可见光红外全景光学系统设计样本
红外全景扫描跟踪成像系统设计与实现

引 言
红外 搜 索 跟 踪 系 统口 ] ( I R S T) 接 收 目标 和 背 景 的红外 辐 射 , 通 过 信 息 处 理 系 统 实 现 目标 的 实 时检 测 和 跟 踪 。 与 雷 达 相 比 , I RS T 具 有 以 下 优 点: 被动 探测 可完 成 对 敌 攻 击 , 不 需 要 雷 达 提 供 预
跟 踪 成像 状 态的稳 定 时 间小 于 1 . 9 4 S , 系统 性 能 指 标 达 到 实 用 要 求 。
关键 词 : 红外 全景 扫描 成像 ; 线 列探 测 器 ; 双视 场 ; 红 外 搜 索 跟 踪
中 图分 类 号 : TN2 1 6 文 献标 志 码 : A
De s i g n a nd i mp l e me nt o f i nf r a r e d p a n o r a mi c s c a nn i ng a n d
器 配 合 高速 转 台 和 高 均 匀性 扫 描பைடு நூலகம்器 , 设 计 实现 了一 种 3 6 0 。 全 方 位 搜 索 和 跟 踪 的 成 像 系统 。 实验
结果表 明 , 该 系统成 功 实现 了 3 6 0 。 全 景扫描 , 在 搜 索到 目标 后 可 快速 转入 跟 踪 成像 , 由搜 索转入
统 和基 于 面阵探 测 器 的 分 布式 孔 径 系 统 。其 中成
像 系统 构型 直接 决 定 了整 个 I R S T 系 统构 型 。本
文 对典 型 I R S T系 统 的成像 系统 构型 进 行 了分 析 , 并 提 出了一 种 3 6 0 。 全 方 位 搜索 和 跟 踪 的成 像 系 统 构 型 。介绍 了成 像 系 统 的组 成 和 工 作 方 式 , 详 细 讨 论 了红外 传 感 器 组 件 、 转 台 和 综 合 显 示 控 制 组
基于DMD的红外双波段景象模拟投影光学系统设计

F / 2
5. 3 3  ̄5 g m>0 . 6; 8  ̄1 2 F m >0 . 3
影光学系统等。由计算机图像生成器生成 的图像数 据, 经过数字信号处理 电路 , 送人 D MD驱动电路 . 并将数据保存在 C MO S 存储单元 。黑体光源产生
. 2 系统初 始 结构 的选取 红外热辐射经过照明光学系统和投影棱镜后均匀照 2
射D MD, 存储单元根据存储的二进制信息产生驱动
红外光学 系统 主要有透射式 和反射式 两种类
电压控制 D MD的偏转状态 , 反射红外热辐射 ; 红外 型。一般 同轴反射式光学系统 的视场角较小且存在 热辐射通过投影棱镜 , 输入到投影光学系统 , 被投影 中心遮拦问题 , 离轴反射式能够解决视场角和 中心 到被测试单 元的人瞳处 , 使红外成像 系统如 同工作 遮拦的问题 , 但其加工 、 装调等要求极高。透射式光
t e n r o f c o a x i a l d u a l - b a n d i n r f re a d ( mi d d l e wa v e l e n g t h 3  ̄5 g m nd a l o n g wa v e l e n g t h 8  ̄1 2 g m) s c e n e s i mu l a t o r i s d e —
t h e i ma g e d i s t a n c e 5 。 l mm , t h e M TF o f mi d d l e wa v e l e n g t h i s g r e a t e r t h n 0 a . 7; t he M TF o f l o n g wa v e l e n g t h i s
红外全景系统光学被动式消热差设计全景拼接图像配准Harris算法论文

红外全景光学系统设计【摘要】伴随着红外技术和全景成像技术的不断发展,研究红外全景光学系统以代替单视场视觉系统已经成为各国竞相研究的热点。
相比于单视场视觉系统,红外全景系统具有不可比拟的优势:它克服了连续捕获新目标出现的观瞄低效、实时性差、更新速度慢等缺点,提高了目标的感知能力和搜索跟踪的速率,确保探测目标的准确度;并且探测灵敏度高,能识别夜间或恶劣环境条件下的各种伪装和多层次、多角度目标的威胁。
本文在总结和归纳国内外红外全景成像方法和发展趋势的基础之上,选择了多镜头全景成像法,设计了大视场、大相对孔径的红外物镜。
并采用视场交互式部署方式,设计出一个方位360°和顶视90°视场的五通道中波红外全景光学系统。
该系统使用一个探测器代替多个探测器接收方位和顶视的红外信息。
从设计结果的各类像差曲线、点列图和传函中分析出,系统在整个视场范围内成像质量良好,传函在171p/mm时接近衍射极限。
通过分析红外系统现有的几种温度补偿方法,采用光学被动式消热差,利用不同材料相互匹配和合理分配光焦度对红外系统在-40°C~60°C温度范围内进行消热差设计。
设计结果表明,在给定温度范围内成像质量满足设计要求,同时像面稳定。
采用离焦方式对系... 更多还原【Abstract】 With the continuous development of infraredtechnology and panoramic imaging technology, infrared panoramic optical system replace the single field vision systemand become hot in every country. Compared with the single field vision system, infrared panoramic system has unparalleled advantages:it overcomes the disadvantage of inefficient, poor real-time in continuous new target capturing, slow update and so on. It improves target perception and rate of track search to ensure the accuracy of targ... 更多还原【关键词】红外全景系统;光学被动式;消热差设计;全景拼接;图像配准;Harris算法;【Key words】infrared panoramic system;optical passive method;athermalisation;panorama stitching;image registration;Harris algorith;【索购论文全文】138113721 139938848 即付即发目录摘要3-4Abstract 4-51 绪论8-171.1 课题背景与意义8-91.2 全景成像技术的实现方法9-121.2.1 旋转扫描式全景图像拼接式法91.2.2 折反射全景成像法9-101.2.3 特殊结构形式实现全景成像10-121.3 红外全景成像系统的发展现状12-141.3.1 国外红外全景成像的发展状况13-141.3.2 国内红外全景成像的发展状况141.4 本文研究的主要内容和组织结构14-161.4.1 本文研究的主要内容14-151.4.2 本文的组织结构15-161.5 本章小结16-172 红外全景系统总体设计17-272.1 总体设计路线17-182.2 设计要求18-192.3 工作原理19-202.4 红外光学材料20-222.4.1 红外光学材料的主要性能20-212.4.2 红外光学材料的种类21-222.4.3 常见的红外光学材料222.5 热差理论22-252.5.1 引言22-232.5.2 温度效应23-252.6 无热化设计方法25-262.7 本章小结26-273 红外全景系统设计27-543.1 引言273.2 红外全景光学系统设计27-463.2.1 设计规格要求273.2.2 红外物镜设计27-373.2.3 无热化设计37-463.2.4 全景系统设计463.3 系统公差分析46-503.4 转像规律分析50-513.5 像移分析51-533.6 小结53-544 红外镜头性能分析与作用距离估算54-604.1 红外全景系统中光能损失分析54-554.1.1 光学元件内部的光能损失544.1.2 光学元件表面的反射损失54-554.2 镀膜55-564.3 红外全景成像探测距离估算56-594.3.1 盲区估算56-574.3.2 探测距离估算57-594.5 小结59-605 红外图像拼接60-675.1 图像拼接概述605.2 图像拼接流程60-615.3 图像配准方法61-625.4 基于Harris算法的图像配准62-665.4.1 Harris算法原理62-655.4.2 全景图像配准仿真与分析65-665.5 本章小结66-676 结论与展望67-706.1 本论文工作的总结67-686.2 未来工作的展望68-70参考文献。
可见光与红外系统PPT课件

计算机显示红外图像。当再按一次切换键,可将图像切换成可见光,继续寻找下一 个测量目标,依此循环。
3
MT9M034实物图
可见光CMOS图像信息读出原理
CMOS图像传感器MT9M034是Aptina公司于 2012年底推出的一款定位于低照度环境成像 探测的高灵敏度、低噪声CMOS图像传感器, 拥有完善的相机功能,例如自动曝光控制、 增益控制、窗口选择、视频模式和单帧模式 等,获取图像的方式有线性模式和高动态模 式两种选择。
3
MT9M034内部功能框图
3
034CMOS图像信息读出原理
时钟
034 行同步 CMOS 场同步
数据 电源
CPLD
MC HS VS DATA
USB
或 平
2.0
板
接口
PC
将配置好的CMOS的行、场、时钟同步信号和数据位分出与CPLD引脚连接,此时CPLD获得 CMOS传出的行时钟,场时钟,像素时钟和12位数字信号。CPLD将12位CMOS数字信号低四位舍 去,留下高八位送给CY7C68013进行传输。
学习总结
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
结束语
当你尽了自己的最大努力时,失败也是伟大的, 所以不要放弃,坚持就是正确的。
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End 演讲人:XXXXXX 时 间:XX年XX月XX日
红外生命探测仪用光学系统的设计

z o r to o .S n e i u e n S a e i l f r isl n ,isF u b r i g e t r t a . ih o m a i f3 i c t s s Ge a d Zn e m t ra s o t e s t n m e s r a e h n 1 i wh c
sai eu nyo 1 / p t l q e c f 5 pmm. f r h mp rtr n e fh pi l ytm a dte aa ee f af r l A e te e eaue ag e t a ss n rm tr o t t r ot o c e hp s
Abs r c : ta t To lt t e o tc l s s e o n i ra e i e e t r h v a g r d t c i n a e ,a n w e h p i a y t m fa nf r d l e d t c o a e a l r e e e to r a e f
为变 倍
为补偿组 , ( 为后 固定组 。图 1 j 5 中,上
0 引 言
以往 的红 外 生命探 测仪 一 般都 是采 用 固定 焦距 透 镜 的单 视场 系统 。该 系统 所用 的透 镜 片
数少 , 并且能够 较好地 吸收红 外辐射 能量 , 但是
性, 无法很好地适 应灾后 复杂多变 的环境 。 随着 技术 的改进 ,变焦 距视 场 系统 逐渐 取代 了单 视
i fa e a ed o i w p i a e e to y t m s p o o e . Th p ia yse i o m y t m . n r r d du lf l fv e o tc l d t c i n s s e i r p s d i e o tc ls t m s a z o s s e Be a s sl n r u o m sa d c m p n a e e pe a ur y a i l c u e i e sg o p z o n o t e s tstm r t e b x a to , t l c r m e h n c l y t m mo i n isee t o c a ia s e s i i p i e ssm l d.Th y t m a n o e a i n wa e ba d o o 1 m . c l a e o 5 t 4 n a d a i f e s s e h s a p r t o v n f8 t 4 u a f a ng f o 1 0 i n o r 3 ni
可见光红外光学系统的制作方法 专利

可见光红外光学系统的制作方法专利【导语】可见光红外光学系统在众多领域都有广泛应用,如天文学、遥感探测、军事观察等。
这类系统的制作方法涉及到精密的工艺和专利技术。
以下将详细介绍一种可见光红外光学系统的制作方法,供大家参考。
【正文】一、可见光红外光学系统的定义可见光红外光学系统是一种能够同时探测可见光和红外光的光学系统。
它通常由光学镜头、探测器、信号处理单元等部分组成。
二、制作方法1.设计光学系统根据应用需求,设计合适的光学系统。
光学系统应包括以下部分:(1)可见光通道:采用高折射率玻璃材料,设计为反射式或折射式光学系统。
(2)红外通道:采用低折射率玻璃材料,设计为反射式光学系统。
2.制造光学元件根据设计图纸,采用以下方法制造光学元件:(1)熔融石英铸造法:用于制造可见光和红外光学元件。
(2)金刚石车削法:用于制造高精度非球面光学元件。
(3)光学镀膜技术:在光学元件表面镀上一层或多层光学薄膜,以满足特定波长范围内的光学性能要求。
3.组装光学系统将制造好的光学元件按照设计要求组装成光学系统。
具体步骤如下:(1)清洁光学元件表面,确保无尘、无污染。
(2)采用光学粘合剂或机械固定方式,将光学元件组装成一体。
(3)调整光学系统,使其满足预定的光学性能指标。
4.调试与检测(1)对光学系统进行调试,确保其在可见光和红外波段都能正常工作。
(2)利用光学检测设备,如干涉仪、光栅光谱仪等,对光学系统进行性能检测。
(3)根据检测结果,对光学系统进行调整,直至满足应用要求。
三、专利技术本制作方法涉及以下专利技术:1.光学设计方法:采用优化算法,实现可见光和红外光的高效耦合。
2.光学元件制造技术:采用金刚石车削法制造高精度非球面光学元件。
3.光学镀膜技术:研发适用于可见光和红外波段的光学薄膜。
4.光学系统调试与检测技术:确保光学系统在可见光和红外波段具有优异性能。
四、应用领域本可见光红外光学系统制作方法可应用于以下领域:1.天文观测:用于探测宇宙中的可见光和红外辐射。
红外光学镜头设计方案

光学系统设计方案设计参数:1) ICCD分辨率:1248х10242) 像元尺寸:6μmх6μm3) 靶面尺寸:7.48mmх6.14mm4) 系统焦距:1500mm5) F数:3.756) 波段范围:450nm~800nm系统初步设计如下:口径Ф400mm,系统长度500mm。
光路二维图如下图所示。
系统为折返射式光学系统,前部采用施密特矫正镜,后端采用卡式系统,达到减小系统尺寸的目的。
图 1 光学系统二维图图 2 光学系统三维图图 3 光路剖视图表 1线视场分析距离(km) 1 5 10 30线视场(m)5×4.125×20.550×41150×123图 4系统球差及场曲曲线系统传递函数曲线如下图所示,根据探测器像元尺寸,MTF截频计算至83lp/mm处,从下图可以看出,系统MTF在100lp/mm处,水平最大视场及垂直最大视场均高于0.5,对角线视场MTF高于0.5。
图 5 系统MTF曲线系统弥散圆的大小如下图所示,弥散圆表示点源物体经过系统后的发散情况,其半径越小、能量越集中,说明成像质量越好。
通常接近衍射极限的系统弥散圆直径小于接收器的单个像素值。
本系统采用的探测器像元尺寸为6μm,系统的弥散圆直径最大值为3.8μm,说明系统的成像质量接近衍射极限。
图 6畸变网格及畸变曲线系统的畸变网格和畸变曲线如下图所示,畸变的大小能直接反映出系统图像的变形情况,从下图中可以看出,系统的最大畸变小于0.01%,图像变形肉眼无法分辨。
图 7畸变网格及畸变曲线系统成像的二维仿真效果如下图所示,左图为目标图像,右图为经系统后所成图像,从图中可以看出,系统成清晰倒像。
图 8二维成像仿真公差分析镜头最终的成像质量受到材料、加工、装配等各方面的影响,为保证系统最终获得良好的成像质量,设计时应充分考虑系统各部分的公差分配,使材料、加工及装配的误差均在可接受的范围内,避免某类误差过大使最终的成像质量下降过多。
五通道红外全景光学系统设计

tmp r tr h n e i h a g f一 0 6 e e au e c a g n t e r n e o 4 - 0℃ ,i h c h p ia a s e ah r l ain i a p id t n w i t e o t ቤተ መጻሕፍቲ ባይዱ p s i te mai t s p l o h c v s o e
a h e e wi i dr ci n f 3 c iv d t n ie t o 60。 a d h tp o ii o 0。 fed f v e . i c s a d o u e h o n te o p st on f 9 i l o iw t o t n v lm we e s r r d c d t he a e i e.M i de n ae p n rm i s se e u e a t s m t m d l if r d a o a c y tm c u d e e ae o r ma i q ai f r r o l g n r t p o i gng u lt o y
ln t r ae h n 0。 fed nd t e te i g y tm o b n d fv l h ah n o n . A d t co e s wjl g e tr t a 9 1 i l a h se rn s se c m i e e i t p ts i t o e i g ee tr
境 温 度 一 0 6 ℃ 之 间 工 作 的 中波 红 外 全 景 系统 会 由 于 温 度 变 化 而 导 致 系统 的 成 像 质 量 变 差 .故 采 用 4- 0 光 学被 动 式 无 热 化 设 计 , 消 除 温度 效 应 对 系统 的影 响 , 给 定 的 温 度 范 围 内 , 像 质 量 满足 设 计 要 求 。 以 在 成 关 键 词 :红 外 全 景 系统 ; 五 通 道 : 光 学被 动 式 ; 无 热 化 设 计