桩基沉降量计算
《桩基沉降计算》课件

02
桩基沉降计算理论基础
弹性力学基础
弹性力学基本方程
包括平衡方程、几何方程 和本构方程,用于描述物 体的受力、变形和应力之 间的关系。
弹性力学基本假设
连续性、均匀性、各向同 性、线性和小变形等假设 ,为弹性力学的基本前提 。
弹性力学基本概念
如应力、应变、弹性模量 等,是进行桩基沉降计算 的重要理论基础。
06
桩基沉降计算的发展趋势与 展望
发展趋势一:计算方法的改进
总结词
计算方法的改进是桩基沉降计算领域的重要发展趋势之一。
详细描述
随着数值计算理论的不断发展和计算机技术的进步,桩基沉 降计算的方法也在不断改进。新的计算方法能够更准确地模 拟桩基的沉降行为,提高计算精度和可靠性。
发展趋势二:数值模拟技术的发展
详细描述
随着人工智能和机器学习技术的快速发展, 智能化技术在桩基沉降计算中的应用逐渐成 为研究热点。通过智能化技术,可以实现自 动化建模、数据分析和预测等功能,提高计 算效率和精度,为工程实践提供更可靠的技 术支持。
感谢您的观看
THANKS
实例二:复杂桩基沉降计算
总结词
考虑多种因素,复杂模型
详细描述
介绍复杂桩基沉降计算的方法,包括考虑土层分布、地下水位、桩身材料等因素 对沉降的影响,以及如何建立复杂的数学模型进行计算。
实例三:实际工程桩基沉降计算
总结词
实际工程应用,案例分析
详细描述
通过实际工程案例,介绍桩基沉降计算的实践应用,包括数据采集、模型建立、计算过程和结果分析等步骤,以 及如何根据计算结果进行工程设计和优化。
示计算结果和数据。
软件二:Midas介绍
总结词
用户友好、易于上手、广泛使用
桩基沉降计算

筒仓桩基沉降计算计算依据1、《建筑桩基技术规范》(JGJ94-20082、《益海嘉里(哈尔滨)食品工业有限公司项目场地岩土工程勘察报告》(详细勘察)核工业工程勘察院,2010.6一、荷载1、恒载229600kN2、粮食328000kN准永久组合459200kN等效作用面积筏板BC27.92mLC65.3m桩长l25m承台厚度h2m承台底面荷载效应准永久组合附加值p259.4681685等效作用面以上土重911588kN等效作用面底的土自重应力450kPa等效作用面底的附加应力P0259.4681685kPa2、沉降计算2.1计算深度确定根据桩基规范5.5.8条бz≤0.2бc计算深度Z240.2бc176.4将等效作用面划分为4个矩形a=Lc/232.65b=Bc/213.96a/b 2.3Z/b 1.7根据规范附录D,附加应力系数а0.14335查表бz=4*а*б=148.7790478满足要求2.2桩基等效沉降系数桩总数n400nb=(n*Bc/Lc)^0.513.07769222根据附录ESa= 1.5d=0.5Sa/d=3L/d=50Lc/Bc= 2.3查表确定,C0,C1,C2C00.0792C1 1.7637C29.7756ψe=C0+(nb-1)/(C1*(nb-1)+C2)=0.4678373272.3中点沉降计算按照5#钻孔进行计算计算深度范围内土层12土性粉质粘土粉砂厚度(m)420等效作用面底的附加应力P0259.4681685259.4681685等效作用面底的土自重应力450450土层底土自重应力522882土层底土自重应力+附加应力781.46816851141.468169Es(MPa) 5.5513.8a32.6532.65b13.9613.96a/b 2.3 2.3Z/b0.3 1.7查表,该层土附加应力系数а0.24650.15455Ai0.986 2.7232Ai/Es0.1776576580.197333333计算深度内ES的当量值 9.891437632沉降经验系数ψ为 1.2查表,该层土平均附加应力系数ā00.2491380.2049754*ā00.9965520.8199考虑第2组筒仓,平均附加应力系数00总的平均附加应力系数0.9965520.8199Zi*āi 3.98620819.6776Z i*āi-Z i-1*āi-1 3.98620815.691392(Z i*āi-Z i-1*āi-1)/Es0.0007182360.001137057Σ(Zi*āi-Zi-1*āi-1)/Es0.001855293总沉降量s=ψ*ψe*P0*Σ(Zi*āi-Zi-1*āi-1)/Es270.2543689mm。
建筑讲座:桩基础沉降的计算

13
桩侧负摩阻力的危害
• 可见,桩侧负摩阻力的发生, 将使桩侧土的部分重力和地面 荷载通过负摩阻力传递给桩, 因此,桩的负摩阻力非但不 能成 为桩承载力的一部分.反而相 当于是施加于桩上的外荷载, 这就必然导致桩的承载力相对 降低、桩基沉降加大。
14
二、负摩阻力的计算
1.单桩负摩阻力的计算
(1)中性点的位置 中性点的位置取决于桩与桩侧土的相对 位移,原则上应根据桩沉降与桩周土沉降相 等的条件确定。 要精确计算中性点的位置是比较困难的, 目前多采用近似的估算方法,工程实 测表明,在可压缩土层 L0 的范围内, 中性点的稳定深度Ln是随桩端持力层 的强度和刚度的增大而增加的,其深 度比 Ln / L0 可按下表的经验取用。
18
(3) 下拉荷载的计算
下拉荷载 Fn为中性点深度 Ln 范围内 负摩阻力的累计值,可按下式计 算:
Fn u p lni ni
i 1
n
19
2 .群桩负摩阻力的计算
对于桩距较小的群桩,群桩所发生的负摩阻力因 群桩效应而降低,即小于相应的单桩值,这种 群桩效应可按等效圆法计算
群桩中任一单桩的下拉荷载:
28
(3)“m”法:假定kx随深度 成正比地增加,即是 kx=mz。我国铁道部门 首先采用这一方法,近 年来也在建筑工程和公 路桥涵的桩基设计中逐 渐推广。
浅谈桩基础沉降计算方法

浅谈桩基础沉降计算方法摘要:桩基础工程应用广泛,对桩基础的沉降计算研究一直是热点问题,本文介绍了常见的几种群桩沉降计算方法,弹性理论法、等代墩基法和等效分层总和法,就几种方法的计算原理和计算步骤做出简要介绍,希望对工程师有所借鉴。
桩基础一般是由桩和承台组成的基础形式,因具有较高的承载力,较好的抗震性能和稳定性,同时能够适应各种地质条件而在工业与民用建筑、桥梁工程、港口工程、船坞工程、边坡工程以及抗震工程中被广泛应用[1]。
1.群桩沉降计算方法桩基础的应用大都是以群桩的形式出现,例如独立建筑物的基础下面的桩以及墩基础等,通常都为群桩。
群桩与单桩的在竖向荷载的作用下的工作性能是有所区别的。
群桩效应在群桩沉降问题上表现得非常突出且相当重要,对于高承台的群桩而言,桩间应力之间的重叠效应改变了桩土之间的受力状态,虽然桩侧摩阻力会随着荷载的增大从桩顶开始逐渐向下发挥,但是群桩的沉降量要比单桩大得多,甚至有些群桩的沉降量是单桩的几十倍,而对于低承台型群桩而言,除了应力重叠的影响之外,承台与地基土之间的相互作用也使得群桩沉降的计算趋于复杂。
群桩沉降的计算方法有很多,根据他们的适用范围,可以归纳为以下几大类:弹性理论法、等代墩基法、等效作用分层总和法、原位测试估算法与经验法以及有限元法等。
1.1弹性理论法群桩沉降弹性理论分析与单桩沉降弹性理论分析的假定是基本相同的,弹性理论简化方法,即叠加法,叠加法[2]、[3]、[4]的主要内容:图1摩擦群桩的工作原理叠加法的计算原理可见图1,与摩擦单桩类似,对于有同样的m根桩的群桩,将每根单桩分成n个单元,每根桩每个单元的土位移方程为:(1-1)同样,桩端土的位移方程为:(1-2)式中:Iij,Iib分别为单元j 上的单位剪应力(τj)时以及桩端单位竖向应力(qb=1)基于每根单桩的荷载为未知量,所以求解上述m(n+1)个方程时还需假定与群桩性状有关的特殊条件。
一般情况下,最简单的两种情况为:(1)各单桩所承担得荷载相等,即为柔性承台桩基。
桩沉降计算(新桩基规范法)

桩基沉降计算
桩形状:圆形
桩直径d或边长b:0.70m
桩面积Ap:0.385m2
下承台底的平均附加压力F:270450KN
天然地基平均附加应力P0:601Kpa
地上层数32地下层数1
实际承台长度Lc:30m
实际承台宽度Bc:15m
承台总面积A:450.00m2
基础长宽比Lc/Bc: 2.00
总桩数n:70
桩长L:50m
桩距Sa: 3.00m
是否规则布桩?是附加应力σz:距径比Sa/d: 4.3自重应力0.2σc:
长径比L/d:71.4沉降计算长度Zn判断:短边布桩数nb:6
C0:0.063
C1: 1.811
C2:10.381
桩基等效沉降系数ψe:0.320
平均压缩模量Es:25.2Mpa
桩基沉降计算经验系数ψ:0.598
桩基中心点沉降量S:35.93mm
注:1、对于采用后注浆施工工艺的灌注桩,桩基沉降计算经验系数
应根据桩端持力土层类别,乘以0.7(砂、砾、卵石)~0.8(黏性土、粉土)折减系数;
2、饱和土中采用预制桩(不含复打、复压、引孔沉桩)时,
应根据桩距、土质、沉桩速率和顺序等因素,乘以1.3~1.8 挤土效应系数,
土的渗透性低,桩距小,桩数多,沉降速率快时取大值。
土层沉降计算表格
162.75Mpa
162.83Mpa
OK
(z。
桩基沉降计算

即上部结构荷载327.8250.174各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz121.3 3.367 3.70622.781142019.386 3.0400014.888 2.9200010.159 2.51402 6.506 2.117 2.264088 3.4972841 4.084 1.7720.710616 1.4636722 2.586 1.4480.899928 2.3920962 1.127 1.0780.392196 1.78085640.5710.8130.397416 2.68615280.1970.4630.274224 3.05950490.1230.3040.192618 2.25993680.0970.2170.135024 1.433936240.0830.1640.346608 3.251136300.0640.1010.33408 2.50278420.0490.0650.358092 2.25498290.0360.0430.181656 1.03002210.1927530.393521.28667即上部结构荷载327.8250.174各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz1 5.395 1.4870.938731.2282620 5.269 1.471000 4.912 1.427000 4.391 1.35902 3.787 1.274 1.317876 2.1046481 3.174 1.180.5522760.974682 2.605 1.0830.90654 1.7891162 1.6910.8980.588468 1.4834964 1.0840.7390.754464 2.441656单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷附加应力计算表 μ=0.4桩侧摩阻力沿桩身线性增m = 1.2 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )桩端阻力比α单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)L桩端阻力比α桩基沉降计算m = 1.1 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )L单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)80.4030.4670.560976 3.08593690.1990.3160.311634 2.34914480.1280.2270.178176 1.500016240.0960.1710.400896 3.389904300.0670.1060.34974 2.62668420.050.0690.3654 2.393748290.0370.0460.186702 1.1018847.41187826.4691717.76993即上部结构荷载327.8250.174各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz1 2.440.9040.424560.7467040 2.4150.899000 2.3420.886000 2.2260.86602 2.0770.8380.722796 1.3843761 1.9070.8050.3318180.664932 1.7250.7680.6003 1.2687362 1.3650.6890.47502 1.1382284 1.0470.6080.728712 2.00883280.5210.4340.725232 2.86787290.2780.3120.435348 2.31940880.170.2310.23664 1.526448240.1180.1760.492768 3.489024300.0730.110.38106 2.7258420.0520.0720.380016 2.497824290.0390.0490.196794 1.1737466.13106423.8119315.7045即上部结构荷载327.8250.174各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz1 1.4020.6290.2439480.5195540 1.3940.627000 1.370.622000 1.3320.613002 1.2810.6010.4457880.9928521 1.220.5870.212280.484862m = 1.3 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)L桩端阻力比αm = 1.4 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)L桩端阻力比α2 1.150.570.40020.9416420.9990.5320.3476520.87886440.8450.4890.58812 1.61565680.5220.3830.726624 2.53086490.3180.2930.497988 2.17816280.2040.2260.283968 1.493408240.140.1770.58464 3.508848300.0820.1130.42804 2.80014420.0560.0750.409248 2.6019290.040.0520.20184 1.2456085.37033621.7923614.24629即上部结构荷载792.8240.16各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz10.9180.4720.146880.3964800.9150.4710000.9050.4690000.8890.4640000.8680.4580000.8410.4510020.810.4420.25920.7425620.7380.4210.236160.7072860.660.3970.6336 2.0008880.4690.3310.60032 2.22432140.320.2680.7168 3.15168150.220.2150.528 2.709260.1560.1730.64896 3.77832300.090.1140.432 2.8728370.060.0770.3552 2.39316370.0430.0540.25456 1.678324.8116822.654837.80456即上部结构荷载792.8240.16各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz10.6540.3720.104640.3124800.6520.3710000.6470.3700m = 1.6 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )L桩端阻力比αm = 1.5 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)L桩端阻力比α单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)00.6390.3680000.6290.3640000.6150.360020.5990.3550.191680.596420.5620.3430.179840.5762460.5190.3280.49824 1.6531280.4040.2850.51712 1.9152140.3010.2410.67424 2.83416150.2210.20.5304 2.52260.1640.1650.68224 3.6036300.0970.1130.4656 2.8476370.0640.0790.37888 2.45532370.0450.0560.2664 1.740484.4892821.054635.15831即上部结构荷载792.8240.16各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz10.4920.3030.078720.2545200.4910.3030000.4890.3020000.4850.30000.4790.2990000.4710.2960020.4620.2930.147840.4922420.4410.2850.141120.478860.4160.2750.39936 1.38680.3440.2470.44032 1.65984140.2730.2150.61152 2.5284150.2120.1840.5088 2.3184260.1640.1560.68224 3.40704300.1020.1110.4896 2.7972370.0680.0790.40256 2.45532370.0480.0570.28416 1.771564.1862419.5493232.66936即上部结构荷载792.8240.16L桩端阻力比αm = 1.8 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)L桩端阻力比αm = 1.7 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)各圆环内的桩数k Ip Is αki Ip (1-α) ki Isσz10.3860.2530.061760.2125200.3860.2530000.3840.2530000.3820.2520000.3780.250000.3740.2490020.3690.2460.118080.4132820.3560.2410.113920.4048860.340.2350.3264 1.184480.2930.2150.37504 1.4448140.2440.1920.54656 2.25792150.1980.1680.4752 2.1168260.1590.1450.66144 3.1668300.1040.1070.4992 2.6964370.070.0780.4144 2.42424370.050.0570.296 1.771563.88818.093630.25523即上部结构荷载792.8240.16各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz10.3130.2160.050080.1814400.3120.2160000.3120.2150000.310.2140000.3080.2140000.3050.2120020.3020.2110.096640.3544820.2930.2070.093760.3477660.2830.2030.27168 1.0231280.2520.1890.32256 1.27008140.2170.1710.48608 2.01096150.1820.1530.4368 1.9278260.1510.1350.62816 2.9484300.1030.1030.4944 2.5956370.0720.0770.42624 2.39316370.0520.0580.30784 1.802643.6142416.8554428.17424即上部结构荷载792.8m = 1.9 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)L桩端阻力比α240.16各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz10.2590.1860.041440.1562400.2590.1860000.2590.1860000.2580.1860000.2560.1850000.2540.1840020.2520.1830.080640.3074420.2460.180.078720.302460.2390.1770.229440.8920880.2180.1670.27904 1.12224140.1920.1540.43008 1.81104150.1660.1390.3984 1.7514260.1420.1250.59072 2.73300.1010.0980.4848 2.4696370.0720.0750.42624 2.331370.0530.0570.31376 1.771563.3532815.64526.14902m = 2.0 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )桩端阻力比αL即上部结构荷载842.8240.16各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz10.2190.1630.035040.1369200.2190.1630000.2190.1630000.2180.1630000.2170.1620000.2160.1610020.2140.1610.068480.2704820.210.1590.06720.2671260.2050.1560.19680.7862480.190.1480.24320.99456140.1710.1380.38304 1.62288150.1510.1270.3624 1.6002260.1320.1150.54912 2.5116300.0980.0930.4704 2.3436370.0720.0730.42624 2.26884370.0530.0560.31376 1.740483.1156814.5429225.83797即上部结构荷载842.8240.16各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz10.1880.1440.030080.1209600.1880.1440000.1880.1440000.1880.1440000.1870.1430000.1860.1430020.1850.1420.05920.2385620.1820.1410.058240.2368860.1780.1390.170880.70056m = 2.2 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )取长期效应作用下的单桩平均附加荷载)表 μ=0.4线性增长分布单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)L桩端阻力比αm = 2.1 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)L桩端阻力比α降计算80.1670.1330.213760.89376140.1530.1250.34272 1.47150.1380.1160.3312 1.4616260.1220.1070.50752 2.33688300.0940.0870.4512 2.1924370.0710.070.42032 2.1756370.0540.0550.31968 1.70942.904813.536624.05697即上部结构荷载842.8240.16各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz10.1640.1290.026240.1083600.1640.1290000.1640.1280000.1630.1280000.1630.1280000.1620.1280020.1610.1270.051520.2133620.1590.1260.050880.2116860.1570.1250.150720.6380.1480.120.189440.8064140.1370.1140.30688 1.34064150.1250.1060.3 1.3356260.1130.0990.47008 2.16216300.0890.0820.4272 2.0664370.0690.0670.40848 2.08236370.0530.0540.31376 1.678322.695212.6352822.43147即上部结构荷载842.8240.16各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz10.1440.1160.023040.0974400.1440.1150000.1440.1150000.1440.1150000.1430.1150000.1430.11500单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)L桩端阻力比αm = 2.4 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )L桩端阻力比αm = 2.3 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)20.1420.1140.045440.1915220.1410.1140.045120.1915260.1390.1120.133440.5644880.1320.1090.168960.73248140.1240.1040.27776 1.22304150.1140.0980.2736 1.2348260.1040.0910.43264 1.98744300.0840.0780.4032 1.9656370.0670.0640.39664 1.98912370.0520.0520.30784 1.616162.5076811.793620.92555即上部结构荷载792.8240.16各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz10.1280.1040.020480.0873600.1280.1040000.1280.1040000.1280.1040000.1270.1040000.1270.1040020.1260.1030.040320.1730420.1250.1030.040.1730460.1240.1020.119040.5140880.1190.0990.152320.66528140.1120.0950.25088 1.1172150.1040.090.2496 1.134260.0960.0840.39936 1.83456300.080.0730.384 1.8396370.0640.0610.37888 1.89588370.0510.0510.30192 1.585082.336811.0191218.38294即上部结构荷载792.8240.16各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz10.1150.0950.01840.079800.1150.0950000.1150.09500单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)桩端阻力比αm = 2.6 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )L桩端阻力比αm = 2.5 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)L00.1140.0950000.1140.0950000.1140.0940020.1130.0940.036160.1579220.1120.0940.035840.1579260.1110.0930.106560.4687280.1070.090.136960.6048140.1020.0870.22848 1.02312150.0960.0830.2304 1.0458260.0890.0780.37024 1.70352300.0750.0690.36 1.7388370.0620.0580.36704 1.80264370.050.0490.296 1.522922.1860810.3059617.19391即上部结构荷载792.8240.16各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz10.1030.0870.016480.0730800.1030.0870000.1030.0870000.1030.0860000.1030.0860000.1030.0860020.1020.0860.032640.1444820.1020.0860.032640.1444860.1010.0850.096960.428480.0970.0830.124160.55776140.0930.080.208320.9408150.0880.0770.21120.9702260.0820.0730.34112 1.59432300.0710.0640.3408 1.6128370.0590.0580.34928 1.80264370.0490.0470.29008 1.460762.043689.7297216.20478即上部结构荷载792.8240.16桩端阻力比αm = 2.8 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)LL桩端阻力比αm = 2.7 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)各圆环内的桩数k Ip Is αki Ip (1-α) ki Isσz10.0940.080.015040.067200.0940.080000.0940.080000.0930.0790000.0930.080000.0930.0790020.0930.0790.029760.1327220.0920.0790.029440.1327260.0910.0780.087360.3931280.0890.0760.113920.51072140.0850.0740.19040.87024150.0810.0710.19440.8946260.0770.0680.32032 1.48512300.0670.0610.3216 1.5372370.0560.0530.33152 1.64724370.0470.0450.27824 1.39861.9129.0694815.11479即上部结构荷载792.8240.16各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz10.0850.0730.01360.0613200.0850.0730000.0850.0730000.0850.0730000.0850.0730000.0850.0730020.0850.0730.02720.1226420.0840.0730.026880.1226460.0840.0720.080640.3628880.0810.0710.103680.47712140.0790.0690.176960.81144150.0750.0660.180.8316260.0710.0630.29536 1.37592300.0630.0570.3024 1.4364370.0540.050.31968 1.554370.0460.0440.27232 1.367521.798728.5234814.20736即上部结构荷载792.8单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)L桩端阻力比αm = 2.9 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)240.16各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz10.0780.0680.012480.0571200.0780.0680000.0780.0680000.0780.0680000.0780.0680000.0780.0680020.0780.0670.024960.1125620.0770.0670.024640.1125660.0770.0670.073920.3376880.0750.0650.0960.4368140.0730.0640.163520.75264150.070.0620.1680.7812260.0660.0590.27456 1.28856300.0590.0540.2832 1.3608370.0510.0480.30192 1.49184370.0440.0420.26048 1.305361.683688.0371213.3796桩端阻力比αm = 3.0 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )L。
桩沉降计算(新桩基规范法)

桩基沉降计算
桩形状:圆形
桩直径d或边长b:0.70m
桩面积Ap:0.385m2
下承台底的平均附加压力F:270450KN
天然地基平均附加应力P0:601Kpa
地上层数32地下层数1
实际承台长度Lc:30m
实际承台宽度Bc:15m
承台总面积A:450.00m2
基础长宽比Lc/Bc: 2.00
总桩数n:70
桩长L:50m
桩距Sa: 3.00m
是否规则布桩?是附加应力σz:距径比Sa/d: 4.3自重应力0.2σc:
长径比L/d:71.4沉降计算长度Zn判断:短边布桩数nb:6
C0:0.063
C1: 1.811
C2:10.381
桩基等效沉降系数ψe:0.320
平均压缩模量Es:25.2Mpa
桩基沉降计算经验系数ψ:0.598
桩基中心点沉降量S:35.93mm
注:1、对于采用后注浆施工工艺的灌注桩,桩基沉降计算经验系数
应根据桩端持力土层类别,乘以0.7(砂、砾、卵石)~0.8(黏性土、粉土)折减系数;
2、饱和土中采用预制桩(不含复打、复压、引孔沉桩)时,
应根据桩距、土质、沉桩速率和顺序等因素,乘以1.3~1.8 挤土效应系数,
土的渗透性低,桩距小,桩数多,沉降速率快时取大值。
土层沉降计算表格
162.75Mpa
162.83Mpa
OK
(z。
第六节桩基础沉降的计算

第六节桩基础沉降的计算 Esi──桩端平面以下第i层土的压缩模量 z z、──桩端平面第 j 块荷载至第 i 层土、第 i-1层土底面的距离; 、──桩端平面第 j 块荷载至第 i 层土、 第i-1层土底面深度范围内的平均附加应
ij ( i 1) j ij ( i 1) j
力系数,可按《建筑地基基础设计规范》 (GB2002-50007)附录十采用。
桩基的变形允许值如无当地经 验可按表4-15采用。
第六节桩基础沉降的计算 建筑物桩基的变形允许值
变形特征 容许值
砌体承重结构基础的局部倾斜 各类建筑相邻柱(墙)基的沉降 差 1. 框架、框剪、框筒结构 2. 砌体墙填充的边排柱 3. 当基础不均匀沉降时不产生附 加应力的结构 单层排架结构(柱距为6m)柱基 的沉降量(mm)
E s(MPa)
小于等于10
15 0.9
20 0.65
35 0.50
大于等于40
1.2
0.40
第六节桩基础沉降的计算 当桩基为矩形布置时,桩基础中点沉降可 按下列简化公式计算:
Z i i Z i 1 i 1 S=4 e p 0 i 1 E si
n
第六节桩基础沉降的计算
0.002
0.002l0 0.0007 l0 0.005 l0 120
桥式吊车轨面的倾斜(按不调整轨道考虑) 纵向 横向 多层和高层建筑基础的倾斜 Hg≤24 24<Hg≤60 60<Hg≤100 Hg>100
0.004 0.003
0.004 0.003 0.0025 0.002 200
0.008 0.006 0.005 0.004 0.003 0.002 350 250 150
第六节桩基础沉降的计算
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
桩基沉降量计算
(一)荷载传递法
1、荷载传递法的原理
荷载传递分析法是指,承受竖向压力的单桩通过桩侧摩阻力和端摩阻力将荷载传递扩散到地基土中,根据桩侧摩阻力和端阻力分布函数求解单桩沉降。
因此,确定荷载传递函数就成为此法的关键步骤,即确定桩侧摩阻力q与桩侧λ移S的函数,称作荷载传递函数。
根据确定的桩侧和桩底荷载的传递函数,得出荷载传递法的函数方程:
其中:U——单桩截面周长;Ap、Ep——单桩截面面积和弹性模量;——桩侧摩阻力。
2、分析评价及改进
荷载传递法概念清晰,适用范Χ广,计算简单方便,担它不能计算土体由桩侧荷载在桩端平面以下产生的压缩量,因而无法确定由于土体压缩而产生的桩端沉降S1 ,阳吉宝在[文献1]中提出了一种改进方法,按照该方法,即可弥补现有荷载传递法δ考虑桩侧摩阻力对桩端沉降的贡献的不足。
该法计算简单方便,相互之间有可比性,降低了因土体参数选取不同所产生的人为误差。
(二)弹性理论法
1、弹性理论法基本原理
弹性理论法假设地基土是均匀、连续、各向同性的线弹性半空间体,根据弹性理论方法来研究单桩在竖向荷载作用下桩土之间的作用力与
λ移之间的关系,进而得到桩对土,土对桩的共同作用模式。
2、分析评价及改进
弹性理论法认为桩身λ移等于毗邻土体λ移,桩--土之间不存在相对λ移。
但大量工程实践表明,单桩在外荷载作用下,由于桩侧摩阻力和桩端摩阻力对半无限空间土体的作用使土体产生了弹性压缩,从而使桩伴随着周Χ土体产生了共同的弹性压缩变形,当荷载达到使桩侧土体处于塑性变形的临界值时,桩端阻力发挥作用并产生桩端刺入沉降。
此时桩-土沿桩长产生相对滑移,又增加一项桩土相对滑移沉降。
所以弹性理论法认为桩-土之间?有滑移,是不符合实际的。
刘绪普在[文献2]中,由弹塑性理论建立了桩端阻力与桩端刺入沉降的关系公式,使单桩P—S曲线的全过程得以完整地描述。
(三)剪切λ移法
1、基本原理
图1为Cooke(1947)提出的剪切λ移法计算单桩沉降的物理模型,他认为,在工作载荷作用下,桩和桩侧土的λ移相等,桩沉降时周Χ土体亦随之发生剪切变形,剪应力从桩侧表面沿径向向四周扩散到周Χ土体中,剪应力随离开桩侧距离的增大逐渐减小,剪切λ移相对减少,在单桩周Χ形成?斗状λ移分布。
2、分析评价及改进
Cooke提出的基于剪应力传递概念的单桩沉降计算公式,由于忽略了桩端处的荷载传递作用,对短桩误差较大。
后来Randolph等(1978)对
剪切变形传递法作了补充和修正,提出rm与桩长及土层性质有关,并按弹性力学方法补充了桩端沉降Sb 的计算式。