临床放射生物学基础

合集下载

放射生物学讲义

放射生物学讲义

快速电子 离子自由基物效应
射线质与相对生物效应
线性能量传递(LET,linear energy transmission) 射线与生物分子相互作用产生电离而发生的能量转换。 以射线沿径迹1u所消耗的能量表示,单位为KeV/u。 LET=dE/dL 高LET射线:质子、中子 低LET射线:直线加速器产生的X线和钴机产生γ线
细胞死亡的机制: 染色体DNA是关键靶 调亡:照射启动了细胞内的某种基因机制,从而发生一系 列程序性改变,最终导致细胞死亡。多 发生在间期细胞 及成熟分化的细胞。它是高度细胞类型依赖性的。唾液腺 分泌细胞:照射几次即出现口干;神经细胞,淋巴细胞等。 在一定意义上说,只需使肿瘤细胞产生增殖性死亡,即肿 瘤细胞不再无限分裂增殖,就能达到根治肿瘤的目的。 细胞死亡和再增殖完整性丢失(loss of reproductive integrity of tumor cells)存在根本意义上的不同。放射 可治愈性最主要依据是后者。
D0 Gy
线性二次模型(linearquadratic model) 辐射杀灭细胞有两部分:一部 分与照射剂量成比例,另一部 分与照射剂量的平方成比例 S=e -αD-βD2
α和β是常数
存活分数
S是照射剂量为D时的细胞存活 当αD= βD2或D= α/ β,照射剂量 与细胞杀灭成比例的部分与照射剂量 平方成比例的部分相等,在这个剂量 点α/ β,线性和平方项对细胞杀灭 的贡献相等。 α/ β:早反应组织高 晚反应组织低
第三章:电离辐射的细胞效应
辐射诱导的DNA损伤及修复
DNA的链断裂
单链断裂: 离体DNA受照射后约90%为单链断裂;活体DNA受照射后比 例更高。单链断裂后可以按照DNA的碱基配对原则修复 (如此时发生错误修复,可产生突变)。 双链断裂: 离体DNA受照射后约10%为双链断裂;活体DNA受照射后比 例更低。双链断裂后,由于模板的消失,一般不能修复。 注意断裂部位:如断裂部分彼此分开(间隔一段距离), 可以修复; 断裂在对侧互补碱基位置或仅隔几个碱基, 发生真正双链断裂,及染色体折成两段,导致细胞死亡/ 突变致癌。 双链断裂修复:同源和非同源重组

正常组织的放射生物学(放射治疗学基础)

正常组织的放射生物学(放射治疗学基础)

正常组织的临床放射生物学中山大学肿瘤医院放疗科韩非前言放射肿瘤学的内容放射肿瘤学临床肿瘤学放射物理学放疗技术学放射生物学实验放射生物学临床放射生物学实验生物学与临床生物学的关系§争论: 增殖能力与生存能力§我国研究现状§我科研究现状放射肿瘤学的发展特点§放射治疗技术的改进,放射物理学的迅猛发展,肿瘤诊断水平提高,治疗效果“越来越好”–肿瘤(尤其头颈部癌)的局控率明显增加–生存时间延长–生活质量在治疗效果的评价方面日益重要放射生物学的意义§放射治疗的两大基本原则–最大程度地杀灭肿瘤–最大程度地保护正常组织§正常组织的放射生物学效应对放疗方案的设计、实施和修改影响巨大复发是最严重的并发症?§Eagle§Pigeon目的§掌握和熟悉正常组织在放射治疗中和放射治疗后的生物学效应,是临床医师更好运用各种放射治疗方案所必须考虑的重点之一§如何使正常组织和重要器官在接受放射治疗时能够避免或尽量减少照射剂量是当今放射肿瘤学的一个重要内容正常组织的增殖动力学各组成细胞群的动力学为基础§人体正常组织受一种自动稳定控制系统的控制,正常情况下细胞群的增殖相当于细胞群的丢失§当组织处于稳定状态时,新生和死亡的细胞数相等§但当某一细胞群失去平衡时这种自动控制作用将使细胞加快增殖,以迅速补充缺损不同组织的细胞群按增殖和生长活动可分为四大类§快更新组织(fast renew tissue)–具有未分化的干细胞(undifferentiated stem cell,USC),包括造血细胞、小肠上皮、表皮、输精上皮和淋巴生成细胞等§慢更新组织(slow renew tissue)–更新时间很长,包括肝、肾、呼吸道、内分泌器官和结缔组织等§非更新组织–偶有分裂,在成年人这种分裂不足以自我更新,包括骨、脂肪和平滑肌等§无更新组织–细胞完全没有分裂,组织无法更新,包括神经细胞、睾丸的足细胞和心肌细胞等放射损伤的决定因素§损伤的表现取决于细胞内干细胞的耗尽程度§损伤发展的过程、程度及严重性取决于–干细胞中前体细胞的分化速度和方式–干细胞增殖速度放射损伤的组织效应模式§结构等级制模式(hierarchical model)–至少存在两个层次的细胞:干细胞层次和成熟细胞层次–与照射剂量无关–大多数上皮性早反应组织经历的模式§灵活模式(flexible model)–无明确细胞分化层次和严格细胞等级制度–与照射剂量相关§混合模式早反应组织和晚反应组织§临床上将正常组织分为两大类:早反应组织(early response tissue)和晚反应组织(late response tissue)§分类基础–增殖动力学–靶细胞存活公式对α/β比值的推算§两者在放射损伤的表现方面有明显的区别早反应组织§快更新组织–主要表现为放射急性反应–照射损伤出现时间较早–主要通过同源干细胞增殖、分化来补充§大多数正常组织与肿瘤组织都属于早反应组织晚反应组织§慢更新组织§主要表现为放射晚期反应–一般都有纤维细胞和其他结缔组织过度增生–广泛纤维化–血管内皮细胞的损伤造成血供减少–器官功能的缓慢丧失§损伤后不是干细胞增殖分化的结果,而是由附近的功能细胞进入分裂周期,通过细胞复制来代偿加速再增殖理论§经射线照射后可引起细胞群的再增殖§在一定的剂量作用下可能存在加速再增殖§加速再增殖在其他治疗方式(例如外科、化疗、加温治疗等)所致的损伤时很少出现或根本没有§不同组织加速再增殖的开始时间存在较大的差异3“A”学说(Dorr)§治疗一段时间后,组织细胞在接受一定损伤刺激,正常组织和肿瘤内部会出现三种情况–干细胞加速分裂(Accelerated stem cell division)–不对称丢失(Asymmetry loss)–流产分裂(Abortive division)§它们相互影响,使组织发生比治疗前要快几倍的再增殖临床上加速再增殖的表现有§分段放疗的疗效比连续放疗的疗效差§肺肿瘤治疗后短期内复发,复发时间远远小于肿瘤倍增时间§头颈肿瘤的放疗时间延长,肿瘤复发比例增加§头颈肿瘤放疗前与放疗中的肿瘤细胞倍增时间由最初的60天左右缩短至4天左右§正常组织加速再增殖理论上应该存在且与肿瘤组织类似§常规分割,单纯放疗的鼻咽癌患者,在放疗DT40Gy以后,口腔粘膜反应程度会有所减轻正常组织放射敏感性放射敏感性定义§放射敏感性是指一切照射条件完全严格一致时,机体器官或组织对辐射反应的强弱或速度快慢不同;若反应强、速度快,其敏感性就越高,反之则低§细胞放射生物学角度来看,放射敏感性定义为造成一次击中所需的辐射量(剂量)越小,放射敏感性越高§B-T 定律为四大类(1)§高度敏感组织–剂量范围为1000~2000cGy–包括生殖腺——卵巢、睾丸,发育中的乳腺,生长中的骨和软骨,骨髓等§中度敏感组织–剂量范围为2000~4500cGy–胃,小肠,结肠,肾,肺,肝,甲状腺,垂体,生长中的肌肉,淋巴结等为四大类(2)§低度敏感组织–剂量范围5000~7000cGy–皮肤,口腔粘膜,食管,直肠,唾液腺,胰腺,膀胱,成熟的骨和软骨,中枢神经系统,脊髓,眼,耳,肾上腺等§不敏感组织–剂量范围7500cGy以上–输尿管,子宫,成人乳腺,成人肌肉,血液,胆道,关节软骨和周围神经,肺尖可耐受6000~9000cGy的剂量,常规剂量放疗对这些组织基本不发生严重并发症组织放射敏感性的放射生物学因素§再增殖和加速再增殖§氧效应(再氧化)§再修复§细胞周期再群体化放射线对正常组织的影响放射线生物损伤的机理§放射线作用于组织,组织内细胞群会发生一系列物理、化学和生物反应§射线作用于生物体,产生了大量的快速运动电子,许多电子能够使吸收介质的其他原子电离,破坏机体内不可缺少的化学键,造成一系列后果,最终表现为生物损伤生物损伤的表现§生物损伤–微观上表现为细胞死亡,细胞内结构和细胞连接组成的改变–宏观上表现为组织功能暂时或永久的丧失§不同类型细胞其死亡的定义也有不同–已分化不再增殖的细胞,如神经细胞、肌肉细胞、分泌细胞指功能的丧失–增殖性细胞,指丧失持续增殖的能力,即失去完整的增殖能力基于放射损伤的器官分类(1)§Ⅰ类器官§包括骨髓、肝、胃、小肠、脑、脊髓、心脏、肺、肾和胎儿等§多为人体的重要器官,如果受到照射的话,在一定剂量下可能会产生严重的放射损伤,甚至影响患者的生命§临床计划设计时应尽量避免不照射或少照射基于放射损伤的器官分类(2)Ⅱ类器官§包括皮肤、口腔、咽部、食管、直肠、唾液腺、膀胱、子宫、睾丸、卵巢、生长期软骨、儿童骨、成人软骨、成人骨、眼(视网膜、角膜、晶体)、内分泌腺(甲状腺、肾上腺、垂体)、周围神经、耳(中耳、内耳)等§可以耐受一定的放射剂量,产生中度的放射损伤,损伤后可能导致一定的功能障碍,但基本对生命无严重影响§临床计划设计可在肿瘤剂量充足的条件下考虑减少此类器官的照射量基于放射损伤的器官分类(3)§Ⅲ类器官§包括肌肉、淋巴结和淋巴管、大动静脉、关节软骨、子宫、阴道、乳腺等§组织的耐受量大多高于肿瘤的致死量,照射后一般不产生或产生轻度的放射损伤§临床计划设计时常优先考虑肿瘤的致死量,而不着重考虑此类器官的耐受和损伤问题正常组织器官的耐受量§定义:产生临床可接受的综合症的剂量§最小耐受量(TD5/5)–是指在标准治疗条件下,照射后5年内放射合并症发生率不超过5%(实际工作中指发生率为1%~5%)所对应的放射剂量§最大耐受量(TD50/5)–是指标准治疗条件下,照射后5年内放射合并症发生率不超过50%(实际工作中指发生率为25%~30%)所对应的放射剂量标准治疗条件§超高压治疗(1~6MeV)§1000cGy/周,每天1次,治疗5次,休息2天§整个治疗根据总剂量在2~8周内完成耐受剂量的正确认识§只能代表一种几率§非标准条件的照射方式的影响§再程放疗的影响§精确设计和精确治疗§年龄的影响§全身性疾病的影响§其他治疗手段的影响(化疗、生物修饰剂甚至手术)§医生记录及评价标准的影响正常组织的放射耐受量(cGy )全部或部分晶体1 200500白内障晶体全角膜>6 0005 000角膜炎角膜全眼10 0005 500全眼炎,出血眼全垂体20 000~30 0004 500功能低下垂体10cm 5 5004 500梗死,坏死脊髓全脑干6 5005 000梗死,坏死脑干25%8 0007 000梗死,坏死全脑7 0006 000梗死,坏死脑100cm 27 0005 500溃疡,严重纤维化皮肤设野面积或长度TD50/5TD5/5损伤组织器官正常组织的放射耐受量(cGy )全肺2 5001 500100cm 23 5003 000急、慢性肺炎肺100cm 28 0006 000溃疡,狭窄直肠100cm 26 5004 500溃疡,狭窄结肠100cm 26 5005 000溃疡,穿孔,出血小肠100cm 25 5004 500溃疡,穿孔,出血胃75cm 27 5006 000食管炎,溃疡,狭窄食管喉全甲状腺15 0004 500功能低下甲状腺50cm 27 0005 000口腔干燥唾液腺50cm 27 5006 000溃疡,粘膜炎症口腔粘膜全前庭7 0006 000梅尼埃病耳(前庭)全中耳7 0006 000严重中耳炎耳(中耳)设野面积或长度TD50/5TD5/5损伤组织器官正常组织的放射耐受量(cGy )全肾上腺->6 000功能低下肾上腺全肾条状照射2 0001 500全肾2 5002 000急、慢性肾炎肾脏全肝4 5003 500肝功能衰竭,腹水全肝条状照射2 0001 500全肝4 0002 500急、慢性肝炎肝脏全乳>10 000>5 000萎缩,坏死乳腺(成人)全乳1 5001 000不发育乳腺(儿童)60%5 5004 500心包炎,全心炎心脏设野面积或长度TD50/5TD5/5损伤组织器官正常组织的放射耐受量(cGy )全身骨髓450200再生不良骨髓关节整块骨或10cm 210 0006 000坏死,骨折硬化骨、软骨(成人)整块骨或10cm 23 0001 000生长受阻,侏儒骨、软骨(儿童)全胎儿400200死亡胎儿全阴道>10 0009 000溃疡,瘘管阴道全子宫>20 000>10 000坏死,穿孔子宫全卵巢625~1200200~300永久不育卵巢(5cGy/天,散射)全睾丸400100永久不育睾丸尿道5~10cm 10 0007 500狭窄输尿管全膀胱8 0006 000挛缩膀胱设野面积或长度TD50/5TD5/5损伤组织器官正常组织的放射耐受量(cGy )10cm 210 0006 000神经炎周围神经整块肌肉8 0006 000纤维化肌肉(成人)整块肌肉4 000~5 0002 000~3000萎缩肌肉(儿童)整个淋巴结>7 0005 000萎缩,硬化淋巴结(管)10cm 2>10 000>8 000硬化大静脉10cm 2>10 000>8 000硬化大动脉7 000~10 0005 000~6000扩张,硬化毛细血管设野面积或长度TD50/5TD5/5损伤组织器官剂量体积与放射耐受量串联器官与并联器官§正常器官组织的耐受量–剂量和体积–正常组织放射并发症的发生概率(NTCP)依赖于组织的放射性类型§各器官损伤实质是射线破坏了器官的“功能元单位”,根据“功能元单位”的性质,可以将全身器官分成以下四种类型⑴串联器官§器官的功能单位呈“串行”相连接,其中一个单位的损伤会导致其它功能单位的功能障碍§如脊髓、脑干、视神经等,这类器官的损伤程度与全结构中最大剂量相关⑵并联器官§器官的功能单位以“并行”形式相连接,某一功能单位的损伤不会引起周围功能单位的功能障碍§如肝脏、肺脏,腮腺,颞叶等等。

放射治疗技术生物

放射治疗技术生物

(3)总治疗时间:因为晚反应组织更新慢,放疗期 间不发生代偿性增殖,所以对治疗时间变化不敏感 ,缩短治疗时间会增长对肿瘤细胞旳杀灭,但不会 增长晚期并发症。早反应组织对治疗时间反应敏感 ,缩短治疗时间早反应组织损伤加重。早反应组织 对射线旳反应类似于肿瘤组织。
二、非常规分割照射旳生物学基础
超分割:指在一样旳总治疗时间内用更多旳分次数。一天内多 于一种分次,但分次剂量降低。 1.2Gy/次,每天2次,间隔6 小时以上。总剂量与常规放疗相同,其目旳是保护正常组织。
细胞存活旳意义
细胞存活曲线
1、细胞存活曲线旳绘制
离体细胞培养 不同剂量照射 单细胞接种 细 胞培养 2周左右计算集落形成数目 计算存活率
绘制存活曲线
2、细胞存活曲线旳形状
1)指数性存活曲线 2)非指数性存活曲线
3、细胞存活曲线有关参数旳含义
D0 (平均致死剂量):是指细胞存活从0.1下降到0.037或从 0.01下降到0.0037所需旳剂量。表达受照射细胞在高剂量 区旳放射敏感性。D0值越大,细胞对放射越抗拒。
线性二次模式与α/β值
S =e -n (αd +βd2) 描述了组织生物效应与分次照射及剂量 之间旳关系 预测不同剂量分割方式旳生物效应 进行不同剂量分割方式旳等效转换
不同组织射线照射后反应不同。根据细胞增殖动力学 和α/β比值将正常组织提成早反应组织和晚反应组织。
早反应组织:指机体内分裂、增殖活跃并对放射线早期反 应强烈旳组织,如上皮、黏膜、造血组织、精原细胞等;( 涉及大多数肿瘤组织) 晚反应组织:指机体内无再增殖能力,损伤后仅以修复代 偿其功能旳细胞组织,如脊髓、肾、肺、肝、结缔组织等。
② 潜在倍增时间(potential doubling time ,T pot), 用来描述肿瘤生长速度旳理论参数,定义:假设在没有细胞 丢失 旳情况下,肿瘤细胞群体增长一倍所需要旳时间。这 取决于细胞周期时间和生长百分比。 潜在倍增时间能够经过测定胸腺嘧啶标识数(LI)或S期百 分比(S-Phase fraction)取得:T pot=λ×Ts/LI ③ 细胞丢失因子(cell loss factor),肿瘤细胞旳丢失 能够经过计算细胞丢失因子来体现。细胞丢失因子=1- T pot/Td

肿瘤放射治疗策略——放射生物学基础篇

肿瘤放射治疗策略——放射生物学基础篇
• 在光子的生物效应中,如果光子能量超过 124eV,就会使生物物质发生电离。
电离辐射对生物体的作用 《生物效应》
• 2.化学阶段 • 概念:受损的原子和分子与其他细胞成分发
生快速化学反应的时期 • 作用方式:电离和激发导致化学键的断裂和
自由基的形成(即破损的分子)。 • 此阶段的特点:清除反应之间的竞争,如灭
入射χ线光子
快速电子
自由基
离子自由基
由化学键断裂引起的化学变化
生物效应
电离辐射对生物体的作用 《电离辐射的直接和间接作用》
放射线的细胞效应 《电离辐射的细胞效应》
• 1.辐射诱导的DNA损伤及修复 • 理论依据:有许多的研究证据显示,
DNA是引起一系列放射生物学效应( 包括细胞死亡、突变和致癌)的关键 靶。 • DNA是射线杀伤细胞的主要靶。 • DNA的破坏,中断了细胞分裂所必须 的DNA复制过程。 • DNA损伤主要为单链或双链的断裂, 单链断裂在一定条件下还可能修复, 双链断裂则难以修复,导致细胞死亡
• 描述了组织生物效应与分次照射及剂量之间的关系 • 预测不同剂量分割方式的生物效应 • 进行不同剂量分割方式的等效转换
• n1(αd1 +βd12)= n2(αd2 +βd22)
• 不同组织射线照射后反应不同。根据细胞增殖动力学 和α/β比值将正常组织分成早反应组织和晚反应组织 。
肿瘤放射治疗策略
——放射生物学基础篇
概述
• 重要性:放射肿瘤学的三大基本 支柱:肿瘤学、放射物理学、临 床放射生物学。
• 目的:提高肿瘤放射治疗疗效, 减少正常组织损伤,延长患者生 命和改善生活质量。
• 意义:是放射肿瘤学家了解放射 线治疗肿瘤的生物学机制,以及 从事有关研究的思想库和试验基 地。

3第二章临床放射生物学

3第二章临床放射生物学


细胞死亡: 1.增殖性死亡:几个细胞周期以后才死 即失去无限增殖能力
亡,
2.间期性死亡(凋亡):几个小时内就死亡,细 胞对放射敏感性较高,比如淋巴细胞 细胞凋亡:是基因控制的细胞自主有序的死亡, 是主动争取的一种死亡过程。就像树叶或花自然 凋落一样。
辐射所致细胞死亡

几百戈瑞的大剂量照射之后,所有细胞机能都中止,最终发生细 胞溶解,这种情况被认为是细胞即刻死亡或间期死亡; 用较低的几个戈瑞照射正在分裂或还能进行分裂的细胞(如骨髓 细胞系、皮肤或小肠隐窝),此时部分细胞丧失其分裂或增殖能力。 另一方面,存活细胞或能够生存发育的细胞是指保持细胞增殖能力, 并能够因此而形成集落或克隆的细胞,这些细胞称为克隆源性细胞。 在体内,肿瘤和正常组织只有一小部分细胞属于克隆源性细胞,受照 后期数量迅速减少。 上述细胞死亡定义对放射治疗具有特殊意义,因为肿瘤细胞即使全都 依然存在,但失去了无限增殖能力,并因此而失去了局部浸润或远地 转移的能力,这样也就达到局部控制的目的。 同样,对于正常组织,大多数急性和慢性放射效应都发生在丧失生存 发育能力的情况下。



三.细胞存活曲线

受照射的细胞保留完整的增殖能力,能无限分裂 产生大量子代细胞形成一个集落或克隆的干细胞 称为细胞存活
细胞存活曲线:用来定量描述辐射吸收剂量与存 活细胞数量的相关性的一种方法。


指数性存活曲线:
细胞存活率与照射剂量成指数性反比关系,即在细 胞放射敏感性不变时,剂量越大,细胞死亡越多; 而敏感度越低,细胞存活率越高; 以同一剂量照射放射敏感与放射抗拒的细胞,其存 活率不同。根据指数性反比关系,即使照射剂量达 到极大时(临床一般不可能用这么高的剂量),也 会有少数细胞存活。p40图 用密集电离辐射如中子、a粒子为放射源,可有这 种放射效应。

放射生物学的基础理论讲解

放射生物学的基础理论讲解
⑥恒定细胞:照射后无修复能力,只能有其他 组织代替。神经细胞由神经胶质代替 横纹肌由 结缔组织代替,为低敏感。
⑦细胞周期的放射敏感性: Ⅰ:以细胞死亡为标准,M期最敏感,其敏感性是S 期的2.6倍,无亚致死性损伤。 Ⅱ:以细胞分裂延迟为指标,以G1、G2期最敏感。 如阻断G2期,使细胞进入M期 Ⅲ:以畸变为指标,S期最敏感
(四)单靶单击与单靶多击
细胞的死亡或者来自于单次致死性的击中细胞中的 靶或者来至于分成2次击中所产生的亚致死性损伤 的相加。前者以ad表示,后者以βd2表示。因而其最 终的细胞存活率为:S=e-(ad+d2)。可以分别把它们 简称为a型细胞杀灭及β型杀灭.它们的单位分别为 Gy-1和Gy-2。它们的比值即α/β=d(Gy)。当细胞 存活曲线肩区较大时,则α/β值小,而肩区小时则 α/β值较高。 α/β值相当于a型细胞杀灭和β型杀灭 二者生物效应相等时所需的剂量。S=e-(ad+d2)即是 所谓的线性-平方模式。
4、应用LQ模式设计非常规分割照射方案应注意以下原则: (1)为使晚反应组织的损伤相对低于肿瘤的杀灭,每分 次剂量应小于1.8-2.0Gy。 (2)每天的最高分次照射总量应小于4.8-5.0Gy。 (3)每分次照射间隔时间应大于6小时。 (4)在不致引起严重急性反应的情况下,尽量缩短总的 治疗时间。 (5)给予不致引起严重晚期损伤的最高总剂量,但不论 何种方案,两周内给予的总剂量不应超过55Gy。
评价:1、是经验公式,缺乏生物学基础。 2、把各种治疗归结为单次照射的生物剂量, 不符合临床上治疗情况。 3、不同组织具有不同的放射敏感性,因而 不能应用单一的指数0.24来代表所有的修复情况。 4、不同的分割剂量照射,其指数不一致。 5、没有考虑到正常组织照射后产生的加速 细胞增殖,另外,也与肿瘤细胞照射后经过一段潜 伏期,干细胞增殖速度加快的生物学现象不一致。

3.临床放射生物学基础

3.临床放射生物学基础

放射生物学基本概念
自由基与活性氧


自由基 是指能独立存在的、含有一个或一个以上不配对电子的任 何原子、分子、离子或原子团。自由基由于具有未配对电 子,易与其他电子配对成键,故具有很高的反应活性、不 稳定性、顺磁性等特点。如:氢自由基(H· )、羟自由基(· OH) 作用:损伤DNA、生物膜等 活性氧 是指氧的某些代谢产物和一些反应的含氧产物。 特点是含有氧,化学性质较基态氧更为活泼。
加速超分割
通过增加每日照射次数或每周照射次数使整个疗程缩短, 总治疗剂量不增加或减少。 即:缩短总的治疗时间,剂量不增加或减少。 如:1.5-2.0Gy/次,3次/日,5日/周。
放射生物学基本概念
靶学说 生物结构内存在着对辐射敏感的部分,称 为“靶”,其损伤将引发某种生物效应。 电离辐射以离子簇的形式撞击靶区,击中 概率遵循泊松分布。 单次或多次击中靶区可产生某种放射生物 效应,如生物大分子失活或断裂等。

放射生物学基本概念
靶学说

单击效应 生物大分子或细胞的敏感靶区被电离粒子击中 1次即足以引起生物大分子的失活或细胞的死 亡,这就是所谓的单击效应。
临床放射生物学效应
肿瘤组织细胞的放射生物学效应
肿瘤细胞动力学 细胞周期时间(Tc):
不同类型肿瘤细胞的Tc不同 同一肿瘤在不同情况下,也会有Tc的改变
临床放射生物学效应
肿瘤组织细胞的放射生物学效应
肿瘤细胞动力学 生长分数(GF):
细胞群体中,有增值能力的细胞与细胞总数之比。
GF =
有增值能力的细胞 细胞群的细胞总数

常规分割照射的生物学基础
临床放射生物学中的4R

肿瘤细胞放射损伤的再修复
亚致死性损伤的再修复 潜在致死性损伤的再修复

临床放射生物学基础

临床放射生物学基础
• 自由基和抗氧化酶和其他抗氧化物质作 用
放射治疗实现的可能性
• B-T定律:
细胞的放射敏感性高低和细胞增长 速率成正比和细胞的分化程度成反比
恶性肿瘤细胞增长快,分化差和正 常组织相比,放射敏感性更高
辐射的细胞生物学效应
• 细胞死亡
(1)增殖性死亡
分裂几次后死亡,临床表现,肿瘤受照后 ,体积不立即缩小,甚至出现临时性增大,以 后,随着肿瘤细胞的不断死亡,肿瘤才缩小
存活率=
(PE)
种植细胞数空白组集落形成
细胞存活曲线
• 高LET线细胞存活曲线----指数性曲线 曲线公式 S=e-kD
• 低LET线细胞存活曲线----非指数性曲线 肩部反映低剂量下损伤修复 直线部分反映高剂量下指数性杀灭 曲线公式为一次二元方程式 S=1-(1-e-kD )n ( K 为直线部分的斜率) D0=1/K (D0 为平均致死剂量) S=1-(1-e-D/ D0 )n
细胞存活曲线 线性二次模型
分次剂量照射的细胞存活曲线
• 分次照射时,细胞存活曲线肩区的 每次照射重建。
细胞动力学的改变
细胞的放射敏感性
• 不同细胞群体的放射敏感性,不断分裂和更新 的细胞敏感,不分裂的细胞抗拒。
• 不同细胞周期时相的放射敏感性差异。 • 不同环境中的细胞敏感性特别是氧分压不同对
曲线几个重要参数: D0 ,n值,Dq值
细胞存活曲线 单击单靶模型
细胞存活曲线 单击单靶模型
e-1 = 0.37 e-2 = 0.14 e-3 = 0.05
细胞存活曲线 单击多靶模型
细胞存活曲线 线性二次模型
• Thames和Bentzen于80年代提出 • LQ模型以DNA双链断裂造成细胞死亡为理论依
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
线性二次模式
S=e –n (αd+βd2)
S: 存活比例. e :自然对数的底. d:分次剂量 n:照射次数 α β为系数.
.
线性二次模式
-LnS=n(αd+βd2 ) =nd(α+βd) =E
E:生物效应. nd=D,d:分次剂量 E/β=nd(α/β +d) 总生物效应(Total effect,TE), 单位为(Gy)2.
射线照射路径上的能 量释放 激发 电离
.
化学阶段
激发 电离
化学键断裂 自由基形成
分子结构破坏 修复正常
.
生物阶段
分子结构破坏
酶反应
修复 基因变异/癌变
DNA不能复制/ 有丝分裂停止
细胞死亡
.
电离辐射的直接作用和间接作用
辐射导致的DNA分子断 裂分为两类:直接作用 (direct effect)和间 接作用(indirect effect)。直接作用是 指射线直接作用于DNA 分子,使DNA 分子发生 损伤而导致断裂。间接 作用是指辐射可使水分 子产生自由基,自由基 作用于DNA分子并使之 断裂
.
DNA是放射线对细胞作用最关键的靶
➢微辐射研究显示:用放射线杀死细胞时,单 独照射细胞浆所需的照射剂量要比单独照射细 胞核大得多。 ➢放射性同位素(如3H,125I)掺入核DNA可有效 地造成DNA损伤并杀死细胞。 ➢受放射线照射后染色体畸变率与细胞死亡密 切相关。 ➢当特异地把胸腺嘧啶类似物,如碘脱氧尿核 苷或溴脱氧尿核苷掺入染色体时可修饰细胞的 放射敏感性。
G1
S DNA合成期
细胞周期时相与放射敏感性
有丝分裂期细胞或接近有丝分裂期细胞 是放射最敏感细胞
晚S期细胞通常具有较大的放射抗拒性 若G1期相对较长,G1早期细胞表现相对辐
射抗拒,其后逐渐敏感,G1末期相对更敏 感 G2期细胞通常较敏感,敏感性与M期相似
.
.
肿瘤的增殖动力学
描述肿瘤生长的一些参数 潜在倍增时间(potential doubling
Dq值(准阈剂量,quasithreshold dose) 代表存活曲线的肩宽,也称为浪费剂量. 表示:开始照射到细胞呈指数性死亡时 所“浪费”的剂量. SF2:为用2GY单次照射后的细胞存活率, 作 为细胞放射敏感性的指标之一.
.
细胞存活曲线的临床意义
1:研究各种生物效应与放射剂量的关系. 2:比较各种因素(氧﹑放射增敏剂﹑化学
T
T
C
.
DNA双链断裂 染色体断裂
一般认为,引起 DNA损伤并最终导致细胞 死亡的主要是 DNA的双链断裂。这主要 是由于在实验中发现辐射引起的单链断 裂可以大部分得到修复,而双链断裂不 易修复, 且修复的过程中有可能发生的 修复差错
A T
C
.
细胞存活曲线
细胞存活:经射线照射后,细胞仍具有无限 增殖能力称为细胞存活.如没有无限增殖能力, 即使形态完整,有有限分裂能力,但不 能传种接代,也称为细胞死亡.
药 物﹑放射保护剂 ﹑不同射线 ﹑以及其 他物理因素) 对细胞放射敏感性的影响.
.
生物剂量
生物剂量是指对生物体放射反应程度 的测量.它与物理剂量不一致.因为剂量 率不同,生物效应不一样.
.
线性二次模式
线性二次模式(Liner quadratic model, LQ) 电离辐射作用于靶细胞并造成该细胞的损伤 由α 和β两个损伤概率复合而成. 单击致死,损伤与吸收剂量成正比,用α表示. 多击致死,损伤与吸收剂量的平方成正比,用β表示.
n2d2〔 1+d2/(α/β) 〕= n1d1 〔 1+d1/(α/β) 〕
D2/D1= 1+d2/(α/β) / 1+d1/(α/β)
.
细胞周期时相与放射敏感性
细胞周期时间 (cell-cycle time),也称为 有丝分裂周期 G2 时间, 是两次 有效的有丝分 裂之间的时间
.
M 有丝分裂期
临床放射生物学基础 Radiobiology
北京大学人民医院放疗科 陈亚林
.
放射生物学 Radiobiology
放射生物学研究的是辐射对生物 体作用及其效应规律的一门科学
.
放射生物学 Radiobiology
电离辐射对生物体的作用分为
物理阶段 化学阶段 生物阶段
.
物理阶段
10-18—10-12s
.
哺乳动物细胞存活曲线
横坐标表示剂量, 按线性标度绘 制,
纵坐标表示存活 率,按对数标 度绘制
.
哺乳动物细胞存活曲线
D0(平均致死剂 量,mean lethal dose)
D0=1/k,K为直线的斜 率. 它表明,杀死63%的细 胞所需的照射剂量. D0值越小,细胞越敏感.
.
哺乳动物细胞存活曲线
time, Tpot) 是一个理论值,假设在 没有细胞丢失的情况下肿瘤细胞群体 增加一倍所需要的时间
决定因素: 细胞周期时间 生长比例
.
肿瘤的增殖动力学
描述肿瘤生长的一些参数 细胞丢失因子(cell lose factor) 细胞丢失因子=1-Tpot/Td Td: Tumor volume doubling time
.
靶的概念
所谓“靶”指的是细胞内对放射线敏感的 位点。Lee 1946年在他的“辐射对活细 胞作用”一书中,创立了靶的概念,认 为辐射的生物效应是由于放射线击中了 生物大分子或细胞内对射线敏感的特定 区域并使之电离的结果,并将这个敏感 区域形象的称为“靶”。修复过程是受酶控制的
.
肿瘤的增殖动力学
人类肿瘤典型的动力学参数
细胞周期:
约2天
生长因数:
约40%
丢失率:
约90%
癌细胞潜在倍增时间:约5天
体积倍增时间:
约60天
.
早反应组织和晚反应组织
根据正常组织的不同特性和对电离辐射的 不同反应,将正常组织分为早反应组织和 晚反应组织两大类
早反应组织(Early responding tissue) 细胞更新快,放射后的损伤很快会表现出 来,这类组织α/β比值较高(10),损伤后 以活跃的增殖来维持组织中的细胞数量. 如:粘膜上皮、骨髓
.
线性二次模式
E/α=D〔1+d/(α/β)〕 E/α为生 物有效剂量(biologically effective dose, BED),单位为Gy. 它代表:整个分次照射或低剂量连续照 射过程的生物效应.
.
线性二次模式
LQ的临床意义 1:预测剂量分割方式的生物效应,而提出
超分割,加速超分割,低分割等照射方式. 2:不同剂量分割方式的等量转换
相关文档
最新文档