱锥的体积最大时,其高为()
A. B. C. D.
【答案】C
【解析】
【分析】先证明当四棱锥 顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为 ,进而得到四棱锥体积表达式,再利用均值定理去求四棱锥体积的最大值,从而得到当该四棱锥的体积最大时其高的值.

高中文科数学第十三章 不等式选讲(选修4-5)

高中文科数学第十三章  不等式选讲(选修4-5)

第十三章⎪⎪⎪不等式选讲(选修4-5)第一节 绝对值不等式1.绝对值三角不等式定理1:如果a ,b 是实数,则|a +b |≤|a |+|b |,当且仅当ab ≥0时,等号成立. 定理2:如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时,等号成立.2.绝对值不等式的解法(1)含绝对值的不等式|x |<a 与|x |>a 的解集(2)|ax +b |①|ax +b |≤c ⇔-c ≤ax +b ≤c ; ②|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c .(3)|x -a |+|x -b |≥c ,|x -a |+|x -b |≤c (c >0)型不等式的解法: ①利用绝对值不等式的几何意义求解. ②利用零点分段法求解.③构造函数,利用函数的图象求解. [小题体验]1.(教材习题改编)设ab >0,下面四个不等式中,正确的是( ) ①|a +b |>|a |;②|a +b |<|b |;③|a +b |<|a -b |;④|a +b |>|a |-|b |. A .①和② B .①和③ C .①和④D .②和④解析:选C ∵ab >0,即a ,b 同号, 则|a +b |=|a |+|b |, ∴①④正确,②③错误.2.若不等式|kx -4|≤2的解集为{}x |1≤x ≤3,则实数k =________.解析:由|kx -4|≤2⇔2≤kx ≤6. ∵不等式的解集为{}x |1≤x ≤3, ∴k =2. 答案:23.不等式|x +1|-|x -2|≥1的解集是________. 解析:f (x )=|x +1|-|x -2|=⎩⎪⎨⎪⎧-3, x ≤-1,2x -1, -1<x <2,3, x ≥2.当-1<x <2时,由2x -1≥1,解得1≤x <2. 又当x ≥2时,f (x )=3>1恒成立. 所以不等式的解集为{}x |x ≥1. 答案:{}x |x ≥11.对形如|f (x )|>a 或|f (x )|<a 型的不等式求其解集时,易忽视a 的符号直接等价转化造成失误.2.绝对值不等式||a |-|b ||≤|a ±b |≤|a |+|b |中易忽视等号成立的条件.如|a -b |≤|a |+|b |,当且仅当ab ≤0时等号成立,其他类似推导.[小题纠偏]1.设a ,b 为满足ab <0的实数,那么( ) A .|a +b |>|a -b | B .|a +b |<|a -b | C .|a -b |<|||a |-|b |D .|a -b |<|a |+|b |解析:选B ∵ab <0,∴|a -b |=|a |+|b |>|a +b |.2.若存在实数x 使|x -a |+|x -1|≤3成立,则实数a 的取值范围是________. 解析:∵|x -a |+|x -1|≥|(x -a )-(x -1)|=|a -1|, 要使|x -a |+|x -1|≤3有解,可使|a -1|≤3, ∴-3≤a -1≤3,∴-2≤a ≤4. 答案:[-2,4]考点一 绝对值不等式的解法(基础送分型考点——自主练透)[题组练透]1.(易错题)若不等式|x -a |+3x ≤0(其中a >0)的解集为{}x |x ≤-1,求实数a 的值.解:不等式|x -a |+3x ≤0等价于⎩⎪⎨⎪⎧ x ≥a ,x -a +3x ≤0或⎩⎪⎨⎪⎧x <a ,a -x +3x ≤0,即⎩⎪⎨⎪⎧x ≥a ,x ≤a4或⎩⎪⎨⎪⎧x <a ,x ≤-a 2. 因为a >0,所以不等式组的解集为⎩⎨⎧⎭⎬⎫x |x ≤-a 2 .由题设可得-a2=-1,故a =2.2.在实数范围内,解不等式|2x -1|+|2x +1|≤6. 解:法一:当x >12时,原不等式转化为4x ≤6⇒12<x ≤32;当-12≤x ≤12时,原不等式转化为2≤6,恒成立;当x <-12时,原不等式转化为-4x ≤6⇒-32≤x <-12.综上知,原不等式的解集为⎩⎨⎧⎭⎬⎫x |-32≤x ≤32. 法二:原不等式可化为⎪⎪⎪⎪x -12 +⎪⎪⎪⎪x +12 ≤3, 其几何意义为数轴上到12,-12两点的距离之和不超过3的点的集合,数形结合知,当x=32或x =-32时,到12,-12两点的距离之和恰好为3,故当-32≤x ≤32时,满足题意,则原不等式的解集为⎩⎨⎧⎭⎬⎫x |-32≤x ≤32 .3.(2015·山东高考改编)解不等式|x -1|-|x -5|<2.解:当x <1时,不等式可化为-(x -1)-(5-x )<2,即-4<2,显然成立,所以此时不等式的解集为(-∞,1);当1≤x ≤5时,不等式可化为x -1-(5-x )<2,即2x -6<2,解得x <4,所以此时不等式的解集为[1,4);当x >5时,不等式可化为(x -1)-(x -5)<2,即4<2,显然不成立.所以此时不等式无解.综上,不等式的解集为(-∞,4).[谨记通法]1.求解绝对值不等式要注意两点:(1)要求的不等式的解集是各类情形的并集,利用零点分段法的操作程序是:找零点,分区间,分段讨论.(2)对于解较复杂绝对值不等式,要恰当运用条件,简化分类讨论,优化解题过程.如“题组练透”第1题要注意分类讨论.2.求解该类问题的关键是去绝对值符号,可以运用零点分段法去绝对值,此外还常利用绝对值的几何意义求解.考点二 绝对值不等式的证明 (重点保分型考点——师生共研)[典例引领](2015·唐山三模)设不等式-2<|x -1|-|x +2|<0的解集为M ,a ,b ∈M . (1)证明:⎪⎪⎪⎪13a +16b <14;(2)比较|1-4ab |与2|a -b |的大小,并说明理由. 解:(1)证明:记f (x )=|x -1|-|x +2| =⎩⎪⎨⎪⎧3,x ≤-2,-2x -1,-2<x <1,-3,x ≥1.由-2<-2x -1<0,解得-12<x <12,则M =⎝⎛⎭⎫-12,12 . 所以⎪⎪⎪⎪13a +16b ≤13|a |+16|b |<13×12+16×12=14. (2)由(1)得a 2<14,b 2<14.因为|1-4ab |2-4|a -b |2=(1-8ab +16a 2b 2)-4(a 2-2ab +b 2) =(4a 2-1)(4b 2-1)>0, 所以|1-4ab |2>4|a -b |2, 故|1-4ab |>2|a -b |.[由题悟法]证明绝对值不等式主要的3种方法(1)利用绝对值的定义去掉绝对值符号,转化为普通不等式再证明.(2)利用三角不等式||a |-|b ||≤|a ±b |≤|a |+|b |进行证明. (3)转化为函数问题,数形结合进行证明.[即时应用]已知x ,y ∈R ,且|x +y |≤16,|x -y |≤14,求证:|x +5y |≤1.证明:∵|x +5y |=|3(x +y )-2(x -y )|. ∴由绝对值不等式的性质,得|x +5y |=|3(x +y )-2(x -y )|≤|3(x +y )|+|2(x -y )| =3|x +y |+2|x -y |≤3×16+2×14=1.即|x +5y |≤1.考点三 绝对值不等式的综合应用 (重点保分型考点——师生共研)[典例引领](2016·大同调研)已知函数f (x )=|2x -1|+|x -2a |. (1)当a =1时,求f (x )≤3的解集;(2)当x ∈[1,2]时,f (x )≤3恒成立,求实数a 的取值范围. 解:(1)当a =1时,由f (x )≤3,可得|2x -1|+|x -2|≤3, ∴⎩⎪⎨⎪⎧x <12,1-2x +2-x ≤3①或⎩⎪⎨⎪⎧12≤x <2,2x -1+2-x ≤3② 或⎩⎪⎨⎪⎧x ≥2,2x -1+x -2≤3.③ 解①求得0≤x <12;解②求得12≤x <2;解③求得x =2.综上可得,0≤x ≤2,即不等式的解集为[0,2]. (2)∵当x ∈[1,2]时,f (x )≤3恒成立, 即|x -2a |≤3-|2x -1|=4-2x ,故2x -4≤2a -x ≤4-2x ,即3x -4≤2a ≤4-x . 再根据3x -4的最大值为6-4=2, 4-x 的最小值为4-2=2, ∴2a =2,∴a =1, 即a 的取值范围为{1}.[由题悟法]1.研究含有绝对值的函数问题时,根据绝对值的定义,分类讨论去掉绝对值符号,将原函数转化为分段函数,然后利用数形结合解决问题,这是常用的思想方法.2.f (x )<a 恒成立⇔f (x )max <a . f (x )>a 恒成立⇔f (x )min >a .[即时应用](2015·重庆高考改编)若函数f (x )=|x +1|+2|x -a |的最小值为5,求实数a 的值. 解:当a =-1时,f (x )=3|x +1|≥0,不满足题意; 当a <-1时,f (x )=⎩⎪⎨⎪⎧-3x -1+2a , x ≤a ,x -1-2a , a <x ≤-1,3x +1-2a , x >-1,f (x )min =f (a )=-3a -1+2a =5, 解得a =-6;当a >-1时,f (x )=⎩⎪⎨⎪⎧-3x -1+2a , x ≤-1,-x +1+2a , -1<x ≤a ,3x +1-2a , x >a ,f (x )min =f (a )=-a +1+2a =5, 解得a =4.综上所述,实数a 的值为-6或4.1.(2016·福建四地六校联考)已知函数f (x )=|x -1|+|x +1|. (1)求不等式f (x )≥3的解集;(2)若关于x 的不等式f (x )≥a 2-a 在R 上恒成立,求实数a 的取值范围.解:(1)原不等式等价于⎩⎪⎨⎪⎧ x ≤-1,-2x ≥3或⎩⎪⎨⎪⎧ -1<x ≤1,2≥3或⎩⎪⎨⎪⎧x >1,2x ≥3,解得x ≤-32或x ∈∅或x ≥32.∴不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-32或x ≥32. (2)由题意得,关于x 的不等式|x -1|+|x +1|≥a 2-a 在R 上恒成立. ∵|x -1|+|x +1|≥|(x -1)-(x +1)|=2, ∴a 2-a ≤2,即a 2-a -2≤0,解得-1≤a ≤2.∴实数a 的取值范围是[-1,2].2.(2016·忻州模拟)已知|2x -3|≤1的解集为[m ,n ]. (1)求m +n 的值;(2)若|x -a |<m ,求证:|x |<|a |+1.解:(1)由不等式|2x -3|≤1可化为-1≤2x -3≤1, 得1≤x ≤2,∴m =1,n =2,m +n =3.(2)证明:若|x -a |<1,则|x |=|x -a +a |≤|x -a |+|a |<|a |+1. 3.设函数f (x )=|x -1|+|x -2|. (1)求证:f (x )≥1; (2)若f (x )=a 2+2a 2+1成立,求x 的取值范围.解:(1)证明:f (x )=|x -1|+|x -2|≥|(x -1)-(x -2)|=1. (2)∵a 2+2a 2+1=a 2+1+1a 2+1=a 2+1+1a 2+1≥2,当且仅当a =0时等号成立, ∴要使f (x )=a 2+2a 2+1成立,只需|x -1|+|x -2|≥2,即⎩⎪⎨⎪⎧ x <1,1-x +2-x ≥2或⎩⎪⎨⎪⎧ 1≤x <2,x -1+2-x ≥2或⎩⎪⎨⎪⎧x ≥2,x -1+x -2≥2, 解得x ≤12或x ≥52,故x 的取值范围是⎝⎛⎦⎤-∞,12 ∪⎣⎡⎭⎫52,+∞. 4.(2016·唐山一模)已知函数f (x )=|2x -a |+|x +1|. (1)当a =1时,解不等式f (x )<3; (2)若f (x )的最小值为1,求a 的值.解:(1)当a =1时,f (x )=|2x -1|+|x +1|=⎩⎪⎨⎪⎧-3x ,x ≤-1,-x +2,-1<x <12,3x ,x ≥12,且f (1)=f (-1)=3,所以f (x )<3的解集为{}x |-1<x <1.(2)|2x -a |+|x +1|=⎪⎪⎪⎪x -a 2 +|x +1|+⎪⎪⎪⎪x -a 2 ≥⎪⎪⎪⎪1+a 2 +0=⎪⎪⎪⎪1+a2 , 当且仅当(x +1)⎝⎛⎭⎫x -a 2 ≤0且x -a2=0时,取等号. 所以⎪⎪⎪⎪1+a2 =1,解得a =-4或0.5.(2015·南宁二模)已知函数f (x )=|x -a |.(1)若f (x )≤m 的解集为{}x |-1≤x ≤5,求实数a ,m 的值; (2)当a =2且0≤t ≤2时,解关于x 的不等式f (x )+t ≥f (x +2). 解:(1)∵|x -a |≤m ,∴-m +a ≤x ≤m +a . ∵-m +a =-1,m +a =5, ∴a =2,m =3.(2)f (x )+t ≥f (x +2)可化为|x -2|+t ≥|x |. 当x ∈(-∞,0)时,2-x +t ≥-x,2+t ≥0, ∵0≤t ≤2,∴x ∈(-∞,0);当x ∈[0,2)时,2-x +t ≥x ,x ≤1+t 2,0≤x ≤1+t 2,∵1≤1+t 2≤2,∴0≤x ≤1+t2;当x ∈[2,+∞)时,x -2+t ≥x ,t ≥2,当0≤t <2时,无解,当t =2时,x ∈[2,+∞). ∴当0≤t <2时原不等式的解集为⎝⎛⎦⎤-∞,t2+1; 当t =2时原不等式的解集为[2,+∞).6.(2015·全国卷Ⅰ)已知函数f (x )=|x +1|-2|x -a |,a >0. (1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值范围. 解:(1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0.当x ≤-1时,不等式化为x -4>0,无解; 当-1<x <1时,不等式化为3x -2>0, 解得23<x <1;当x ≥1时,不等式化为-x +2>0,解得1≤x <2.所以f (x )>1的解集为⎩⎨⎧⎭⎬⎫x 23<x <2.(2)由题设可得f (x )=⎩⎪⎨⎪⎧x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图象与x 轴围成的三角形的三个顶点分别为A ⎝⎛⎭⎫2a -13,0,B (2a +1,0),C (a ,a +1),则△ABC 的面积为23(a +1)2.由题设得23(a +1)2>6,故a >2.所以a 的取值范围为(2,+∞).7.(2015·郑州二检)已知函数f (x )=|3x +2|. (1)解不等式f (x )<4-|x -1|;(2)已知m +n =1(m ,n >0),若|x -a |-f (x )≤1m +1n (a >0)恒成立,求实数a 的取值范围.解:(1)不等式f (x )<4-|x -1|,即|3x +2|+|x -1|<4. 当x <-23时,即-3x -2-x +1<4,解得-54<x <-23;当-23≤x ≤1时,即3x +2-x +1<4,解得-23≤x <12;当x >1时,即3x +2+x -1<4,无解. 综上所述,x ∈⎝⎛⎭⎫-54,12 . (2)1m +1n =⎝⎛⎭⎫1m +1n (m +n )=1+1+n m +m n ≥4, 当且仅当m =n =12时等号成立.令g (x )=|x -a |-f (x )=|x -a |-|3x +2|= ⎩⎪⎨⎪⎧2x +2+a ,x <-23,-4x -2+a ,-23≤x ≤a ,-2x -2-a ,x >a .∴x =-23时,g (x )max =23+a ,要使不等式恒成立,只需g (x )max =23+a ≤4,即0<a ≤103.所以实数a 的取值范围是⎝⎛⎦⎤0,103 . 8.(2016·大庆模拟)设函数f (x )=|2x -1|-|x +4|. (1)解不等式:f (x )>0;(2)若f (x )+3|x +4|≥|a -1|对一切实数x 均成立,求a 的取值范围.解:(1)原不等式即为|2x -1|-|x +4|>0,当x ≤-4时,不等式化为1-2x +x +4>0,解得x <5,即不等式组⎩⎪⎨⎪⎧x ≤-4,|2x -1|-|x +4|>0的解集是{}x |x ≤-4.当-4<x <12时,不等式化为1-2x -x -4>0,解得x <-1,即不等式组⎩⎪⎨⎪⎧-4<x <12,|2x -1|-|x +4|>0的解集是{}x |-4<x <-1.当x ≥12时,不等式化为2x -1-x -4>0,解得x >5,即不等式组⎩⎪⎨⎪⎧x ≥12,|2x -1|-|x +4|>0的解集是{}x |x >5.综上,原不等式的解集为{}x |x <-1或x >5.(2)∵f (x )+3|x +4|=|2x -1|+2|x +4|=|1-2x |+|2x +8|≥|(1-2x )+(2x +8)|=9. ∴由题意可知|a -1|≤9,解得-8≤a ≤10, 故所求a 的取值范围是[]-8,10.第二节 不等式的证明1.基本不等式定理1:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立.定理2:如果a ,b >0,那么a +b2≥ab ,当且仅当a =b 时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均.定理3:如果a ,b ,c ∈R +,那么a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.2.比较法(1)比差法的依据是:a -b >0⇔a >b .步骤是:“作差→变形→判断差的符号”.变形是手段,变形的目的是判断差的符号.(2)比商法:若B >0,欲证A ≥B ,只需证AB ≥1.3.综合法与分析法(1)综合法:一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立.(2)分析法:从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义,公理或已证明的定理,性质等),从而得出要证的命题成立.[小题体验]1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( ) A .s ≥t B .s >t C .s ≤tD .s <t解析:选A ∵s -t =b 2-2b +1=(b -1)2≥0,∴s ≥t .2.若a >0,b >0,a +b =2,则下列不等式对一切满足条件的a ,b 恒成立的是________(写出所有正确命题的序号).①ab ≤1;② a +b ≤2;③a 2+b 2≥2; ④a 3+b 3≥3;⑤1a +1b ≥2. 解析:令a =b =1,排除②④;由2=a +b ≥2ab ⇒ab ≤1,命题①正确; a 2+b 2=(a +b )2-2ab =4-2ab ≥2,命题③正确; 1a +1b =a +b ab =2ab ≥2,命题⑤正确. 答案:①③⑤1.在使用作商比较法时易忽视说明分母的符号.2.在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,易忽视性质成立的前提条件.[小题纠偏]1.已知a >0,b >0,则a a b b________(ab )+2a b (填大小关系).解析:∵a ab b(ab )+2a b =⎝⎛⎭⎫a b -2a b,∴当a =b 时,⎝⎛⎭⎫a b -2a b=1,当a >b >0时,ab >1,a -b 2>0,∴⎝⎛⎭⎫a b -2a b>1,当b >a >0时,0<ab <1,a -b 2<0,则⎝⎛⎭⎫a b -2a b>1,∴a a b b≥(ab ) +2a b .答案:≥2.已知a ,b ,c 是正实数,且a +b +c =1,则1a +1b +1c 的最小值为________. 解析:把a +b +c =1代入1a +1b +1c 得a +b +c a +a +b +c b +a +b +c c =3+⎝⎛⎭⎫b a +a b +⎝⎛⎭⎫c a +a c +⎝⎛⎭⎫c b +b c ≥3+2+2+2=9,当且仅当a =b =c =13时,等号成立.答案:9考点一 比较法证明不等式(基础送分型考点——自主练透)[题组练透]1.(2016·莆田模拟)设a ,b 是非负实数, 求证:a 2+b 2≥ab (a +b ). 证明:因为a 2+b 2-ab (a +b ) =(a 2-a ab )+(b 2-b ab ) =a a (a -b )+b b (b -a ) =(a -b )(a a -b b )=(a 12-b 12)(a 32-b 32),因为a ≥0,b ≥0,所以不论a ≥b ≥0,还是0≤a ≤b ,都有a 12-b 12与a 32-b 32同号,所以(a 12-b 12)(a 32-b 32)≥0,所以a 2+b 2≥ab (a +b ). 2. 已知a =ln 22,b =ln 33,试比较a ,b 大小. 解:∵ln 22>0,ln 33>0, ∴b a =2ln 33ln 2=log 89>1.∴b >a .[谨记通法]作差比较法证明不等式的步骤(1)作差;(2)变形;(3)判断差的符号;(4)下结论.其中“变形”是关键,通常将差变形成因式连乘积的形式或平方和的形式,再结合不等式的性质判断出差的正负.考点二 综合法证明不等式 (重点保分型考点——师生共研)[典例引领]设a ,b ,c 均为正数,且a +b +c =1,证明: (1)ab +bc +ac ≤13;(2)a 2b +b 2c +c 2a ≥1.证明:(1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca ,得a 2+b 2+c 2≥ab +bc +ca . 由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1,所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13.(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c , 故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a ≥a +b +c . 所以a 2b +b 2c +c 2a ≥1.[由题悟法]1.综合法证明不等式的方法综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系.合理进行转换,恰当选择已知不等式,这是证明的关键.2.综合法证明时常用的不等式 (1)a 2≥0. (2)|a |≥0.(3)a 2+b 2≥2ab ,它的变形形式有:a 2+b 2≥2|ab |;a 2+b 2≥-2ab ;(a +b )2≥4ab ; a 2+b 2≥12(a +b )2;a 2+b 22≥⎝⎛⎭⎫a +b 22.(4)a +b2≥ab ,它的变形形式有:a +1a ≥2(a >0);ab +b a ≥2(ab >0); a b +ba ≤-2(ab <0).[即时应用]已知a ,b ,c >0且互不相等,abc =1.试证明:a +b +c <1a +1b +1c .证明:因为a ,b ,c >0,且互不相等,abc =1, 所以a +b +c =1bc +1ac +1ab<1b +1c 2+1a +1c 2+1a +1b 2=1a +1b +1c ,即a +b +c <1a +1b +1c .考点三 分析法证明不等式 (重点保分型考点——师生共研)[典例引领](2016·沈阳模拟)设a ,b ,c >0,且ab +bc +ca =1.求证: (1)a +b +c ≥ 3. (2)abc +b ac +cab ≥ 3(a +b +c ).证明:(1)要证a+b+c≥3,由于a,b,c>0,因此只需证明(a+b+c)2≥3.即证:a2+b2+c2+2(ab+bc+ca)≥3,而ab+bc+ca=1,故只需证明:a2+b2+c2+2(ab+bc+ca)≥3(ab+bc+ca).即证:a2+b2+c2≥ab+bc+ca.而这可以由ab+bc+ca≤a2+b22+b2+c22+c2+a22=a2+b2+c2(当且仅当a=b=c时等号成立)证得.所以原不等式成立.(2) abc+bac+cab=a+b+cabc.在(1)中已证a+b+c≥ 3. 因此要证原不等式成立,只需证明1abc≥a+b+c,即证a bc+b ac+c ab≤1,即证a bc+b ac+c ab≤ab+bc+ca.而a bc=ab·ac≤ab+ac2,b ac≤ab+bc2,c ab≤bc+ac2.所以a bc+b ac+c ab≤ab+bc+ca(当且仅当a=b=c=33时等号成立).所以原不等式成立.[由题悟法]1.用分析法证“若A则B”这个命题的模式为了证明命题B为真,只需证明命题B1为真,从而有…只需证明命题B2为真,从而有………只需证明命题A为真,而已知A为真,故B必真.2.分析法的应用当所证明的不等式不能使用比较法,且和重要不等式、基本不等式没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.[即时应用]已知a>b>c,且a+b+c=0,求证:b2-ac<3a.证明:要证b2-ac<3a,只需证b2-ac<3a2.∵a+b+c=0,只需证b2+a(a+b)<3a2,只需证2a2-ab-b2>0,只需证(a-b)(2a+b)>0,只需证(a-b)(a-c)>0.∵a>b>c,∴a-b>0,a-c>0.∴(a-b)(a-c)>0显然成立,故原不等式成立.1.设不等式|2x-1|<1的解集为M.(1)求集合M.(2)若a,b∈M,试比较ab+1与a+b的大小.解:(1)由|2x-1|<1得-1<2x-1<1,解得0<x<1.所以M={x|0<x<1}.(2)由(1)和a,b∈M可知0<a<1,0<b<1,所以(ab+1)-(a+b)=(a-1)(b-1)>0.故ab+1>a+b.2.已知a>0,b>0,2c>a+b,求证:c-c2-ab<a<c+c2-ab.证明:要证:c-c2-ab<a<c+c2-ab,只需证:-c2-ab<a-c<c2-ab,只需证:|a-c|<c2-ab,只需证:(a-c)2<c2-ab,只需证:a2+c2-2ac<c2-ab,即证:2ac>a2+ab.因为a>0,所以只需证2c>a+b,由题设,上式显然成立.故c-c2-ab<a<c+c2-ab.3.(2015·湖南高考)设a >0,b >0,且a +b =1a +1b .证明:(1)a +b ≥2;(2)a 2+a <2与b 2+b <2不可能同时成立. 证明:由a +b =1a +1b =a +bab ,a >0,b >0, 得ab =1.(1)由基本不等式及ab =1, 有a +b ≥2ab =2, 即a +b ≥2.(2)假设a 2+a <2与b 2+b <2同时成立, 则由a 2+a <2及a >0,得0<a <1; 同理,0<b <1,从而ab <1, 这与ab =1矛盾.故a 2+a <2与b 2+b <2不可能同时成立.4.(2015·长春三模)(1)已知a ,b 都是正数,且a ≠b ,求证:a 3+b 3>a 2b +ab 2; (2)已知a ,b ,c 都是正数,求证:a 2b 2+b 2c 2+c 2a 2a +b +c ≥abc .证明:(1)(a 3+b 3)-(a 2b +ab 2)=(a +b )(a -b )2. 因为a ,b 都是正数,所以a +b >0. 又因为a ≠b ,所以(a -b )2>0.于是(a +b )(a -b )2>0,即(a 3+b 3)-(a 2b +ab 2)>0, 所以a 3+b 3>a 2b +ab 2. (2)因为b 2+c 2≥2bc ,a 2>0, 所以a 2(b 2+c 2)≥2a 2bc .① 同理b 2(a 2+c 2)≥2ab 2c . ② c 2(a 2+b 2)≥2abc 2. ③①②③相加得2(a 2b 2+b 2c 2+c 2a 2)≥2a 2bc +2ab 2c +2abc 2, 从而a 2b 2+b 2c 2+c 2a 2≥abc (a +b +c ). 由a ,b ,c 都是正数,得a +b +c >0, 因此a 2b 2+b 2c 2+c 2a 2a +b +c ≥abc .5.若a >0,b >0,且1a +1b =ab . (1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由.解:(1)由ab =1a +1b ≥2ab,得ab ≥2,且当a =b =2时等号成立.故a 3+b 3≥2a 3b 3≥42,且当a =b =2时等号成立. 所以a 3+b 3的最小值为4 2. (2)由(1)知,2a +3b ≥26ab ≥4 3.由于43>6,从而不存在a ,b ,使得2a +3b =6. 6.(2016·吉林实验中学模拟)设函数f (x )=|x -a |. (1)当a =2时,解不等式f (x )≥4-|x -1|;(2)若f (x )≤1的解集为[0,2],1m +12n =a (m >0,n >0),求证:m +2n ≥4.解:(1)当a =2时,不等式为|x -2|+|x -1|≥4,①当x ≥2时,不等式可化为x -2+x -1≥4,解得x ≥72;②当12<x <72时,不等式可化为2-x +x -1≥4,不等式的解集为∅;③当x ≤12时,不等式可化为2-x +1-x ≥4,解得x ≤-12.综上可得,不等式的解集为⎝⎛⎦⎤-∞,-12∪⎣⎡⎭⎫72,+∞. (2)证明:∵f (x )≤1,即|x -a |≤1,解得a -1≤x ≤a +1,而f (x )≤1的解集是[0,2],∴⎩⎪⎨⎪⎧a -1=0,a +1=2,解得a =1, 所以1m +12n =1(m >0,n >0),所以m +2n =(m +2n )⎝⎛⎭⎫1m +12n =2+m 2n +2nm≥2+2m 2n ·2nm=4, 当且仅当m =2,n =1时取等号.7.(2015·全国卷Ⅱ)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明: (1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件. 证明:(1)因为(a +b )2=a +b +2ab ,(c+d)2=c+d+2cd,由题设a+b=c+d,ab>cd,得(a+b)2>(c+d)2.因此a+b>c+d.(2)①必要性:若|a-b|<|c-d|,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cd.因为a+b=c+d,所以ab>cd.由(1),得a+b>c+d.②充分性:若a+b>c+d,则(a+b)2>(c+d)2,即a+b+2ab>c+d+2cd.因为a+b=c+d,所以ab>cd.于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2.因此|a-b|<|c-d|.综上,a+b>c+d是|a-b|<|c-d|的充要条件.8.已知x,y∈R,且|x|<1,|y|<1.求证:11-x2+11-y2≥21-xy.证明:法一:(分析法)∵|x|<1,|y|<1,∴11-x2>0,11-y2>0,∴11-x2+11-y2≥2(1-x2)(1-y2).故要证明结论成立,只要证明2(1-x2)(1-y2)≥21-xy成立.即证1-xy≥(1-x2)(1-y2)成立即可.∵(y-x)2≥0,有-2xy≥-x2-y2,∴(1-xy)2≥(1-x2)(1-y2),∴1-xy≥(1-x2)(1-y2)>0.∴不等式成立.法二:(综合法)∵211-x2+11-y2≤1-x2+1-y22=2-(x2+y2)2≤2-2|xy|2=1-|xy|,∴11-x2+11-y2≥21-|xy|≥21-xy,∴原不等式成立.提升考能、阶段验收专练卷(一)集合与常用逻辑用语、函数、导数及其应用(时间:70分钟 满分:104分)Ⅰ.小题提速练(限时45分钟)(一)选择题(本大题共12小题,每小题5分)1.命题“∃x 0∈∁R Q ,x 30∈Q ”的否定是( )A .∃x 0∉∁R Q ,x 30∈QB .∃x 0∈∁R Q ,x 30∉QC .∀x ∉∁R Q ,x 3∈QD .∀x ∈∁R Q ,x 3∉Q解析:选D 根据特称命题的否定为全称命题知D 正确. 2.(2015·安徽高考)下列函数中,既是偶函数又存在零点的是( ) A .y =ln x B .y =x 2+1 C .y =sin xD .y =cos x解析:选D A 是非奇非偶函数,故排除;B 是偶函数,但没有零点,故排除;C 是奇函数,故排除;y =cos x 是偶函数,且有无数个零点.3.(2015·南昌一模)若集合A ={}x |1≤3x ≤81,B ={}x |log 2x 2-x,则A ∩B =()A .(2,4]B .[2,4]C .(-∞,0)∪(0,4]D .(-∞,-1)∪[0,4]解析:选A 因为A ={}x |1≤3x≤81 ={}x |30≤3x ≤34={}x |0≤x ≤4, B ={}x |log 2x 2-x={}x |x 2-x >2={}x |x <-1或x >2,所以A ∩B ={}x |0≤x ≤4∩{}x |x <-1或x >2={}x |2<x ≤4=(2,4].4.(2016·陕西质检)已知直线y =-x +m 是曲线y =x 2-3ln x 的一条切线,则m 的值为( )A .0B .2C .1D .3解析:选B 因为直线y =-x +m 是曲线y =x 2-3ln x 的切线,所以令y ′=2x -3x =-1,得x =1或x =-32(舍),即切点为(1,1),又切点(1,1)在直线y =-x +m 上,所以m =2.5.(2016·南昌二中模拟)下列说法正确的是( )A .命题“若x 2=1,则x =1”的否命题为:“若x 2=1,则x ≠1”B .已知y =f (x )是R 上的可导函数,则“f ′(x 0)=0”中“x 0是函数y =f (x )的极值点”的必要不充分条件C .命题“存在x 0∈R ,使得x 20+x 0+1<0”的否定是:“对任意x ∈R ,均有x 2+x +1<0”D .命题“角α的终边在第一象限,则α是锐角”的逆否命题为真命题解析:选B 选项A 不正确,∵不符合否命题的定义;选项B 显然正确;选项C 不正确,命题“存在x 0∈R ,使得x 20+x 0+1<0”的否定是:“对任意x ∈R ,均有x 2+x +1≥0”;对于选项D ,原命题是假命题,故逆否命题也为假命题,故选B.6.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x ≥1,x +c ,x <1,则“c =-1”是“函数f (x )在R 上递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 若函数f (x )在R 上递增,则需log 21≥c +1,即c ≤-1.由于c =-1⇒c ≤-1,但c ≤-1⇒/ c =-1,所以“c =-1”是“f (x )在R 上递增”的充分不必要条件.7.已知函数f (x )=⎩⎪⎨⎪⎧3x, x ≤1,log 13x , x >1,则函数y =f (1-x )的大致图象是()解析:选D 当x =0时,y =f (1)=3,即y =f (1-x )的图象过点(0,3),排除A ;当x =-2时,y =f (3)=-1,即y =f (1-x )的图象过点(-2,-1),排除B ;当x =-13时,y =f ⎝⎛⎭⎫43 =log 1343<0,即y =f (1-x )的图象过点⎝ ⎛⎭⎪⎫-13,log 1343 ,排除C. 8.(2016·宁夏中宁一中月考)设f (x )是定义在R 上以2为周期的偶函数,已知x ∈(0,1)时,f (x )=log 12(1-x ),则函数f (x )在(1,2)上( )A .是增函数且f (x )<0B .是增函数且f (x )>0C .是减函数且f (x )<0D .是减函数且f (x )>0解析:选D 设-1<x <0,则0<-x <1,f (-x )=log 12(1+x )=f (x )>0,故函数f (x )在(-1,0)上单调递减.又因为f (x )以2为周期,所以函数f (x )在(1,2)上也单调递减且有f (x )>0.9.(2016·湖南调研)已知函数f (x )=ln x -⎝⎛⎭⎫12x -2的零点为x 0,则x 0所在的区间是( ) A .(0,1) B .(1,2) C .(2,3)D .(3,4)解析:选C ∵f (x )=ln x -⎝⎛⎭⎫12 x -2在(0,+∞)上是增函数, 又f (1)=ln 1-⎝⎛⎭⎫12 -1=ln 1-2<0, f (2)=ln 2-⎝⎛⎭⎫12 0<0, f (3)=ln 3-⎝⎛⎭⎫12 1>0, ∴x 0∈(2,3).10.(2016·洛阳统考)设函数f (x )=x |x -a |,若对∀x 1,x 2∈[3,+∞),x 1≠x 2,不等式f (x 1)-f (x 2)x 1-x 2>0恒成立,则实数a 的取值范围是( )A .(-∞,-3]B .[-3,0)C .(-∞,3]D .(0,3]解析:选C 由题意分析可知条件等价于f (x )在[3,+∞)上单调递增,又∵f (x )=x |x -a |,∴当a ≤0时,结论显然成立,当a >0时,f (x )=⎩⎪⎨⎪⎧x 2-ax ,x ≥a ,-x 2+ax ,x <a ,∴f (x )在⎝⎛⎭⎫-∞,a 2上单调递增,在⎝⎛⎭⎫a 2,a 上单调递减,在(a ,+∞)上单调递增,∴0<a ≤3.综上,实数a 的取值范围是(-∞,3].11.(2015·全国卷Ⅰ)设函数y =f (x )的图象与y =2x+a的图象关于直线y =-x 对称,且f (-2)+f (-4)=1,则a =( )A .-1B .1C .2D .4解析:选C 设(x ,y )为函数y =f (x )的图象上任意一点,则(-y ,-x )在y =2x +a的图象上,所以有-x =2-y +a,从而有-y +a =log 2(-x )(指数式与对数式的互化), 所以y =a -log 2(-x ), 即f (x )=a -log 2(-x ),所以f (-2)+f (-4)=(a -log 22)+(a -log 24)=(a -1)+(a -2)=1,解得a =2.故选C. 12.设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0使得f (x 0)<0,则a 的取值范围是( )A.⎣⎡⎭⎫-32e ,1 B.⎣⎡⎭⎫-32e ,34 C.⎣⎡⎭⎫32e ,34D.⎣⎡⎭⎫32e ,1解析:选D ∵f (0)=-1+a <0,∴x 0=0. 又∵x 0=0是唯一使f (x )<0的整数,∴⎩⎪⎨⎪⎧f (-1)≥0,f (1)≥0, 即⎩⎪⎨⎪⎧e -1[2×(-1)-1]+a +a ≥0,e (2×1-1)-a +a ≥0,解得a ≥32e .又∵a <1,∴32e≤a <1.(二)填空题(本大题共4小题,每小题5分)13.(2016·江门调研)若f (x )=⎩⎪⎨⎪⎧-x ,x ≤0,x 2-2x ,x >0,则f (x )的最小值是________.解析:当x ≤0时,f (x )=-x ,此时f (x )min =0; 当x >0时,f (x )=x 2-2x =(x -1)2-1, 此时f (x )min =-1.综上,当x ∈R 时,f (x )min =-1. 答案:-114.已知函数f (x )=x -2m 2+m +3(m ∈Z)为偶函数,且f (3)<f (5),则m =________. 解析:因为f (x )是偶函数, 所以-2m 2+m +3应为偶数.又f (3)<f (5),即3-2m 2+m +3<5-2m 2+m +3, 整理得⎝⎛⎭⎫35 -2m 2+m +3<1, 所以-2m 2+m +3>0,解得-1<m <32.又m ∈Z ,所以m =0或1.当m =0时,-2m 2+m +3=3为奇数(舍去); 当m =1时,-2m 2+m +3=2为偶数. 故m 的值为1. 答案:115.里氏震级M的计算公式为M=lg A-lg A0,其中A是测震仪记录的地震曲线的最大振幅,A0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1 000,此时标准地震的振幅为0.001,则此次地震的震级为________级;9级地震的最大振幅是5级地震的最大振幅的________倍.解析:根据题意,由lg 1 000-lg 0.001=6得此次地震的震级为6级.因为标准地震的振幅为0.001,设9级地震的最大振幅为A9,则lg A9-lg 0.001=9,解得A9=106,同理5级地震的最大振幅A5=102,所以9级地震的最大振幅是5级地震的最大振幅的10 000倍.答案:610 00016.已知函数f(x)的定义域为[-1,5],部分对应值如下表:f(x)的导函数y=f′(x)的图象如图所示.下列关于函数f(x)的命题:①函数f(x)的值域为[1,2];②函数f(x)在[0,2]上是减函数;③如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4;④当1<a<2时,函数y=f(x)-a最多有4个零点.其中真命题的序号是________.解析:由导数图象可知,当-1<x<0或2<x<4时,f′(x)>0,函数单调递增,当0<x<2或4<x<5时,f′(x)<0,函数单调递减,当x=0和x=4时,函数取得极大值f(0)=2,f(4)=2,当x=2时,函数取得极小值f(2)=1.5.又f(-1)=f(5)=1,所以函数的最大值为2,最小值为1,值域为[1,2],①正确.②正确.因为当x=0和x=4时,函数取得极大值f(0)=2,f(4)=2,要使当x∈[-1,t]时函数f(x)的最大值是2,则t 的最大值为5,所以③不正确. 由f (x )=a ,因为极小值f (2)=1.5,极大值为f (0)=f (4)=2, 所以当1<a <2时,y =f (x )-a 最多有4个零点, 所以④正确.故真命题的序号为①②④. 答案:①②④Ⅱ.大题规范练(限时25分钟)17.(本小题满分12分)设f (x ) =a (x -5)2+6ln x ,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线与y 轴相交于点(0,6).(1)确定a 的值;(2)求函数f (x )的单调区间与极值. 解:(1)因为f (x )=a (x -5)2+6ln x (x >0), 故f ′(x )=2a (x -5)+6x.令x =1,得f (1)=16a ,f ′(1)=6-8a , 所以曲线y =f (x )在点(1,f (1))处的切线方程为 y -16a =(6-8a )·(x -1),由点(0,6)在切线上可得6-16a =8a -6, 故a =12.(2)由(1)知,f (x )=12(x -5)2+6ln x (x >0),f ′(x )=x -5+6x =(x -2)(x -3)x .令f ′(x )=0,解得x =2或x =3. 当0<x <2或x >3时,f ′(x )>0, 故f (x )在(0,2),(3,+∞)上为增函数; 当2<x <3时,f ′(x )<0, 故f (x )在(2,3)上为减函数.由此可知f (x )在x =2处取得极大值f (2)=92+6ln 2,在x =3处取得极小值f (3)=2+6ln 3.18.(本小题满分12分)已知函数f (x )=k ·a -x (k ,a 为常数,a >0且a ≠1)的图象过点A (0,1),B (3,8).(1)求实数k ,a 的值;(2)若函数g (x )=f (x )-1f (x )+1,试判断函数g (x )的奇偶性,并说明理由. 解:(1)把A (0,1),B (3,8)的坐标代入f (x )=k ·a -x,得⎩⎪⎨⎪⎧k ·a 0=1,k ·a -3=8. 解得k =1,a =12.(2)g (x )是奇函数.理由如下: 由(1)知f (x )=2x , 所以g (x )=f (x )-1f (x )+1=2x -12x +1.函数g (x )的定义域为R , 又g (-x )=2-x -12-x +1=2x ·2-x -2x2x ·2-x +2x=-2x -12x +1=-g (x ),所以函数g (x )为奇函数.附加卷:集合与常用逻辑用语、函数、导数及其应用(教师备选)(时间:70分钟 满分:104分)Ⅰ.小题提速练(限时45分钟)(一)选择题(本大题共12小题,每小题5分)1.已知集合A ={}a ,0,B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪y =lg x 5-2x ,x ∈Z ,如果A ∩B ≠∅,则a =( )A.52 B .1 C .2D .1或2解析:选D 由题意得B =⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <52,x ∈Z ={}1,2,则由A ∩B ≠∅,得a =1 或2.2.(2016·长沙一模)已知函数f (x )=⎩⎨⎧x 12,x >0,⎝⎛⎭⎫12 x,x ≤0,则f [f (-4)]=( )A .-4B .4C .-14D.14解析:选B 因为f (-4)=⎝⎛⎭⎫12 -4=16,所以f [f (-4)]=f (16)=(16)12=4.3.已知函数f (x )=(m 2-m -1)x -5m -3是幂函数且是(0,+∞)上的增函数,则m 的值为( )A .2B .-1C .-1或2D .0解析:选B 因为函数f (x )为幂函数,所以m 2-m -1=1,即m 2-m -2=0,解得m =2或m =-1.因为该幂函数在(0,+∞)上是增函数,所以-5m -3>0,即m <-35.所以m=-1.4.已知命题p :∃x 0∈(-∞,0),3x 0<4x 0,命题q :∀x ∈⎝⎛⎭⎫0,π2 ,tan x >x .则下列命题中为真命题的是( )A .p ∧qB .p ∨(綈q )C .p ∧(綈q )D .(綈p )∧q解析:选D 由指数函数的单调性可知命题p :∃x 0∈(-∞,0),3x 0<4x 0为假,则命题綈p 为真;易知命题q :∀x ∈⎝⎛⎭⎫0,π2 ,tan x >x 为真,则命题綈q 为假.根据复合命题的真值表可知命题p ∧q 为假,命题p ∨(綈q )为假,命题p ∧(綈q )为假 ,命题(綈p )∧q 为真.5.(2016·沧州质检)如果函数f (x )=x 2+bx +c 对任意的x 都有f (x +1)=f (-x ),那么( )A .f (-2)<f (0)<f (2)B .f (0)<f (-2)<f (2)C .f (2)<f (0)<f (-2)D .f (0)<f (2)<f (-2)解析:选D 由f (1+x )=f (-x )知f (x )的图象关于直线x =12对称,又抛物线f (x )开口向上,∴f (0)<f (2)<f (-2).6.(2015·云南二检)设a =3log 132,b =log 1213,c =23,则下列结论正确的是( )A .a <b <cB .a <c <bC .b <a <cD .b <c <a解析:选B a =3log 132<0,1<b =log 1213=log 23<2,0<c =23<1,故a <c <b . 7.已知函数f (x )是R 上的偶函数,g (x )是R 上的奇函数,且g (x )=f (x -1),若f (0)=2,则f (2 016)的值为( )A .2B .0C .-2D .±2解析:选A ∵g (-x )=f (-x -1),∴-g (x )=f (x +1). 又g (x )=f (x -1),∴f (x +1)=-f (x -1), ∴f (x +2)=-f (x ),f (x +4)=-f (x +2)=f (x ), 则f (x )是以4为周期的周期函数, 所以f (2 016)=f (0)=2.8.已知定义在R 上的奇函数f (x )和偶函数g (x )满足f (x )+g (x )=a x -a -x +2(a >0,且a ≠1).若g (2)=a ,则f (2)等于( )A .2 B.154 C.174D .a 2解析:选B ∵f (x )为奇函数,g (x )为偶函数, ∴f (-2)=-f (2),g (-2)=g (2)=a , ∵f (2)+g (2)=a 2-a -2+2,①∴f (-2)+g (-2)=g (2)-f (2)=a -2-a 2+2,②由①,②联立得g (2)=a =2,f (2)=a 2-a -2=154. 9.已知函数f (x )=x 2-bx +a 的图象如图所示,则函数g (x )=ln x +f ′(x )的零点所在的区间是( )A.⎝⎛⎭⎫14,12B.⎝⎛⎭⎫12,1 C .(1,2) D .(2,3)解析:选B 由题图可知f (x )的对称轴x =b 2∈⎝⎛⎭⎫12,1,则1<b <2,易知g (x )=ln x +2x -b ,则g ⎝⎛⎭⎫14 =-2ln 2+12-b <0,g ⎝⎛⎭⎫12 =-ln 2+1-b <0,g (1)=2-b >0,故g (x )的零点所在的区间是⎝⎛⎭⎫12,1.10.某房地产公司计划出租70套相同的公寓房.当每套房月租金定为3 000元时,这70套公寓能全租出去;当月租金每增加50元时(设月租金均为50元的整数倍),就会多一套房子不能出租.设租出的每套房子每月需要公司花费100元的日常维修等费用(设租不出的房子不需要花这些费用).要使公司获得最大利润,每套房月租金应定为( )A .3 000元B .3 300元C .3 500元D .4 000元解析:选B 由题意,设利润为y 元,租金定为3 000+50x 元(0≤x ≤70,x ∈N). 则y =(3 000+50x )(70-x )-100(70-x ) =(2 900+50x )(70-x ) =50(58+x )(70-x ) ≤50⎝⎛⎭⎫58+x +70-x 22≤204 800,当且仅当58+x =70-x ,即x =6时,等号成立,故每月租金定为3 000+300=3 300(元)时,公司获得最大利润.11.设函数f (x )=⎩⎪⎨⎪⎧m +x 2,|x |≥1,x ,|x |<1的图象过点(1,1),函数g (x )是二次函数,若函数f (g (x ))的值域是[0,+∞),则函数g (x )的值域是( )A .(-∞,-1]∩[1,+∞)B .(-∞,-1]∪[0,+∞)C .[0,+∞)D .[1,+∞)解析:选C 因为函数f (x )=⎩⎪⎨⎪⎧m +x 2,|x |≥1,x ,|x |<1的图象过点(1,1),所以m +1=1,解得m =0,所以f (x )=⎩⎪⎨⎪⎧x 2,|x |≥1,x ,|x |<1,因为函数g (x )是二次函数,值域不会是选项A ,B ,画出函数y =f (x )的图象(如图所示),易知,当g (x )的值域是[0,+ ∞)时,f (g (x ))的值域是[0,+∞).12.已知定义在R 上的函数f (x )满足:①对任意x ∈R ,有f (x +2)=2f (x );②当x ∈[-1,1]时,f (x )=1-x 2.若函数g (x )=⎩⎪⎨⎪⎧e x (x ≤0),ln x (x >0),则函数y =f (x )-g (x )在区间(-4,5)上的零点个数是( )A .7B .8C .9D .10解析:选C 函数f (x )与g (x )在区间[-5,5]上的图象如图所示,由图可知,函数f (x )与g (x )的图象在区间(-4,5)上的交点个数为9,即函数y =f (x )-g (x )在区间(-4,5)上零点的个数是9.(二)填空题(本大题共4小题,每小题5分)13.函数y =log 13(2x +1)(1≤x ≤3)的值域为________.解析:当1≤x ≤3时,3≤2x +1≤9, 所以-2≤y ≤-1,所求的值域为[-2,-1]. 答案:[-2,-1] 14.若函数y =xx -m在区间(1,+∞)内是减函数,则实数m 的取值范围是________. 解析:y =x x -m =1+mx -m ,由函数的图象及性质可得0<m ≤1.答案:(0,1]15.(2016·台州调考)若函数f (x )=1ax 2+bx +c(a ,b ,c ∈R)的部分图象如图所示,则b=________.解析:令g (x )=ax 2+bx +c ,由图象可知,1,3是ax 2+bx +c =0的两个根,因此a +b +c =0,9a +3b +c =0,又函数f (x )的图象过点(2,-1),则f (2)=-1,即4a +2b +c =-1,因此可得a =1,c =3,b =-4.答案:-416.关于函数f (x )=lg x 2+1|x |(x ≠0,x ∈R)有下列命题:①函数y =f (x )的图象关于y 轴对称;②在区间(-∞,0)上,函数y =f (x )是减函数; ③函数f (x )的最小值为lg 2;④在区间(1,+∞)上,函数f (x )是增函数. 其中是真命题的序号为________.解析:∵函数f (x )=lg x 2+1|x |(x ≠0,x ∈R),显然f (-x )=f (x ),即函数f (x )为偶函数,图象关于y 轴对称,故①正确;当x >0时,f (x )=lg x 2+1x =lg ⎝⎛⎭⎫x +1x ,令t (x )=x +1x ,x >0,则t ′(x )=1-1x 2,可知当x ∈(0,1)时,t ′(x )<0,t (x )单调递减,当x ∈(1,+∞)时,t ′(x )>0,t (x )单调递增,即在x =1处取到最小值为2.由偶函数的图象关于y 轴对称及复合函数的单调性可知②错误,③正确,④正确,故答案为①③④.答案:①③④Ⅱ.大题规范练(限时25分钟)17.(本小题满分12分)已知集合A ={}x |x 2-2x -3≤0,B ={x |x 2-2mx +m 2-9≤0},m ∈R.(1)若m =3,求A ∩B ;(2)已知命题p :x ∈A ,命题q :x ∈B ,若q 是p 的必要条件,求实数m 的取值范围. 解:(1)由题意知,A ={}x |-1≤x ≤3, B ={}x |m -3≤x ≤m +3. 当m =3时,B ={}x |0≤x ≤6, ∴A ∩B =[0,3].(2)由q 是p 的必要条件知,A ⊆B ,结合(1)知⎩⎪⎨⎪⎧m -3≤-1,m +3≥3解得0≤m ≤2.故实数m 的取值范围是[0,2].18.(本小题满分12分)(2016·辽宁五校联考)已知函数f (x )=ln x +1x +ax (a 是实数),g (x )=2xx 2+1+1. (1)当a =2时,求函数f (x )在定义域上的最值;(2)若函数f (x )在[1,+∞)上是单调函数,求a 的取值范围;(3)是否存在正实数a 满足:对于任意x 1∈[1,2],总存在x 2∈[1,2],使得f (x 1)=g (x 2)成立?若存在,求出a 的取值范围,若不存在,说明理由.解:(1)当a =2时,f (x )=ln x +1x +2x ,x ∈(0,+∞), f ′(x )=1x -1x 2+2=2x 2+x -1x 2=(2x -1)(x +1)x 2,令f ′(x )=0,得x =-1或x =12.。

2018版高考数学(文科,北师大版)一轮复习课件-选修4—5 不等式选讲 (共43张PPT)

2018版高考数学(文科,北师大版)一轮复习课件-选修4—5 不等式选讲 (共43张PPT)

.
-22考点1 考点2 考点3 考点4 考点5
解题心得求y=|x-a|+|x-b|或y=|x+a|-|x-b|型的最值,利用绝对值三 角不等式最方便.形如y=|x-a|+|x-b|的函数只有最小值,形如y=|x-a||x-b|的函数既有最大值又有最小值.
-23考点1 考点2 考点3 考点4 考点5
关闭
(1)√ (2)√ (3)√ (4)× (5)√
答案
-9知识梳理 双基自测 自测点评
1
2
3
4
5
2.(2015 南昌模拟)若不等式 ������ + ������ >|a-2|+1 对于一切非零实数 x 均成立,则实数 a 的取值范围是(
A.2<a<3 C.1<a<3 B.1<a<2 D.1<a<4
-15考点1 考点2 考点3 考点4 考点5
解 (1)当a=2时,f(x)=|2x-2|+2. 解不等式|2x-2|+2≤6得-1≤x≤3. 因此f(x)≤6的解集为{x|-1≤x≤3}. (2)当x∈R时, f(x)+g(x)=|2x-a|+a+|1-2x| ≥|2x-a+1-2x|+a=|1-a|+a, 1 当x= 时等号成立,所以当x∈R时,f(x)+g(x)≥3等价于|12 a|+a≥3.① (分类讨论) 当a≤1时,①等价于1-a+a≥3,无解. 当a>1时,①等价于a-1+a≥3,解得a≥2. 所以a的取值范围是[2,+∞).
关闭
由柯西不等式可知(a2+b2)(m2+n2)≥(ma+nb)2,即 5(m2+n2)≥25,当且 仅当 an=bm 时,等号成立,故 ������2 + ������ 2 ≥ 5.

高考复习课件高考二轮文科数学专题8第23讲不等式选讲

高考复习课件高考二轮文科数学专题8第23讲不等式选讲
所以 a 的取值范围是(-∞,-2].
【点评】本题考查绝对值不等式的解法,不等式 恒成立问题.
3.不等式的证明
例3已知 a,b,c 为正实数,求证: (1)ab2+ba2≥a+b;(2)ab2+bc2+ca2≥a+b+c.
【解析】(1)ab2+b≥ ab2·b=2a,同理ba2+a≥2b. ∴ab2+ba2+a+b≥2(a+b),∴ab2+ba2≥a+b, ∴原不等式成立. (2)∵ab2+b≥2 ab2·b=2a,同理bc2+c≥2b,ca2+ a≥2c.∴ab2+bc2+ca2+a+b+c≥2(a+b+c), ∴ab2+bc2+ca2≥a+b+c,∴原不等式成立. 【点评】本题考查不等式的证明和基本不等式的
②若 a+ b> c+ d,则( a+ b)2>( c+ d)2, 即 a+b+2 ab>c+d+2 cd. 因为 a+b=c+d,所以 ab>cd. 于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c- d)2. 因此|a-b|<|c-d|. 综上, a+ b> c+ d是|a-b|<|c-d|的充要条 件.
【解析】a>-1
8.已知集合 A={x∈R||x+3|+|x-4|≤9},B= x∈R|x=4t+1t -6,t∈(0,+∞),则集合 A∩B =____________.
【解析】{x|-2≤x≤5} |x+3|+|x-4|≤9,当 x<-3 时,-x-3-(x- 4)≤9,即-4≤x<-3;当-3≤x≤4 时,x+3-(x- 4)=7≤9 恒成立;当 x>4 时,x+3+x-4≤9,即 4<x≤5. 综上所述,A={x|-4≤x≤5}.又∵x=4t+1t -6,t∈ (0,+∞),∴x≥2 4t·1t -6=-2,当 t=12时取等号. ∴B={x|x≥-2},∴A∩B={x|-2≤x≤5}.

高考数学文科二轮专题攻略课件:第十七讲 不等式选讲

高考数学文科二轮专题攻略课件:第十七讲 不等式选讲

考点聚焦 栏目索引
2.|x-a|+|x-b|≥c(c>0),|x-a|+|x-b|≤c(c>0)型不等式的解法 (1)令每个绝对值符号里的一次式为0,求出相应的根;
高考导航
(2)把这些根由小到大排序,它们把数轴分为若干个区间; (3)在所分区间上,根据绝对值的定义去掉绝对值符号,讨论所得 的不等式在这个区间上的解集; (4)这些解集的并集就是原不等式的解集.
∴原不等式可化为|x-1|≥2x2,即x-1≥2x2或x-1≤-2x2,
解得-1≤x≤
1 2
,故不等式的解集为
x
|
1
x
1 2
.
(2)不等式g(x)+c≤f(x)-|x-1|可化为|x-1|≤2x2-c,
即c≤2x2-|x-1|恒成立,
令函数F(x)=
2x2
2
x2
x x
1, 1,
x x
1, 1,
称,且f(x)=x2+2x.
高考导航
(1)解关于x的不等式g(x)≥f(x)-|x-1|;
(2)如果∀x∈R,不等式g(x)+c≤f(x)-|x-1|恒成立,求实数c的取值范
围.
考点聚焦 栏目索引
解析 (1)∵函数f(x)和g(x)的图象关于原点对称,
∴g(x)=-f(-x)=-x2+2x, 高考导航
n
n
n
5.ai∈R,bi∈R(i=1,2,…,n),
i 1
ai2
i 1
bi2
≥(
aibi)2.
i 1
考点聚焦 栏目索引
已知函数f(x)=|x-1|.
高考导航
(1)求不等式f(x)≥3-2|x|的解集;

高考数学复习备战:最新真题解析—不等式选讲

高考数学复习备战:最新真题解析—不等式选讲
(2)基本不等式:如果a,b>0,那么 ,当且仅当a=b时,等号成立.用语言可以表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数.
(3)算术平均—几何平均定理(基本不等式的推广):对于n个正数a1,a2,…,an,它们的算术平均数不小于它们的几何平均数,即 ,当且仅当a1=a2=…=an时,等号成立.
(2)法一:利用基本不等式得到 ,再利用不等式的基本性质证明;法二:利用Cauchy不等式证明.
(1)∵ , , 都为正整数,且 .
∴ ,
当且仅当 时“=”成立.
(2)法一:由题意得
①+②+③,得 ,
当且仅当 时“=”成立.
法二:由Cauchy不等式,得 .
令 ,
则 .
令 ,则 在 上单调递增.
∴ ,即 .
(1)当 时, 等价于 ,
该不等式恒成立,所以 ;
当 时, 等价于 ,
解得 ,此时不等式无解;
当 时, 等价于 ,解得 ,所以 .
综上所述,不等式的解为 .
(2)由 ,得 ,
当 时, 恒成立,所以 ;
当 时, 恒成立,
因为 ,
当且仅当 时取等号,所以 .综上所述, 的取值范围是 .
2.(2022·青海·模拟预测(理))已知函数 .
当 时, ,解得 ,
故不等式 的解集为 或 ;
(2)由(1)可知:
当 时, ,
当 时, ,
当 时, ,
故 的最小值为3,即 ,则 ,即
则 ,
当且仅当 时取等号,
故 的最小值为 .
3.(2022·河南·开封市东信学校模拟预测(理))已知函数 .
(1)求不等式 的解集;
(2)设 时, 的最小值为M.若正实数a,b,满足 ,求 的最小值.

专题十五 不等式选讲(讲解部分) 高考数学(课标版,文科)复习课件

专题十五 不等式选讲(讲解部分) 高考数学(课标版,文科)复习课件

例1 (2018东北三省三校第一次模拟,23)已知不等式|2x-5|+|2x+1|>ax-1. (1)当a=1时,求不等式的解集; (2)若不等式的解集为R,求a的取值范围.
解题导引 (1)利用零点分段法解不等式; (2)利用数形结合法求出直线的斜率,从而求得a的取值范围.
解析 (1)令f(x)=|2x-5|+|2x+1|,

2 a
+
1 b
=
1 2
2 a
1 b
(a+2b)=
1 2
2
2
a b
4b a

1 2
4
2
a b
4b a
=4,
当且仅当a=1,b= 1 时,等号成立.
2
∴ 2 + 1 的最小值为4.
ab
方法技巧
方法1 含绝对值不等式的解法
解法一:利用绝对值不等式的几何意义求解. 解法二:利用“零点分段法”求解. 解法三:通过构造函数,利用函数的图象求解.
-4x 4,x
则f(x)=|2x-5|+|2x+1|= 6,-
1 2
x
-1 2
5, 2
,
4x-4,x
5 2
,
因为a=1,所以当x≤- 1 时,由-4x+4>x-1,解得x<1,所以x≤- 1 ;
2
2
当- 1 <x≤ 5 时,由6>x-1,解得x<7,所以- 1 <x≤ 5 ;
22
22
当x> 5 时,由4x-4>x-1,解得x>1,所以x> 5 .

x 4, 2x-8
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式选讲专题(文科) 已知函数()23f x x x =-++.
(1)求不等式()15f x ≤的解集;
(2)若()2x a f x -+≤对x ∈R 恒成立,求a 的取值范围.
【答案】(1)[]87-,;(2)(]5-∞,.
【解析】(1)因为()213532 212x x f x x x x --<-⎧⎪=-⎨⎪+>⎩
≤≤,
所以当3x <-时,由()15f x ≤得83x -<-≤;
当32x -≤≤时,由()15f x ≤得32x -≤≤;
当2x >时,由()15f x ≤得27x <≤,
综上,()15f x ≤的解集为[]87-,;
(2)【方法一】由()2x a f x -+≤得()2a x f x +≤,
因为()()()235f x x x --+=≥,当且仅当32x -≤≤取等号,
所以当32x -≤≤时,()f x 取得最小值5.
所以,当0x =时,()2x f x +取得最小值5,
故5a ≤,即a 的取值范围为(]5-∞,.
【方法二】设()2g x x a =-+,则()()0max g x g a ==,
当32x -≤≤时,()f x 的取得最小值5,
所以当0x =时,()2x f x +取得最小值5,
故5a ≤,即a 的取值范围为(]5-∞,.
一、(优质试题广西高三下学期第二次模拟
已知函数()22f x x =-,()g x x a =-.
(1)若1a =,解不等式()()3f x g x +≥;
(2)若不等式()()f x g x >至少有一个负数解,求实数a 的取值范围.
【答案】(1){}1|0x x -≤≤.(2)9,24⎛⎫- ⎪⎝⎭
. 【解析】(1)若1a =,则不等式()()3f x g x +≥化为2213x x +--≥.
当1x ≥时,2213x x +--≥,即220x x -+≤,2
17024x ⎛⎫-+ ⎪⎝⎭≤不成立; 当1x <时,2213x x -+-≥,即20x x +≤,解得10x -≤≤.
综上,不等式()()3f x g x +≥的解集为{}1|0x x -≤≤.
(2)作出()y f x =的图象如图所示,当0a <时,()g x 的图象如折线①所示, 由2 2y x a
y x =-=-⎧⎨⎩得220x a x +--=,若相切,则()1420a ∆=++=,得94a =-, 数形结合知,当94a ≤-时,不等式无负数解,则904
a -<<. 当0a =时,满足()()f x g x >至少有一个负数解.
当0a >时,()g x 的图象如折线②所示,
此时当2a =时恰好无负数解,数形结合知,
当2a ≥时,不等式无负数解,则02a <<.
综上所述,若不等式()()f x g x >至少有一个负数解,
则实数a 的取值范围是9,24⎛⎫- ⎪⎝⎭
. 二、(优质试题四川广元高三下学期第二次统
已知()211f x x x =++-.
(1)求()f x 在[]1,1-上的最大值m 及最小值n ;
(2)a ,b ∈R ,设1am bn +=,求22a b +的最小值.
【答案】(1)3,32;(2)445
. 【解析】(1)∵()3112 1 2132x x f x x x x x ⎧⎪≥⎪⎪=+-≤<⎨⎪⎪-<-⎪⎩
, ∴[]1,1x ∈-时,()max 3f x =,()min 32
f x =. (2)3312
am bn a b +=+=, ()222222223321494539342a b a b ⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭∴+==⎛⎫++ ⎪⎝⎭≥;22a b +的最小值为445.
三、(优质试题湖北八校高三第一次。

相关文档
最新文档