《2.1花边有多宽(1)》学案doc

合集下载

北师大版数学九年级上册2.1.1《花边有多宽》教案

北师大版数学九年级上册2.1.1《花边有多宽》教案

北师大版数学九年级上册2.1.1《花边有多宽》教案一. 教材分析《花边有多宽》是北师大版数学九年级上册第2章《相似多边形》的第1节内容。

本节课主要通过探究梯形的相似性质,让学生掌握相似多边形的判定方法,并能够运用相似性质解决实际问题。

此内容是学生在学习了七年级和八年级的相关知识基础上进行的,对学生空间想象能力和逻辑思维能力的培养具有重要意义。

二. 学情分析九年级的学生已经具备了一定的数学基础,对于多边形的性质和图形的变换有一定的了解。

但是,对于相似多边形的判定和应用可能还比较模糊。

因此,在教学过程中,需要注重引导学生从直观到抽象的认识过程,让学生在探究中理解相似多边形的性质,提高他们的空间想象能力和解决问题的能力。

三. 教学目标1.理解相似多边形的概念,掌握相似多边形的性质。

2.能够运用相似性质解决实际问题。

3.培养学生的空间想象能力和逻辑思维能力。

4.提高学生运用数学知识解决实际问题的能力。

四. 教学重难点1.重点:相似多边形的概念和性质。

2.难点:相似多边形的判定方法和应用。

五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究相似多边形的性质。

2.利用多媒体辅助教学,展示图形的变化,帮助学生直观理解相似性质。

3.运用实例讲解,让学生在实际问题中运用相似性质解决问题。

4.采用小组合作学习,培养学生的团队协作能力和沟通能力。

六. 教学准备1.多媒体教学设备。

2.梯形图形的相关教具。

3.练习题和学习资料。

七. 教学过程1.导入(5分钟)利用多媒体展示一些梯形图形,引导学生观察并提出问题:“这些梯形有什么共同的特点?”让学生思考并回答,从而引出相似多边形的概念。

2.呈现(10分钟)通过展示梯形的相似性质,让学生观察并总结出相似多边形的性质。

引导学生从直观到抽象的认识过程,让学生在探究中理解相似多边形的性质。

3.操练(10分钟)让学生分组合作,利用相似性质对给定的梯形进行变换,并观察变换后的梯形与原梯形的关系。

北师大版九上2.1《花边有多宽》word教案

北师大版九上2.1《花边有多宽》word教案
③.x的值应选在什么范围之内?
④.完成下表:
x
0
0.5
1
1.5
2
2.5
2x2-13x+11
⑶自己完成 做一做。
2、教师指导:
保南初级中学集体备课稿
设计人:王永前
⑴要求地毯的花边有 多宽,由前面我们知道:地毯花边的宽x(m)满足方 程
(8-2x)(5-2x)=18.
可以把它化为2x2-13x +11=0.
由此可知 :只要求出2x2-13x+11=0
的解,那么地毯 花边的宽度即可求出.如何求呢?
⑵ ①.x可能小于0吗?说说你的理由.
②.x可能大于4吗?可能 大于2.5吗?说说你的理由并与同伴进行交流.
备课组长签名
包组领导签名
授课教 师签名
年段
八年级
学科
数学
主题单元
课题
2.1花边有多宽
课 时
第2课 时
教学目标
1.探索一元二次方程的解或近似解.
2.培养学生的估算意识和能力.
教学流程
增删、点评、课后反思
1、出示学习目标:
1.探索一元 二次方程的解或近似解.
2.培养自己的估算意识和能力.
2、自学指导:
1、阅读P50-51,思考:

九年级数学2.1花边有多宽(1)Microsoft Word 文档

九年级数学2.1花边有多宽(1)Microsoft Word 文档

九年级数学2.1花边有多宽(1)教学目标:1.通过具体问题,如“花边有多宽”,“梯子的底端滑动多少米”等问题,引导学生列出方程,体会方程的模型思想,培养学生把文字叙述的问题转换成数学语言的能力.2.让学生观察、归纳出一元二次方程及其相关概念,并会识别一元二次方程及各部分名称,培养学生归纳分析的能力.教学方法及学法指导:学生已经学习了一元一次方程及相关概念,因此,本节课我主要采用启发式、类比法教学.教学中力求体现“问题情景---数学模型-----概念归纳”的模式.但是由于学生将实际问题转化为数学方程的能力有限,所以,本节课借助多媒体辅助教学,指导学生通过直观形象的观察与演示,从具体的问题情景中抽象出数学问题,建立数学方程,从而突破难点.同时学生在现实的生活情景中,经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力.课前准备:多媒体、学案教学过程:一、温故知新引入新课师:同学们,数学与我们的生活息息相关,你是否还记得“你今年几岁了”、“我变胖了”、“打折销售”、“能追上小明吗”、“教育储蓄”、“谁的包裹多”、“鸡兔同笼”、“增收节支”这些问题吗?生:回忆师:这些问题你是借助什么知识解决的呢?生:(想起)方程.师:对,我们是根据题意设未知数,列方程、解方程来解决这些问题的.其实,还有好多问题需要列方程来解决,(出示课件)如,黄金比为什么是0.618?你能为一个矩形花园提供多种设计方案吗?花边有多宽?等.所以,今天,我们走进第二章,学习关于方程的更多知识,一起解决更多的问题.今天先和大家一起学习第一节花边有多宽(板书课题)【设计意图】在七、八年级学生已经积累了一些利用方程解决实际问题的经验,初步感受了方程的模型作用,为新的内容的学习做好准备,从而确定本章所学,引入新课.二、问题情景探究交流出示问题一:(课件)一块四周镶有宽度相等的花边的地毯如图所示,它的长为8m,宽为5m.如果地毯中央长方形图案的面积为18m2,那么花边有多宽?(学生读题)师:你能找到图中的地毯、花边和中央长方形吗?生:指出对应的三部分.师:你能从实物图中抽象出几何图形,画出所对应的图形吗?生:画图,标出相应长度。

九年级数学上册 2.1 花边有多宽导学案 北师大版

九年级数学上册 2.1 花边有多宽导学案 北师大版

花边有多宽3、观察下面等式:
的整数部分是几?十分位是几?
题作好标示,并预习下节课内
————
x+6=
、配方:填上适当的数,使下列等
六盘水市第十三中学数学导学案
主要设计者:夏榕九年级数学备课组组长:最终审核人:
集体备课人及执行人:徐燕尚强华陈丽夏榕邓伦君聂国华肖荷张元彦童英红———————————————————————————————————
2
六盘水市第十三中学数学导学案主要设计者:夏榕九年级数学备课组组长:最终审核人:
集体备课人及执行人:徐燕尚强华陈丽夏榕邓伦君聂国华肖荷张元彦童英红姓名——————————班级————————————家长签字—————————————

地,对于一元二次方程
六盘水市第十三中学数学导学案
主要设计者:夏榕九年级数学备课组组长:最终审核人:
集体备课人及执行人:徐燕尚强华陈丽夏榕邓伦君聂国华肖荷张元彦童英红姓名——————————班级————————————家长签字—————————————
”化归的思想.(x-3)
x(5x
六盘水市第十三中学数学导学案
主要设计者:夏榕九年级数学备课组组长:最终审核人:
集体备课人及执行人:徐燕尚强华陈丽夏榕邓伦君聂国华肖荷张元彦童英红姓名——————————班级————————————家长签字—————————————
预设
相距多少海里
题,。

北师大版数学九年级上册2.1《花边有多宽》教案1

北师大版数学九年级上册2.1《花边有多宽》教案1

北师大版数学九年级上册2.1《花边有多宽》教案1一. 教材分析《花边有多宽》这一节是人教版九年级上册第二单元《几何图形》中的一节内容。

本节课主要让学生通过观察、操作、思考、交流等活动,掌握花边的宽度,发展学生的空间观念和几何思维能力。

教材通过生活中的实例,引出花边的宽度,然后让学生通过实际操作,探索求解花边宽度的方法,从而培养学生的实践能力和解决问题的能力。

二. 学情分析九年级的学生已经具备了一定的几何基础知识,对几何图形有一定的认识。

同时,学生的空间想象能力和动手操作能力也在逐步发展。

但是,对于一些复杂的花边图案,学生可能还比较难以理解和计算。

因此,在教学过程中,教师需要关注学生的个体差异,引导学生通过实际操作,逐步理解和掌握花边的宽度求解方法。

三. 教学目标1.知识与技能目标:让学生掌握花边的宽度求解方法,能够运用所学知识解决实际问题。

2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生的空间观念和几何思维能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和问题解决能力。

四. 教学重难点1.重点:花边的宽度求解方法。

2.难点:对于复杂花边图案的理解和计算。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、操作、思考、交流等活动,探索花边的宽度求解方法。

2.运用多媒体辅助教学,展示花边图案,提高学生的空间想象力。

3.分组合作学习,培养学生的团队合作意识。

六. 教学准备1.多媒体教学设备。

2.花边图案实物或图片。

3.剪刀、直尺、彩笔等动手操作工具。

七. 教学过程1.导入(5分钟)教师展示一些花边图案实物或图片,引导学生观察并思考:如何才能知道这些花边的宽度呢?通过这个问题,激发学生的学习兴趣,引出本节课的主题。

2.呈现(10分钟)教师提出具体的问题:给定一个花边图案,如何求解其宽度?然后引导学生分组讨论,共同探索求解方法。

3.操练(10分钟)每组学生选取一个花边图案,使用剪刀、直尺、彩笔等工具,进行实际操作,尝试求解花边的宽度。

北师大版数学九年级上册2.1《花边有多宽》教学设计1

北师大版数学九年级上册2.1《花边有多宽》教学设计1

北师大版数学九年级上册2.1《花边有多宽》教学设计1一. 教材分析《花边有多宽》这一节是北师大版数学九年级上册第二章《相似》的第一课时。

本节课主要通过探究花边的宽度,让学生理解相似图形的性质,掌握相似比的计算方法,并能够运用相似比解决实际问题。

教材通过生活中的实例引入相似的概念,激发学生的学习兴趣,培养学生运用数学解决实际问题的能力。

二. 学情分析九年级的学生已经掌握了相似图形的概念,对图形的变换也有了一定的了解。

但学生在计算相似比时,可能还不太熟练,需要通过大量的练习来提高。

此外,学生解决实际问题的能力有待提高,需要教师在教学中进行引导和培养。

三. 教学目标1.知识与技能:理解相似图形的性质,掌握相似比的计算方法,能够运用相似比解决实际问题。

2.过程与方法:通过观察、操作、猜想、验证等方法,培养学生的动手操作能力和推理能力。

3.情感态度价值观:培养学生运用数学解决实际问题的意识,提高学生对数学的兴趣。

四. 教学重难点1.重点:理解相似图形的性质,掌握相似比的计算方法。

2.难点:运用相似比解决实际问题。

五. 教学方法1.情境教学法:通过生活中的实例引入相似的概念,激发学生的学习兴趣。

2.引导发现法:教师引导学生观察、操作、猜想、验证,培养学生独立思考的能力。

3.实践操作法:让学生通过实际操作,加深对相似图形性质的理解。

4.合作学习法:学生分组讨论,培养学生的团队协作能力。

六. 教学准备1.教学课件:制作课件,展示花边的图片和相关的数学知识。

2.练习题:准备一些关于相似比计算和实际问题的练习题,用于课堂练习和巩固。

3.教学道具:准备一些花边的实物,用于展示和操作。

七. 教学过程1.导入(5分钟)教师通过展示一些花边的图片,引导学生观察花边的形状和宽度,激发学生的学习兴趣。

2.呈现(10分钟)教师介绍相似图形的概念,解释相似比的含义,并通过举例让学生理解相似比的应用。

3.操练(15分钟)教师引导学生分组讨论,每组选择一幅花边的图片,计算花边的相似比,并解释原因。

北师大版-数学-九年级上册-2.1花边有多宽导学案

北师大版-数学-九年级上册-2.1花边有多宽导学案

2.1花边有多宽学习目标、重点、难点【学习目标】1、一元二次方程的概念;2、一元二次方程的一般形式;3、估计一元二次方程解的取值范围;【重点难点】1、一元二次方程的概念;2、一元二次方程的一般形式;3、估计一元二次方程解的取值范围;知识概览图新课导引《九章算术》“勾股”章有一题:“今有二人同所立,甲行率七,乙行率三.乙东行,甲南行十步而斜东北与乙会.问甲乙行各几何.” 大意是说:已知甲、乙二人同时从同一地点出发,甲的速度为7,乙的速度为3,乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇,那么相遇时,甲、乙各走了多远?【问题探究】 如右图所示,如果设二人从出发到相遇所用的时间为x ,那么利用勾股定理就可以列出方程:22310=.x x +2()()(7-10) 【解析】解方程得x =3.5(x =0舍去).教材精华知识点1 一元二次方程的概念定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程. 拓展 由一元二次方程的定义可知,只有同时满足以下三个条件:是整式方程;含有一个未知数;未知数的最高次数是2.这样的方程才是一元二次方程,不满足其中任何一个条件的方程都不是一元二次方程.知识点2 一元二次方程的一般形式一元二次方程的一般形式是20ax bx c ++= (a ≠0).它的特征是:等式左边是一个关于未知数的二次多项式,等式右边是零.其中 2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项.拓展 对于一元二次方程的一般形式应注意以下四点:概念:只含有—个未知数,并且未知数的最高次数是2的整式方程一般形式:a x 2+bx +c =0(a ≠0) 解的估算一元二次方程(1)“a ≠0”是一元二次方程一般形式的一个重要组成部分,因为方程ax 2+bx +c =0只有当“a ≠0时,才叫做一元二次方程.当a =0,b ≠0时,它是一元一次方程.反之,如果明确指出方程ax 2+b +c =0是一元二次方程,那么就隐含了a ≠0这个条件. (2)任何一个一元二次方程经过整理都可以化成一般形式.(3)二次项系数、一次项系数和常数项都是方程在一般形式下定义的,所以求一 元二次方程的各项系数时,必须先将方程化为一般形式. (4)要分清二次项与二次项系数、一次项与一次项系数.规律方法小结 类比思想:学习本节知识,可类比一元一次方程的概念和一般知识点3 估计一元二次方程解的取值范围在得到一元二次方程后,我们最关心的是它的解及其取值范围.可利用列表取值法判断一元二次方程解的取值范围,具体步骤如下:(可使用计算器)(1)列表,利用未知数的取值分别计算方程ax 2+bx +c =0(a ≠0)中ax 2+bx +c =0 的值;(2)在表中找出使ax 2+bx +c 的值可能等于0的未知数符合要求的范围;(3)进一步在(2)中的范围内列表、计算、估计范围,直到符合题中精确度要求为止.拓展 在估计一元二次方程解的取值范围时,当ax 2+bx +c (a ≠0)的值由正变负或由负变正时,x 的取值范围很重要,因为只有在这个范围内,才能存在使ax 2+bx +c =0成立的x 的值,即方程的解.规律·方法 判断方程是否为一元二次方程的方法有两种:(1)根据定义判定.将方程进行去分母、去括号、移项、合并同类项等变形后,如果 能同时满足一元二次方程定义所包含的三个条件:①是整式方程;②只含有一个未知数;③未知数的最高次数是2.那么这个方程就是一元二次方程,否则,这个方程就不是一元二次方程.(2)根据一般形式判定.将方程进行去分母、去括号、移项、合并同类项等变形后, 如果能化为一元二次方程的一般形式ax 2+bx +c =0(a ≠0),那么这个方程就是一元二次方程,否则,这个方程就不是一元二次方程.课堂检测基本概念题1、下列关于x 的方程:①ax 2+bx +c =0;②k 2+5k +6=0;③3x 3一4x 一12=0;④(m2+3)x 2-2=0;⑤x 2—2x +1x=0;⑥(x +1)(x -1)=x (2x +1);⑦12x (x 一1)=(2x +1)(14x -1). 其中一定是关于x 的一元二次方程的是 .(只填序号)基础知识应用题2、关于x 的一元二次方程(a -1)x 2+x +a 2-1=0的一个根是x =0,则a 的值为( ) A .1 B .-1 C .1或-1 D .123、求关于x 的一元二次方程m 2-2 m +m (x 2+1)=x 的二次项系数、一次项系数及常数项.综合应用题4、已知关于x 的方程(m +3 )12 m x+2(m 一1)x -l =0.(1)m 为何值时,原方程是一元二次方程? (2)m 为何值时,原方程是一元一次方程?探索创新题5、你家的窗户是什么形状? 先看下面的问题:用一根8 m 长的木料做成一个长方形的窗框,设这个长方形的长为xm . (1)这个长方形的面积S = ; (2(3)你发现了什么?体验中考1、已知x =2是一元二次方程x 2+mx +2=0的一个解,则m 的值是( ) A.-3 B.3 C.0 D.0或32、某农机厂四月份生产零件50万个,第二季度共生产零件182万个,设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182D.50+50(1+x)+50(1+2x)=182学后反思附:课堂检测及体验中考答案课堂检测1、分析本题考查一元二次方程的定义及一般形式.可根据一元二次方程的定义或一般形式来分析关于x的方程,即方程中只有x是未知数,而其他字母都看成已知数.①不一定是一元二次方程,因为当a=0时,它不是一元二次方程.②没有未知数x,不是关于x的一元二次方程.③中x的最高次数为3,不是一元二次方程.④中m2+3>0,所以④为一元二次方程.⑤分母中有未知数,方程不是整式方程,故不是一元二次方程.⑥化成一般形式为x2+x+1=0,是一元二次方程.⑦化成一般形式为5x+4=0,不是一元二次方程.故填④⑥.2、分析由方程的根的意义可知,0使方程左、右两边相等,把x=0代入后可求出a 的值.注意原方程为关于x的一元二次方程,隐含了a-1≠0的条件.把x=0代入方程,得a2-1=0,∴a2=1,∴a=±1.又∵a-1≠0∴a≠1∴a=-1.故选B.【解题策略】本题考查了一元二次方程的根的意义及定义中“a≠0”的条件.3、分析本题虽然没要求把原方程化为一般形式,但由于二次项系数、一次项系数及常数项都是在一般形式下定义的,所以为了求出各项系数,必须先把原方程化为一般形式.解:将方程m 2-2 m+m(x2+1)=x化为一般形式,得m x2-x+m 2-m=0.因为已知原方程是一元二次方程,所以题中存在隐含条件m≠0.此方程的二次项系数为m,一次项系数为-1,常数项为m2-m.4、分析此题要根据一元二次方程及一元一次方程的定义确定m的值.(1)当m+3≠0,且m 2-1=2时,此方程为一元二次方程.(2)当m分别满足以下几个条件时,此方程都是一元一次方程.①m+3=0,且m-1≠0;②m 2-1=1,且m+3+2(m-1)≠0;③m 2-l=0,且2(m-1)≠0.解:(1)要使(m +3)12-m x+2(m -1)x -1=0是一元二次方程,则必须满足20.1 2.m m ⎧+≠⎪⎨=⎪⎩-解得m =3.所以当m =3时,原方程是一元二次方程.(2)若使原方程为一元一次方程,则应分以下几种情况进行讨论:①010m m ⎧+=⎪⎨-≠⎪⎩ 解得m =-3②2112(1)0m m m ⎧-=⎪⎨+-≠⎪⎩ 解得m=③2102(1)0m m ⎧-=⎨-≠⎩ 解得m =-1. 所以当m =-3或或-l 时,原方程是一元一次方程.【解题策略】 讨论关于x 的方程是不是一元二次方程或一元一次方程的问题,关键要考虑两点:(1)未知数的最高次数;(2)最高次项的系数是否为0.5、分析 由题意准确地写出(1)中的表达式和(2)中的数据,然后由数据探究其规律. 解:(1)-x 2+4x(2)S 的值从左至右依次为:1.75,3,3.75,3.99,4,3.99,3.75,3,1.75. (3)当长与宽相等时,S 的值最大,即当窗户为正方形时,面积最大.解题策略 本题是通过计算得出结果,然后观察一列数据的特点发现一般规律,这就要求我们在日常生活中多观察.通过本题得到一个结论:周长相等的矩形和正方形中,正方形的面积最大. 体验中考1、分析 把x =2代入原方程,得到关于m 的方程4+2m +2=0,解得m =-3. 故选A2、分析 四月份生产50万个,五月份比四月份增长x ,为50(1+x ),六月份又比五月份增长x ,为50(1+x )2,∴第二季度共生产零件50+50(1+x )+50(1+x )2=182.故选B .。

北师大版数学九年级上册《花边有多宽》word导学案

北师大版数学九年级上册《花边有多宽》word导学案
自我测评
提高训练
3.有一条长为16m的绳子,你能否用它围出一个为15m2的矩形?若能,则矩形的长和宽各是多少?
【课堂小结】
本节课我们通过解决实际问题,探索了一元二次方程的解或近似解,并了解了近似计算的重要思想——“夹逼”思想.估计方程的近似解可用列表法求,估算的精度不要求很高.
【拓展与延伸】
1.一元二次方程 有两个解为1和-1,则有 _______,且有 ________.
所以1.1〈x〈1.2
因此的整数部分是1,十分位是1.
你的结果怎样?
【随堂练习】
五个连续整数,前三个数的平方和等于后两个数的平方和.你能求出这五个整数分别是多少吗?
【课堂检测】
1.若关于x的方程 有一个根为-1,则m=_____________.
2.一个面积为120m2的矩形苗圃,它的长比宽多2m.苗圃的长和宽各是多少?
教师活动 (环节、措施)
学生活动 (自主参与、合作探究、展示交流)
启发探索
引导合作
(4)x的整数部分是几?十分位是几?
填表计算:
x
0
0.5
1
1.5
2
x2+12x-ຫໍສະໝຸດ 5-15-8.75
-2
5.25
13
所以1〈x〈1.5
进一步计算:
x
1.1
1.2
1.3
1.4
x2+12x-15
-0.59
0.84
2.29
3.76
例题1:P47梯子问题
梯子底端滑动的距离x(m)满足(x+6)2+72=102
一般形式:______________________
(1)你认为底端也滑动了1吗m?为什么?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

13《2.1花边有多宽(1)》
课前预习
1.如果代数式7x -3与 互为倒数,则x= .
2.用两根长为12cm 的铁丝分别围成一个正方形和一个长和宽之比为2:1的长方形,则正方形
面积为 , 长方形面积为 .
3.当m= 时,方程3(x+1)=5m -2的解为x=-5.
4.如果1
2y+(n -1) y 2=3是关于y 的一元一次方程,则n= .
5.一个矩形的花园,面积为50 m 2,宽比长少5 m,若设矩形花园的宽为x m,则长为 m,根据题意,可得方程 .
典例分析
例1:下列方程哪个是关于x 的一元二次方程 ( ) A. ax 2+bx+c =0 B.k 2+5k+6=0
C. 3x 3+2x -1=0
D. (m 2 +3)x 2+4x -2=0
例2:指出下列方程中,是一元二次方程的是 .(填入序号即可) ①5x 2+1=0 ②3x 2+
x
1
+1=0 ③4x 2=ax (其中a 为常数) ④2x 3+3x =0 ⑤2315
x + =2x ⑥22()x x +=2x ⑦|x 2+2x |=4. ⑧ x 2+3x+1= x 2
[点拨]一元二次方程是只含有一个未知数,并且含有未知数的项的最高次数是2的整式方程
例3:按要求填写下表:
已知方程 一般形式
二次项 二次项系数 一次项
一次项系数
常数项
(1) x 2+5x=50 (2) 3y 2=18 (3) (2y -1) (3y +2)=2-y 2 (4) (x -1) (x -5)=9 (5) (2x +3)2=4(3x -1)2
(6)
-ax 2+ax+bx 2-mx =7 (其中a 、m 、b 为常数,
且a ≠b )
[点拨]将一元二次方程化成一般形式是做好本题的关键,寻求各项及其系数时, ①是注意项与系数的区别;②是系数前面的符号.
基础训练
一、选择题
1.(兰州)下列方程中是一元二次方程的是( )
A.210x +=
B.2
1y x +=
C.2
10x +=
D.
21
1x x
+= 2. 一元二次方程7x 2-2x =0的二次项、一次项、常数项依次是 ( )
A. 7x 2,2x ,0
B. 7x 2,-2x ,无常数项
C. 7x 2,0,2x
D. 7x 2,-2x ,0. 3. 若关于x 的方程a (x -1)2=2x 2-2是一元二次方程,则a 的值是( ) A. 2 B. -2 C. 0 D. 不等于2 二、填空题
4. 将方程(x +1)2=2x 化成一般形式为 .
5. 方程5x 2=2(x +2)的二次项是__________,一次项是__________,常数项是 .
6.(三明)若关于x 的方程x 2+mx -6=0有一个根是2,则m 的值为 . 三、解答题(本大题共2小题,解答应写出必要的文字说明或演算步骤)
7. 判定下列方程是否一元二次方程,并说明理由.
①x 2+2xy -y 2=0 ②3x +
x
1
=0 ③x 2=1 ④ (3+ x )2=4 ⑤5
132+x =-9x ⑥(x 2-3)x +1= x 3+3x ⑦ x 2-x +1= x 2
8. 把方程(4-x )2
=6x -5化为一般形式,并写出它的二次项系数,一次项系数及常数项.
拓展延伸
一、选择题
1. 已知x 2+3x+5的值为9,则代数式3x 2+9x-2 的值为( )
A.4
B.6
C.8
D.10
2. (连云港)为执行“两免一补”政策,某地区2006年投入教育经费2500万元,预计2008年投入3600万元.设这两年投入教育经费的年平均增长百分率为x ,则下列方程正确的是( )
A.2
25003600x =
B.22500(1)3600x +=
C.22500(1%)3600x +=
D.22500(1)2500(1)3600x x +++=
3.若a x 2-5x+3=0是一元二次方程,则不等式3a+6>0的解是( ) A .a >-2 B .a ≤-2 C .a >-2 且a ≠0 D .a >2 二、填空题(本大题共3小题,请把正确答案填在题中的横线上)
4. 方程x m -1-3mx +m -2=0是关于x 的一元二次方程,则此一元二次方程是 .
5. (大连课改)大连某小区准备在每两幢楼房之间,开辟面积为300平方米的一块长方形绿地,并且长比宽多10米,设长方形绿地的宽为x 米,则可列方程为 .
6. 一元二次方程2 x 2+(a +8)x-(2a -3)=0的二次项系数,一次项系数及常数项之和为5,则a= . 三、解答题(本大题共2小题,解答应写出必要的文字说明或演算步骤)
7.一个面积为60m 2
的矩形花园,它的长比宽多11m ,花园的长和宽各是多少?设宽为x 米,请列出方程并化为一般式。

8. 一块长为12m 、宽为9m 的矩形花园,中间种植花草,四边用瓷砖铺设,使其宽度一样,要使花草面积是矩形的一半,设瓷砖宽度为x m ,则所列方程是怎样的?将其化成一般式.。

相关文档
最新文档