高三理科数学上学期期末模拟试卷及答案
高三上册数学理科期末试题及答案

高三上册数学理科期末试题及答案第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中有且只有一项是符合题目要求的,把答案填在答题卡的相应位置。
1.已知平面向量,,且,则实数的值为A.B.C.D.2.设集合,,若,则实数的值为A.B.C.D.3.已知直线平面,直线,则“”是“”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.定义:.若复数满足,则等于A.B.C.D.5.函数在处的切线方程是A.B.C.D.6.某程序框图如右图所示,现输入如下四个函数,则可以输出的函数是A.B.C.D.7.若函数的图象(部分)如图所示,则和的取值是A.B.C.D.8.若函数的零点与的零点之差的绝对值不超过,则可以是A.B.C.D.9.已知,若方程存在三个不等的实根,则的取值范围是A.B.C.D.10.已知集合,。
若存在实数使得成立,称点为“£”点,则“£”点在平面区域内的个数是A.0B.1C.2D.无数个第二卷(非选择题共100分)二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡上.11.已知随机变量,若,则等于******.12.某几何体的三视图如下右图所示,则这个几何体的体积是******.13.已知抛物线的准线与双曲线相切,则双曲线的离心率******.14.在平面直角坐标系中,不等式组所表示的平面区域的面积是9,则实数的值为******.15.已知不等式,若对任意且,该不等式恒成立,则实数的取值范围是******.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.16.(本小题满分13分)在等差数列中,,其前项和为,等比数列的各项均为正数,,公比为,且,.(Ⅰ)求与;(Ⅱ)证明:.17.(本小题满分13分)已知向量(Ⅰ)求的解析式;(Ⅱ)求由的图象、轴的正半轴及轴的正半轴三者围成图形的面积。
内蒙古阿拉善盟2022-2023学年高三上学期期末考试理科数学试题及答案解析

内蒙古阿拉善盟第一中学2022-2023学年高三上学期期末考试理科数学试题及答案解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.记集合{|||2}M x x =>,(){}2|ln 3N x y x x==-,则M N = ()A.{}32≤<x x B.{|3x x >或2}x <-C.{}20<≤x x D.{}32≤<-x x 2.已知复数1i z =+(i 是虚数单位),则izzz =+()A.31i 55+ B.11i 55+ C.31i55-+ D.11i 55-+3.命题“2≥∀a ,()2f x x ax =-是奇函数”的否定是()A.2≥∀a ,()2f x x ax =-是偶函数B.2≥∃a ,()2f x x ax =-不是奇函数C.2a ∀<,()2f x x ax =-是偶函数D.2a ∃<,()2f x x ax =-不是奇函数4.若()4sin 5πα+=-,则()cos 2πα-=()A.35B.35-C.725D.725-5.若双曲线2221x y m-=(0m >)的渐近线与圆22610x y y +-+=相切,则m =()A.4C.2D.6.端午节为每年农历五月初五,又称端阳节、午日节、五月节等.端午节是中国汉族人民纪念屈原的传统节日,以围绕才华横溢、遗世独立的楚国大夫屈原而展开,传播至华夏各地,民俗文化共享,屈原之名人尽皆知,追怀华夏民族的高洁情怀.小华的妈妈为小华煮了8个粽子,其中5个甜茶粽和3个艾香粽,小华随机取出两个,事件A “取到的两个为同一种馅”,事件B “取到的两个都是艾香粽”,则()|P B A =()A.35B.313C.58 D.13287.正方体1111ABCD A B C D -中,E 为1CC 的中点,则异面直线1B E 与1C D 所成角的余弦值为()A.1010B.1010-C.104D.104-8.某地锰矿石原有储量为a 万吨,计划每年的开采量为本年年初储量的m (01m <<,且m 为常数)倍,第n (*n ∈N )年开采后剩余储量为(1)na m -,按该计划使用10年时间开采到剩余储量为原有储量的一半.若开采到剩余储量为原有储量的70%,则需开采约(参考数107≈)()A.3年B.4年C.5年D.6年9.在平行四边形ABCD 中,4AB =,3AD =,13AE EB = ,2DF FC = ,且6BF CE ⋅=-,则平行四边形ABCD 的面积为()A.5B.5C.245D.12510.更相减损术是出自中国古代数学专著《九章算术》的一种算法,其内容如下:“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也,以等数约之”,如图是该算法的程序框图,如果输入99a =,231b =,则输出的a 是()A.23 B.33C.37D.4211.已知函数()()sin f x A x ωϕ=+(0A >,0ω>,π0ϕ-<<)的部分图象如图所示,下列说法中错误的是()A.函数()f x 的图象关于点2π,03⎛⎫- ⎪⎝⎭对称B.函数()f x 的图象关于直线11π12x =-对称C.函数()f x 在ππ,42⎡⎤⎢⎥⎣⎦上单调递增D.函数()f x 的图象向右平移π3个单位可得函数2sin2y x =-的图象12.若e 是自然对数的底数,()e ln x x m >+,则整数m 的最大值为()A.0B.1C.2D.3二、填空题:本题共4小题,每小题5分,共20分。
2021-2022年高三上数学理科期末考试题及答案

2021年高三上数学理科期末考试题及答案考试时间 120分钟 郭振亮一. 选择题:本大题共12个小题,每小题5分,满分60分)1.设集合22{|10},{|log 0}A x x B x x =->=>,则A ∩B 等于A. B. C. D.2.下列命题中,真命题的是A.2cos sin ],2,0[≥+∈∃x x x πB., C . D.3.已知中,,,则角等于A .B .C .D .4.已知各项均不为零的数列,定义向量,,. 下列命题中真命题是A. 若总有成立,则数列是等差数列B. 若总有成立,则数列是等比数列C. 若总有成立,则数列是等差数列D. 若总有成立,则数列是等比数列5.设为坐标原点,,若点满足⎪⎩⎪⎨⎧≤≤≤≤≥+--+.21,21,012222y x y x y x则取得最小值时,点的个数是A.1B.2C. 3D.无数个6.某化工厂打算投入一条新的生产线,但需要经环保部门审批同意方可投入生产.已知该生产线连续生产年的累计产量为吨,但如果年产量超过吨,会给环境造成危害.为保护环境,环保部门应给该厂这条生产线拟定最长的生产期限是(A )5年 (B )6年 (C )7年 (D )8年7.将一张坐标纸折叠一次,使点(10,0)与(-6,8)重合,则与点(-4,2)重合的点是A.(4,-2) B .(4,-3) C .(3, ) D .(3,-1)8.已知点P 在曲线上移动,在点P 处的切线倾斜角为 ,则 的 取值范围是A. B. C. D.9. 在同一个坐标系中画出函数的部分图象,其中,则下列所给图象中可能正确的是10. 过点可作圆0322222=-++-+a a ax y x 的两条切线,则实数的取值范围为A .或B .C .D .或11.当0<x <π2时,函数f (x )=1+cos2x +8sin 2x sin2x的最小值为 A .2 B.23 C .4 D.4312.已知直线与抛物线相交于两点,为的焦点,若.则A. B. C. D. 第Ⅱ卷(非选择题 共90分)二.填空题:本大题共4小题;每小题5分,共20分.13.设向量)cos 3,2(),3,sin 4(αα==,且∥,则锐角为______.14.双曲线的渐近线方程为,则双曲线的离心率是 。
高三理科数学第一学期期末质量评估测试试题及答案

山东省聊城一中—上学期高三年级期末综合测试数 学 试 题(理)一.选择题(12⨯5=60)1. 设全集是(){}(){},2|,,,|,+==∈=x y y x A R y x y x U (),124|,⎭⎬⎫⎩⎨⎧=--=x y y x B 则=B C A U( )A. φB. (2,4)C. BD.(){}4,22. 函数()2)1(22+-+=x a x x f 在区间(4,∞-)上是减函数,那么实数a 的取值范围是( )A. )[+∞,3B. (]3,-∞-C. {}3-D. (5,∞-)3. 已知不等式012≥--bx ax 的解集是⎥⎦⎤⎢⎣⎡--31,21,则不等式02<--a bx x 的解集是 ( ) A. (2,3)B. ()(),32,+∞∞-C. (21,31)D. () ⎝⎛∞+⎪⎭⎫∞-,2131,4. 关于函数),(33)(R x x f xx ∈-=-下列三个结论正确的是 ( )(1) )(x f 的值域为R; (2) )(x f 是R 上的增函数;(3) 0)()(,=+-∈∀x f x f R x 成立.A. (1)(2)(3)B. (1)(3)C. (1)(2)D. (2)(3)5. 若数列{}n a 满足),0(*N n q q a n n ∈>=,以下命题正确的是( )(1) {}n a 2是等比数列; (2) ⎭⎬⎫⎩⎨⎧n a 1是等比数列;(3) {}n a lg 是等差数列; (4) {}2lg n a 是等差数列;A. (1)(3)B. (3)(4)C. (1)(2)(3)(4)D.(2)(3)(4) 6. 已知=+++=)2007()2()1(,3sin)(f f f n n f π( )A.3 B.23 C. 0 D. --237. 设βα,为钝角,=+-==βαβα,10103cos ,55sin ( )A .π43 B. π45 C. π47 D. π45或π478. 已知函数)0)(3sin()(>+=ωπωx x f 的最小正周期为π,则该函数图象( )A. 关于点)0,3(π对称; B. 关于直线4π=x 对称; C. 关于点)0,4(π对称; D. 关于直线3π=x 对称;9. 已知向量,夹角为︒60=-⊥+==m m ),()53(,23 ( ) A.2332B. 4229C. 4223D. 294210. 不等式组⎪⎩⎪⎨⎧>-<-1)1(log ,2222x x 的解集为( )A. )3,0(B. )2,3(C. )4,3(D. (2,4) 11. 已知点A(2,3),B(--3,--2).若直线l 过点P(1,1)且与线段AB 相交,则直线l 的斜率k的取值范围是 ( ) A. 43≥k B. 243≤≤k C. 2≥k 或43≤k D. 2≤k 12. 设21,F F 分别是双曲线1922=-y x 的左右焦点。
2021年高三上学期期末考试数学试卷(理科)含解析

2021年高三上学期期末考试数学试卷(理科)含解析一、选择题:每小题5分,共50分.在四个选项中只有一项是正确的.1.复数为纯虚数,则实数a=()A.﹣2 B.﹣C.2 D.2.设集合M={x||x﹣3|<2},N={x|y=},则M∩N=()A.D.C.D.(0,)6.二项式(2x2﹣)5的展开式中x的系数为()A.﹣20 B.20 C.﹣40 D.407.运行如图所示程序框,若输入n=xx,则输出的a=()A.B.C.D.8.向所示图中边长为2的正方形中,随机撒一粒黄豆,则黄豆落在图中阴影部分的概率为()A.B.C.D.9.某公司生产甲、乙两种桶装产品,已知生产甲产品1桶需耗A原料3千克,B 原料1千克;生产乙产品1桶需耗A原料1千克,B原料3千克.每生产一桶甲产品的利润400元,每生产一桶乙产品的利润300元,公司在生产这两种产品的计划中,每天消耗A、B原料都不超过12千克,通过合理安排生产计划,公司每天可获得的最大利润是(单位:元)()A.1600 B.2100 C.2800 D.480010.设函数f(x)的定义域为D,若任取x1∈D,存在唯一的x2∈D,满足=C,则称C为函数y=f(x)在D上的均值,给出下列五个函数:①y=x;②y=x2;③y=4sinx;④y=lgx;⑤y=2x.则所有满足在其定义域上的均值为2的函数的序号为()A.①③ B.①④ C.①④⑤D.②③④⑤二、填空题:每小题5分,共25分.11.若向量、的夹角为150°,||=,||=4,则|2+|= .12.已知某几何体的三视图如图所示,则该几何体的外接球的表面积为.13.在△ABC中,角A,B,C的对边分别为a,b,c,已知a2﹣b2=bc,sinC=2sinB,则角A 为.14.已知F1,F2分别为双曲线﹣=1(a>0,b>0)的左、右焦点,P为双曲线右支上的一点,且|PF1|=2|PF2|.若△PF1F2为等腰三角形,则该双曲线的离心率为.15.若方程x4+ax﹣4=0的各个实根x1,x2,…,x k(k≤4)所对应的点(i=1,2,…,k)均在直线y=x的同侧,则实数a的取值范围是.三、解答题:共75分.解答应写出必要的文字说明、证明过程或演算步骤.16.已知函数f(x)=2sinxcosx﹣sin2x+cos2x+,x∈R.(1)求函数f(x)在上的最值;(2)若将函数f(x)的图象向右平移个单位,再将得到的图象上各点横坐标伸长到原来的2倍,纵坐标不变,得到g(x)的图象,已知g(α)=﹣,α∈(,),求cos(﹣)的值.17.如图,四边形ACDF为正方形,平面ACDF⊥平面BCDE,BC=2DE=2CD=4,DE∥BC,∠CDE=90°,M为AB的中点.(1)证明:EM∥平面ACDF;(2)求二面角A﹣BE﹣C的余弦值.18.某机械厂生产一种产品,产品被测试指标大于或等于90为优等次,大于或等于80小于90为良等次,小于80为差等次.生产一件优等次产品盈利100元,生产一件良等次产品盈利60元,生产一件差等次产品亏损20元.现随机抽出高级技工甲和中级技工乙生产的这种产品各100件进行检测,结果统计如表:测试指标[70,75)[75,80)[80,85)[85,90)[90,95)[95,100)甲 3 7 20 30 25 15乙 5 15 23 27 20 10根据表中统计得到甲、乙两人生产这种产品为优、良、差等次的频率,现分别作为他们每次生产一件这种产品的等次互不受影响.(1)计算高级技工甲生产三件产品,至少有2件优等品的概率;(2)甲、乙各生产一件产品给工厂带来的利润之和记为X元(利润=盈利﹣亏损).求随机变量X的频率分布和数学期望.19.各项均为正数的数列{a n}的前n项和为S n,已知点(a n,a n+1)(n∈N*)在函数y=3x的图象上,且S3=26.(1)求数列{a n}的通项公式;(2)在a n与a n+1之间插入n个数,使这n+2个数组成公差为d的等差数列,求数列||的前n 项和T n,并求使T n+≤成立的最大正整数n.20.已知焦点在y轴上的椭圆C1:+=1(a>b>0)经过点Q(,1),过椭圆的一个焦点且垂直长轴的弦长为1.(1)求椭圆C1的方程;(2)过抛物线C2:y=x2+h(h∈R)上一点P的切线与椭圆C1交于不同两点M,N.点A为椭圆C1的右顶点,记线段MN与PA的中点分别为G,H点,当直线CH与x轴垂直时,求h的最小值.21.设函数f(x)=lnx,g(x)=(2﹣a)(x﹣1)﹣2f(x).(1)当a=1时,求函数g(x)的单调区间;(2)设A(x1,y1),B(x2,y2)是函数y=f(x)图象上任意不同两点,线段AB中点为C(x0,y0),直线AB的斜率为k.证明:k>f(x0)(3)设F(x)=|f(x)|+(b>0),对任意x1,x2∈(0,2],x1≠x2,都有<﹣1,求实数b 的取值范围.xx学年山东省潍坊市高三(上)期末数学试卷(理科)参考答案与试题解析一、选择题:每小题5分,共50分.在四个选项中只有一项是正确的.1.复数为纯虚数,则实数a=()A.﹣2 B.﹣C.2 D.考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数的运算法则、纯虚数的定义即可得出.解答:解:∵复数==为纯虚数,∴2a﹣1=0,2+a≠0,解得a=.故选:D.点评:本题考查了复数的运算法则、纯虚数的定义,属于基础题.2.设集合M={x||x﹣3|<2},N={x|y=},则M∩N=()A. D.4.定义在R上的偶函数f(x)的部分图象如图所示,则在(﹣2,0)上,下列函数中与f(x)的单调性不同的是()A.y=x2+1 B.y=|x|+1C.y= D.y=考点:奇偶函数图象的对称性;奇偶性与单调性的综合.专题:常规题型;压轴题.分析:首先利用偶函数的对称性,判断出f(x)在(﹣2,0)为减函数.然后分别分析选项中4个函数的单调性.最后判断答案即可.解答:解:利用偶函数的对称性知f(x)在(﹣2,0)上为减函数.又y=x2+1在(﹣2,0)上为减函数;y=|x|+1在(﹣2,0)上为减函数;y=在(﹣2,0)上为增函数.∴y=在(﹣2,0)上为减函数.故选C.点评:本题考查函数的奇偶性与单调性的关系,涉及到二次函数,绝对值函数,一次函数,3次函数,以及指数函数的单调性.属于中档题.5.若过点P(﹣2,﹣2)的直线与圆x2+y2=4有公共点,则该直线的倾斜角的取值范围是()A.(0,)B. C. D.(0,)考点:直线与圆的位置关系;直线的倾斜角.专题:计算题;直线与圆.分析:用点斜式设出直线方程,根据直线和圆有交点、圆心到直线的距离小于或等于半径可得≤2,由此求得斜率k的范围,可得倾斜角的范围.解答:解:由题意可得点P(﹣2,﹣2)在圆x2+y2=4的外部,故要求的直线的斜率一定存在,设为k,则直线方程为 y+2=k(x+2),即kx﹣y+2k﹣2=0.根据直线和圆有交点、圆心到直线的距离小于或等于半径可得≤2,解得0≤k≤,故直线l的倾斜角的取值范围是,故选:B.点评:本题主要考查用点斜式求直线方程,点到直线的距离公式的应用,体现了转化的数学思想,属于中档题.6.二项式(2x2﹣)5的展开式中x的系数为()A.﹣20 B.20 C.﹣40 D.40考点:二项式系数的性质.专题:计算题;二项式定理.分析:利用二项式(2x2﹣)5展开式的通项公式即可求得答案.解答:解:设二项式(2x2﹣)5展开式的通项为T r+1,则T r+1=25﹣r•x2(5﹣r)•(﹣x)﹣r=25﹣r•(﹣1)﹣r•x10﹣3r,令10﹣3r=1得r=3,∴二项式(2x2﹣)5展开式中x的系数为22•(﹣1)﹣3=﹣40.故选:C.点评:本题考查二项式定理,着重考查二项展开式的通项公式的应用,属于中档题.7.运行如图所示程序框,若输入n=xx,则输出的a=()A. B. C. D.考点:程序框图.专题:算法和程序框图.分析:模拟程序框图的运行过程,得出该程序框图是计算a=++…+的值,i=4029时,计算a 的值,输出a,程序结束.解答:解:执行程序框图,有n=xxa=0,i=1,a=,不满足条件i≥2n﹣1,i=3,a=,不满足条件i≥2n﹣1,i=5,a=+,…不满足条件i≥2n﹣1,i=4029,a=++…+,满足条件i≥2n﹣1,退出循环,输出a的值为++…+.∵a=++…+=()=.故选:D点评:本题考查了程序框图的运行过程的问题,解题时应模拟程序框图的运行过程,得出每次循环的a的值,裂项法求和是解题的关键,属于基础题.8.向所示图中边长为2的正方形中,随机撒一粒黄豆,则黄豆落在图中阴影部分的概率为()A. B. C. D.考点:几何概型.专题:概率与统计.分析:利用定积分公式,求出阴影部分的面积,代入几何概型概率计算公式,可得答案.解答:解:阴影部分的面积S=2×+=1+2ln2,边长为2的正方形的面积为:4,故随机撒一粒黄豆,则黄豆落在图中阴影部分的概率P=,故选:A点评:本题考查的知识点是几何概型,其中利用定积分公式,求出阴影部分的面积,是解答的关键,难度中档.9.某公司生产甲、乙两种桶装产品,已知生产甲产品1桶需耗A原料3千克,B原料1千克;生产乙产品1桶需耗A原料1千克,B原料3千克.每生产一桶甲产品的利润400元,每生产一桶乙产品的利润300元,公司在生产这两种产品的计划中,每天消耗A、B原料都不超过12千克,通过合理安排生产计划,公司每天可获得的最大利润是(单位:元)()A.1600 B.2100 C.2800 D.4800考点:简单线性规划.专题:不等式的解法及应用.分析:先设每天生产甲产品x千克,乙产品y千克,利润总额为z元,根据题意抽象出x,y 满足的条件,建立约束条件,作出可行域,再根据目标函数z=400x+300y,利用线性规划的知识进行求解即可.解答:解:设每天生产甲产品x千克,乙产品y千克,利润总额为z元,则,目标函数为:z=400x+300y作出可行域:把直线l:z=400x+300y向右上方平移,直线经过可行域上的点A,且与原点距离最大,此时z=400x+300y取最大值,解方程,解得得A的坐标为(3,3).此时z=400×3+300×3=2100元.故选:B点评:本题主要考查用线性规划解决实际问题中的最值问题,基本思路是抽象约束条件,作出可行域,利用目标函数的类型,找到最优解.属中档题.10.设函数f(x)的定义域为D,若任取x1∈D,存在唯一的x2∈D,满足=C,则称C为函数y=f(x)在D上的均值,给出下列五个函数:①y=x;②y=x2;③y=4sinx;④y=lgx;⑤y=2x.则所有满足在其定义域上的均值为2的函数的序号为()A.①③ B.①④ C.①④⑤D.②③④⑤考点:函数的值;函数的图象.专题:函数的性质及应用.分析:根据定义分别验证对于任意的x1∈D,存在唯一的x2∈D,使 f(x1)+f(x2)=4成立的函数即可.解答:解:首先分析题目求对于任意的x1∈D,存在唯一的x2∈D,使 f(x1)+f(x2)=4成立的函数.①y=x,f(x1)+f(x2)=4得 x1+x2=4,解得x2=4﹣x1,满足唯一性,故成立.②y=x2,由 f(x1)+f(x2)=4得 x12+x22=4,此时x2=,x2有两个值,不满足唯一性,故不满足条件.③y=4sinx,明显不成立,因为y=4sinx是R上的周期函数,存在无穷个的x2∈D,使成立.故不满足条件④y=lgx,定义域为x>0,值域为R且单调,显然必存在唯一的x2∈D,使成立.故成立.⑤y=2x定义域为R,值域为y>0.对于x1=3,f(x1)=8.要使成立,则f(x2)=﹣4,不成立.故选:B点评:本题主要考查新定义的应用,考查学生的推理和判断能力.综合性较强.二、填空题:每小题5分,共25分.11.若向量、的夹角为150°,||=,||=4,则|2+|= 2 .考点:数量积表示两个向量的夹角;向量的模.专题:计算题.分析:本题考查的知识点是向量的模及平面向量数量积运算,由向量、的夹角为150°,||=,||=4,我们易得的值,故要求|2+|我们,可以利用平方法解决.解答:解:|2+|====2.故答案为:2点评:求常用的方法有:①若已知,则=;②若已知表示的有向线段的两端点A、B坐标,则=|AB|=③构造关于的方程,解方程求.12.已知某几何体的三视图如图所示,则该几何体的外接球的表面积为9π.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:由已知的三视图可得:该几何体是一个以俯视图为底面的三棱锥,求出其外接球的半径,代入表面积公式,可得答案.解答:解:由已知的三视图可得:该几何体是一个以俯视图为底面的三棱锥,其四个顶点是以俯视图为底面,以2为高的三棱柱的四个顶点,故其外接球,即为以俯视图为底面,以2为高的三棱柱的外接球,由底面两直角边长分别为,,故底面的外接圆直径为,故底面的外接圆半径r=,球心距d==1,故球的半径R==,故该几何体的外接球的表面积S=4πR2=9π,故答案为:9π.点评:本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.13.在△ABC中,角A,B,C的对边分别为a,b,c,已知a2﹣b2=bc,sinC=2sinB,则角A 为.考点:余弦定理;正弦定理.专题:计算题;解三角形.分析:利用正弦定理化三角函数为三角形边的关系,然后通过余弦定理求解即可.解答:解:由sinC=2sinB,由正弦定理可知:c=2b,代入a2﹣b2=bc,可得a2=3b2,所以cosA==,∵0<A<π,∴A=.故答案为:.点评:本题考查正弦定理以及余弦定理的应用,属于基本知识的考查.14.已知F1,F2分别为双曲线﹣=1(a>0,b>0)的左、右焦点,P为双曲线右支上的一点,且|PF1|=2|PF2|.若△PF1F2为等腰三角形,则该双曲线的离心率为 2 .考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:运用双曲线的定义和等腰三角形的定义,由离心率公式,计算即可得到,注意离心率的范围.解答:解:P为双曲线右支上的一点,则由双曲线的定义可得,|PF1|﹣|PF2|=2a,由|PF1|=2|PF2|,则|PF1|=4a,|PF2|=2a,由△PF1F2为等腰三角形,则|PF1|=|F1F2|或|F1F2|=|PF2|,即有4a=2c或2c=2a,即有e==2(1舍去).故答案为:2.点评:本题考查双曲线的定义和性质,考查离心率的求法,考查运算能力,属于基础题.15.若方程x4+ax﹣4=0的各个实根x1,x2,…,x k(k≤4)所对应的点(i=1,2,…,k)均在直线y=x的同侧,则实数a的取值范围是(﹣∞,﹣6)∪(6,+∞).考点:根的存在性及根的个数判断.专题:综合题.分析:原方程等价于x3+a=,原方程的实根是曲线y=x3+a与曲线y= 的交点的横坐标,分别作出左右两边函数的图象:分a>0与a<0讨论,可得答案.解答:解:方程的根显然x≠0,原方程等价于x3+a=,原方程的实根是曲线y=x3+a与曲线y= 的交点的横坐标,而曲线y=x3+a是由曲线y=x3向上或向下平移|a|个单位而得到的,若交点(i=1,2,…,k)均在直线y=x的同侧,因直线y=x与y=交点为:(﹣2,﹣2),(2,2);所以结合图象可得或,解得a>6或a<﹣6.故答案为:a>6或a<﹣6.点评:本题综合考查了反比例函数,反比例函数与一次函数图象的交点问题,数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质.三、解答题:共75分.解答应写出必要的文字说明、证明过程或演算步骤.16.已知函数f(x)=2sinxcosx﹣sin2x+cos2x+,x∈R.(1)求函数f(x)在上的最值;(2)若将函数f(x)的图象向右平移个单位,再将得到的图象上各点横坐标伸长到原来的2倍,纵坐标不变,得到g(x)的图象,已知g(α)=﹣,α∈(,),求cos(﹣)的值.考点:三角函数中的恒等变换应用;正弦函数的图象;函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:(1)利用倍角公式将函数进行化简,结合三角函数的图象和性质即可求函数f(x)在上的最值;(2)根据三角函数的图象关系求出g(x)的表达式,利用三角函数的关系式进行求值即可.解答:解:(1)f(x)=2sinxcosx﹣sin2x+cos2x+=sin2x﹣+cos2x+=sin2x+cos2x=2sin(2x+).∵x∈,∴﹣≤2x+≤,∴当2x+=﹣,即x=﹣时,f(x)的最小值为2×()=.当2x+=,即x=时,f(x)的最大值为2×1=2.(2)若将函数f(x)的图象向右平移个单位,再将得到的图象上各点横坐标伸长到原来的2倍,纵坐标不变,得到g(x)=2sin(x﹣),由g(α)=2sinx(α﹣)=﹣,得sinx(α﹣)=﹣,∵α∈(,),∴π﹣α∈(π,),是cos(α﹣)=﹣,∵<﹣,∴cos(﹣)==﹣.点评:本题主要考查三角函数的最值的求解,根据倍角公式将函数化简是解决本题的关键,要求熟练三角函数的图象和性质.17.如图,四边形ACDF为正方形,平面ACDF⊥平面BCDE,BC=2DE=2CD=4,DE∥BC,∠CDE=90°,M为AB的中点.(1)证明:EM∥平面ACDF;(2)求二面角A﹣BE﹣C的余弦值.考点:用空间向量求平面间的夹角;直线与平面平行的判定;二面角的平面角及求法.专题:综合题;空间向量及应用.分析:(1)取AC的中点P,连结PM、PD,通过中位线定理可得四边形DEMP为平行四边形,进而有ME∥DP,利用线面平行的判定定理即得结论;(2)以C为坐标原点,CA、CB、CD所在直线分别为x、y、z轴建立空间直角坐标系,则所求值为平面ABE的法向量与平面BCE的一个法向量的夹角的余弦值,计算即可.解答:(1)证明:如图,取AC的中点P,连结PM、PD,在△ABC中,P为AC的中点,M为AB的中点,∴PM∥BC,且PM=BC,又∵DE∥BC,DE=BC,∴PM∥DE且PM=DE,故四边形DEMP为平行四边形,∴ME∥DP,又∵DP⊂平面ACDF,EM⊄平面ACDF,∴EM∥平面ACDF;(2)解:∵平面ACDF⊥平面BCDE,平面ACDF∩平面BCDE=CD,AC⊥DC,∴AC⊥平面BCDE,∴AC⊥BC,又∵∠CDE=90°,DE∥BC,∴BC⊥CD,以C为坐标原点,CA、CB、CD所在直线分别为x、y、z轴建立空间直角坐标系,则C(0,0,0),A(2,0,0),B(0,4,0),D(0,0,2),E(0,2,2),则=(﹣2,4,0),=(﹣2,2,2),设平面ABE的法向量为=(x,y,z),由,得,取y=1,得=(2,1,1),又∵AC⊥平面BCDE,∴=(2,0,0)为平面BCE的一个法向量,∴cos<,>===.∴二面角A﹣BE﹣C的余弦值为.点评:本题考查空间中线面平行的判定,以及求二面角的三角函数值,注意解题方法的积累,属于中档题.18.某机械厂生产一种产品,产品被测试指标大于或等于90为优等次,大于或等于80小于90为良等次,小于80为差等次.生产一件优等次产品盈利100元,生产一件良等次产品盈利60元,生产一件差等次产品亏损20元.现随机抽出高级技工甲和中级技工乙生产的这种产品各100件进行检测,结果统计如表:测试指标[70,75)[75,80)[80,85)[85,90)[90,95)[95,100)甲 3 7 20 30 25 15乙 5 15 23 27 20 10根据表中统计得到甲、乙两人生产这种产品为优、良、差等次的频率,现分别作为他们每次生产一件这种产品的等次互不受影响.(1)计算高级技工甲生产三件产品,至少有2件优等品的概率;(2)甲、乙各生产一件产品给工厂带来的利润之和记为X元(利润=盈利﹣亏损).求随机变量X的频率分布和数学期望.考点:离散型随机变量的期望与方差;离散型随机变量及其分布列.专题:概率与统计.分析:(1)高级技工甲生产三件产品,至少有2件优等品有两种情况:恰有2件优等品或3件都是优等品,由此能求出高级技工甲生产三件产品,至少有2件优等品的概率.(Ⅱ)随机变量X的所有可能取值为200,160,120,80,40,﹣40,分别求出相应的概率,由此能求出随机变量X的频率分布和数学期望.解答:解:(1)甲生产一件产品为优、良、差等次的概率分别为,乙生产一件产品为优、良、差等次的概率分别为,高级技工甲生产三件产品,至少有2件优等品有两种情况:恰有2件优等品或3件都是优等品,∴高级技工甲生产三件产品,至少有2件优等品的概率:P=()3+.(Ⅱ)随机变量X的所有可能取值为200,160,120,80,40,﹣40,P(X=200)==,P(X=160)==,P(X=120)==,P(X=80)==,P(X=40)==,P(X=﹣40)==,∴X的分布列为:X 200 160 120 80 40 ﹣40PEX=+=124(元).点评:本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,在历年高考中都是必考题型之一.19.各项均为正数的数列{a n}的前n项和为S n,已知点(a n,a n+1)(n∈N*)在函数y=3x的图象上,且S3=26.(1)求数列{a n}的通项公式;(2)在a n与a n+1之间插入n个数,使这n+2个数组成公差为d的等差数列,求数列||的前n 项和T n,并求使T n+≤成立的最大正整数n.考点:数列与不等式的综合;等差数列的性质.专题:综合题;等差数列与等比数列.分析:(1)先利点(a n,a n+1)(n∈N*)在函数y=3x的图象上,且S3=26,求出q=3,a1=2,即可求数列{a n}的通项;(2)先把所求结论代入求出数列{T n}的通项,再利用数列求和的错位相减法即可求出其各项的和,最后利用不等关系求解即可.解答:解:(1)∵点(a n,a n+1)(n∈N*)在函数y=3x的图象上,∴a n+1=3a n,∴公比q=3,∴S3=26,∴a1+3a1+9a1=26,解得a1=2,∴数列{a n}的通项公式a n=2×3n﹣1.(2)由(1)知a n=2×3n﹣1,a n+1=2×3n,∵在a n于a n+1之间插入n个数,使这n+2个数组成公差为d n的等差数列,∴a n+1=a n+(n+1)d n,∴d n=,∴=,∴T n=++…+,①T n+1=++…+②①﹣②,整理得T n=﹣.∴T n+≤,即3n﹣1≤27,解得n≤4,∴使得T n+≤成立的正整数n的最大值是4.点评:本题考查数列的通项,考查数列求和的错位相减法,考查计算能力,属于中档题.20.已知焦点在y轴上的椭圆C1:+=1(a>b>0)经过点Q(,1),过椭圆的一个焦点且垂直长轴的弦长为1.(1)求椭圆C1的方程;(2)过抛物线C2:y=x2+h(h∈R)上一点P的切线与椭圆C1交于不同两点M,N.点A为椭圆C1的右顶点,记线段MN与PA的中点分别为G,H点,当直线CH与x轴垂直时,求h的最小值.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线的定义、性质与方程.分析:(1)通过将点Q(,1)、y=c代入椭圆方程,计算即得结论;(2)通过设P(t,t2+h),则直线MN的方程为:y=2tx﹣t2+h,代入椭圆方程,利用中点坐标公式及韦达定理计算即得结论.解答:解:(1)∵椭圆过点Q(,1),∴,将y=c代入椭圆方程得:x=±,∴=1,解得:a=2,b=1,∴椭圆C1的方程为:;(2)设P(t,t2+h),由y′=2x可知切线斜率k=2t,∴直线MN的方程为:y=2tx﹣t2+h,将其代入椭圆方程得:4x2+(2tx﹣t2+h)2﹣4=0,化简得:4(1+t2)x2﹣4t(t2﹣h)x+(t2﹣h)2﹣4=0,∵直线MN与椭圆交于不同的两点,∴△>0,即△=16>0 (*)设M(x1,y1),N(x2,y2),线段MN中点横坐标为x0,由韦达定理可知:x1+x2=,x0==,设线段PA中点的横坐标为x3,则x3=,由已知有x0=x3,即=,显然t≠0,h=﹣(t++1),当t>0时,t+≥2,当且仅当t=1时取等号,此时h≤﹣3,不符合(*)式,舍去;当t<0时,(﹣t)+≥2,当且仅当t=﹣1时取等号,此时h≥1,符合(*)式;综上所述,h的最小值为1.点评:本题是一道直线与圆锥曲线的综合题,考查运算求解能力,注意解题方法的积累,属于中档题.21.设函数f(x)=lnx,g(x)=(2﹣a)(x﹣1)﹣2f(x).(1)当a=1时,求函数g(x)的单调区间;(2)设A(x1,y1),B(x2,y2)是函数y=f(x)图象上任意不同两点,线段AB中点为C(x0,y0),直线AB的斜率为k.证明:k>f(x0)(3)设F(x)=|f(x)|+(b>0),对任意x1,x2∈(0,2],x1≠x2,都有<﹣1,求实数b 的取值范围.考点:利用导数研究函数的单调性;直线的斜率.专题:导数的综合应用.分析:(1)将a=1代入求出g(x)的表达式,再求出g(x)的导数,从而求出g(x)的单调区间;(2)将x0=代入f′(x0)==,问题转化为证:k(t)lnt+﹣2的单调性,(t>1),从而证出结论;(3)设G(x)=F(x)+x,则G(x)在(0,2]单调递减,通过讨论x的范围,结合导数的应用,从而求出b的范围.解答:解:(1)当a=1时,g(x)=(x﹣1)﹣2f(x)=(x﹣1)﹣2lnx=x﹣1﹣2lnx,定义域为(0,+∞);g′(x)=1﹣=;当x∈(0,2)时,g′(x)<0,g(x)单调递减;当x∈(2,+∞)时,g′(x)>0,g(x)单调递增;即g(x)的单调增区间为(2,+∞),单调减区间为(0,2).(2)证明:k==,又x0=,所以f′(x0)==;即证,>,不妨设0<x1<x2,即证:lnx2﹣lnx1>;即证:ln>;设t=>1,即证:lnt>=2﹣;即证:lnt+﹣2>0,其中t∈(1,+∞);事实上,设k(t)=lnt+﹣2,(t∈(1,+∞)),则k′(t)=﹣=>0;所以k(t)在(1,+∞)上单调递增,所以k(t)>k(1)=0;即结论成立.(3)由题意得+1<0,即<0;设G(x)=F(x)+x,则G(x)在(0,2]单调递减,①当x∈时,G(x)=lnx++x,G′(x)=﹣+1≤0;b≥+(x+1)2=x2+3x++3在上恒成立,设G1(x)=x2+3x++3,则G1′(x)=2x+3﹣;当x∈,G1′(x)>0;∴G1(x)在上单调递增,G1(x)≤;故b≥.②当x∈(0,1)时,G(x)=﹣lnx++x;G1(x)=x2+3x++3,G′(x)=﹣﹣+1≤0,b≥﹣+(x+1)2=x2+x﹣﹣1在(0,1)恒成立,设G2(x)=x2+x﹣﹣1,(x)=2x+1+>0,即G2(x)在(0,1)单调递增,故G2(x)<G2(1)=0,∴b≥0,综上所述:b≥.点评:本题考查了函数的单调性,函数恒成立问题,考查导数的应用,考查转化思想,本题有一定的难度.-30312 7668 癨26293 66B5 暵26378 670A 朊 29057 7181 熁31651 7BA3 箣38349 95CD 闍20574 505E 偞33353 8249 艉)29419 72EB 狫~32098 7D62 絢。
高三理科数学上学期期末测试试题及答案

山东省临沂高新实验中学届高三上学期期末考试数学(理工类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至8页,共150分,考试时间120分钟.第Ⅰ卷 (选择题 共60分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案代号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束后,监考人将本试卷和答题卡一并收回.一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M =|0,a |,N =|x |x 2-2x -3<0,x ∈Z|,若M∩N≠∅,则a 的值为A .1B .2C .1或2D .不为零的任意实数2.下列函数中既是奇函数,又在区间(0,+∞)上单调递增的是A .y =sin xB .y =-x 2C .y =lg2xD .y =e|x |3.若cos (2π-α)=35且a ∈(-0,2π),则sin (π-α) A .-35B .-32 C .31 D .±324.给出以下命题:①Ax ∈R ,有x 4>x 2;②Ea ∈R ,对Ax ∈R 使x 2+2x +a<0,其中真命题的个数为 A .0B .1C .2D .35.若x ∈(0,1),则下列结论正确的是 A .2x >x 21>lgxB .2x >lg x >x 21C .x 21>2x >lg xD .lg x >x 21>2x6.一块各面均涂有油漆的正方体被锯成1000个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,则任意取出一个正方体其两面涂有油漆的概率是 A .121B .101 C .253 D .125127.把直线x -2y +λ=0向左平移1个单位,再身下平移2个单位后,与同线x 2+y 2+2x -4y =0正好相切,则实数λ的值为 A .-13或3B .13或-3C .13或3D .-13或-38.已知函数y =f (x )在(0,1)内的一段图象是如图所示的一段圆弧,若0<x 1<x 2<1,则 A .()11x x f <()22x x f B .()11x x f =()22x x f C .()11x x f >()22x x f D .不能确定 9.如图,三棱锥P -ABC 中,PA =PB =PC 且△ABC 为正三角形,M 、N 分别是PB 、PC 的中点若截面AMN ⊥侧面PBC ,则此棱锥侧面PBC 与底面ABC 所成二面角的余弦值是A .2nB .22 C .36 D .66 10.在等比数列{a n }中,a 1=3,前n 项和为Sn ,若数列|a n +1|也是等比数列,则S n 等于 A .2nB .3nC .2n +1-1D .30-111.在△OAB 中,OD b OB a OA ,,==是AB 边上的高,若AB AD λ=,则实数λ行等于 A.()2ba ab a --⋅ B .()2ba b a a --• C .()ba ab a --•D .()ba b a a --•12.如图,过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于点A 、B ,交其准线于点C ,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为 A .y 2=9xB .y 2=6xC .y 2=3xD .y 2=x 3第Ⅱ卷(非选择题 共90分)注意事项:第Ⅱ卷共6页,用钢笔或圆球直接答在试题卷中,答卷前将密封线内的项目填写清楚. 二、填空题:本大题共4小题,每小题4分,共16分,把正确答案填在题中横线上. 13.已知一圆锥的侧面展开图为半圆,且面积为S ,则圆锥的底面面积是__________. 14.一个总体依有100个个体,随机编号0,1,2,…,99,依从小到大的编号顺序平均分成10个小组,组号依次为1,2,3,…,10,现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m +k 的个位数字相同,若m =8,则在第8组中抽取的号码是_________. 15.某商场在节假日对顾客购物实行一定的优惠,商场规定:①如一次购物不超过200元,不给予折扣;②如一次购物超过200元不超过500元,按标价给予九折优惠;③如一次购物超过500元的,其中500元给予九折优惠,超过500元的剩余部分给予八五折优惠.某人两次去购物,分别付款176元和432元,如果他只云一次购买同样的商品,则他应该付款为__________________元. 16.设函数f (x )=sin (ω+φ)(ω>0,-2π),有下列论断: ①f (x )的图象关于直线x =12π对称; ②f (x )的图象关于(0,3π)对称;③f (x )的最小正周期为π;④在区间[-0,6π]上,f (x )为增函数. 以其中的两个论断为条件,剩下的两个论断为结论,写出你认为正确的一个命题:若___________,则_________________.(填序号即可)三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,则ABC S ∆=•38(其中S △ABC 为△ABC 的面积).(1)求sin 2A CB 2cos 2++; (2)若b =2,△ABC 的面积S △ABC =3,求a . 18.(本小题满分12分)如图,在五面体,ABCDF 中,点O 是矩形ABCD 的对角线的交点,面ABF 是等边三角形,棱EF =BC 21. (1)证明EO ∥平面ABF ; (2)问CDBC为何值是,有OF ⊥ABE ,试证明你的结论.19.(本小题满分12分)甲、乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内任何时刻到达是等可能的.(1)如果甲船和乙船的停泊时间都是4小时,求它们中的任何一条船 不需要等等码头空出的概率;(2)如果甲船的停泊时间为4小时,乙船的停泊时间是2小时,求它们中的任何一条船 不需要等待码头空出的概率.20.(本小题满分12分)函数y =f (x )是定义域为R 的奇函数,且对任意的x ∈R ,均有f (x +4)=f (x )成立,当x ∈(0,2)时,f (x )=-x 2+2x +1. (1)当x ∈[4k -2,4k +2](k ∈Z )时,求函数f (x )的表达式; (2)求不等式f (x )>23的解集.21.(本小题满分12分)设数列{a n }的各项都是正数,且对任意n ∈N*,都有a 13+a 23+a 33+…+a n 3=S n 2,其中Sn 为数例{a n }的前n 项和. (1)求证:a n 2=2S n -a n ; (2)求数列{a n }的通项公式;(3)设b n =3n +(-1)n -1λ·2a n (λ为非零整数,n ∈N*),试确定λ的值,使得对任意n ∈N*,都有b n +1>b n 成立.22.(本小题满分14分)如图,已知椭圆C :)0(235222>=+m m y x ,经过椭圆C 的右焦点F 且斜率为k (k ≠0)的直线l 交椭圆G 于A 、B 两点,M 为线段AB 的中点,设O 为椭圆的中心,射线OM 交椭圆于N 点.(1)是否存在k ,使对任意m>0,总有ON OB OA =+成立?若存在,求出所有k 的值; (2)若()m m OB OA 4213+-=•,求实数k 的取值范围.数学(理工)试题参考答案及评分标准一、选择题(每小题5分,共60分) 1.D2.C 3.B 4.B 5.A 6.D 7.C 8.C 9.D 10.B11.B 12.C二、填空题(每小题4分,共16分) (13)2S(14)76 (15)582.6 (16)①③,②④或②③,①④ 三、解答题17.(本小题满分12分) 解:(1)∵.38ABC S AC AB ∆=• ∴|A AC AB A AC AB sin 2138cos •=••| 1分∴cosA =A sin 342分∴cosA =,53sin 54=A ,3分 ∴sin2()A C B A C B 2cos 2cos 12cos 2++-=++=1cos 22cos 12-++A A =.50596分(2)∵sinA =.53由S △ABC =A bc sin 21,得3=,53221⨯⨯c 解得c =5. 9分∴a 2 =b 2+c 2-2be cos A =4+25-2×2×5×54=1318.(本小题满分12分)(1)证明:取AB 中点M ,连结OM .2分在矩形ABCD 中,OM =BC 21, 又EF =BC 21,则EF =OM , 连结FM ,于是四边形EFMO 为平行四边形.∴OE ∥FM . 4分 又∵EO ⊄平面ABF ,FM ⊂平面ABF ,∴EO ∥平面ABF .6分(2)解:∵OF ⊥平面ABE ,连结EM .∵EM ⊂平面ABE .∴OF ⊥EM ,又四边形OEFM 为平行四边形. ∴□OEFM 为菱形.8分∴OM =MF ,设OM =a ,则BC =2a .在正△ABF 中,MF =a ,∴a =3AB 2,∴AB 3a =. 10分∴CD =3a ,∴2323BC aCD a ==综上可知,当3=CDBC时,有OF ⊥平面ABE .12分19.(本小题满分12分)(1)设甲、乙两船到达时间分别为x 、y ,则O≤x <24,0≤y <24且y -x >4或y -x <-4作出区域⎪⎩⎪⎨⎧-<><≤<≤.4x -y 4,x -y 24,y 0,240或x4分设“两船无需等待码头空出”为事件A ,则P (A )=.362524242020212=⨯⨯⨯⨯6分(2)当甲船的停泊时间为4小时,两船不需等待码头空出,则满足x -y >2.8分设在上述条件时“两船不需等待码头空出”为事件B ,画出区域.⎪⎩⎪⎨⎧>->-<≤<≤.2,4,240,240y x x y y x 或 10分P (B )=.2882215764422424222221202021==⨯⨯⨯+⨯⨯12分20.(本小题满分12分)(1)当x =0时,∵f (0)=-f (0),∴f (0)=0.1分当x ∈[-2,0]时,-x ∈(0,2),f (x )=-f (-x )=-(x 2-2x +1)=x 2+2x -1.3分由f (x +4)=f (x ),知f (x )为周期函数,且周期T =4. 4分 当x ∈[4k -2,4k](k ∈Z )时,x -4k ∈[-2,0],∴f (x )=f (x -4k )=(x -4k )2+2(x -4k )-1. 5分当x ∈(4k ,4k +2)(k ∈Z )时,x -4k ∈(0,2), ∴f (x )∈f (x -4k )=-(x -4k )2+2(x -4k )+1. 6分故当x ∈[4k -2,4k +2](k ∈Z )时,f (x )的表达式为f (x )=()()[)(]⎪⎩⎪⎨⎧+∈+-+---∈--+-24,4,1)4(22)4(,04,24,14242k k x k x k x k k x k x k x7分(2)当x ∈[-2,2]时,由f (x )>23得⎪⎩⎪⎨⎧>-+<≤-2312022x x x 或⎪⎩⎪⎨⎧>++-≤<2312202x x x解得1-.22122+<<x 10分∵f (x )是以4为周期的周期函数, ∴f (x )>23的解集为|x |4k +1-221422++<<k x |. 12分21.(本小题满分12分)(1)由已知,当n =1时,a 13=a 12,又∵a 1>0,∴a 1=1.1分当n≥2时,a 13+a 23+a 33+…+a n 3=S n 2① a 13+a 23+a 33+…+a n -13=S n -12②2分由①②得,a n 3=(S n -S n -1)(S n -S a -1)(S a +S a -1)=a n (S n +S n -1). ∵a n >0,∴a n 2=S n +S n -1, 又S n -1=S a -a a ,∴a n 2=2S n -a n .3分当n =1时,a 1=1适合上式. ∴a n 2=2S n -a n .4分(2)由(1)知,a n 2=2S n -a n ,③当n≥2时,a n -12=2S n -1-a n -1,④5分 由③④得,a n 2-a n -12=2(S n -S n -1)-a n +a n -1=a n +a n -1.6分∵a n +a n -1>0,∴a n -a n -1=1,数列{a n }是等差数列,首项为1,公差为1. 7分 ∴a n =n .8分(3)∵a n =n .,∴b n =3n +(-1)n -1λ·2n .要使b n +1>bn 恒成立,b n +1-b n =3n +1-3n +(-1)n λ·2n +1-(-1)n -1λ·2n =2×3n -3λ(-1)n -1·2n>0恒成立,9分即(-1)n -1λ<(23)n -1恒成立. ⅰ。
高三上学期期末考试数学(理科)试题含解析

高三(上)期末数学试卷(理科)一、选择题(本大题共12 小题,共60.0 分)1. 设全集,会合,,则()A. B. C. D.C【答案】【分析】,,,所以,应选择 C.2. 已知复数知足,则()A. B. C. D.【答案】D【分析】z 知足,则,应选D.试题剖析:∵复数考点:复数运算.3. 已知中,,,则等于A. B. C.或 D.或【答案】A【分析】【剖析】由正弦定理列出关系式,把a,b,的值代入求出的值,联合大边对大角的性质即可确定出 B的度数.【详解】中,,,,由正弦定理得:,,,则.应选: A.【点睛】本题考察了正弦定理,以及特别角的三角函数值,娴熟掌握正弦定理是解本题的关键.4. 已知随机变量听从正态散布则A. 0.89B. 0.78C. 0.22D. 0.11【答案】 D【分析】本题考察正态散布和标准正态散布的转变及概率的计算方法.应选 D5. 已知向量,,若,则与的夹角为()A. B. C. D.【答案】 D【分析】依题意,,即解得,故,则与的夹角的余弦值,故.选 D.6. 设等差数列 {a} 的前n项和为S,若S- 1=-2,S= 0,S+1=3,则= ()n n m m mA.3B.4C.5D. 6【答案】 C【分析】∵{a n} 是等差数列∴S m==0a1=- a m=- (S m- S m-1)= - 2,又=-=3,∴公差=-=1,∴3==-,∴=5,应选 C.视频7.如所示的程序框,出的S 的 ()A. B.2 C.-1 D.-【答案】 A【分析】k= 1 , S= 2,k= 2 , S=,k= 3 , S=- 1,k= 4,S= 2,⋯⋯所以 S 是以 3 周期的循.故当 k=2 012 , S=.8.如所示是一个几何体的三,个几何体外接球的表面A. B. C. D.【答案】 C【分析】试题剖析:几何体为一个四棱锥,外接球球心为底面正方形(边长为4)中心,所以半径为,表面积为,选 C.考点:三视图,外接球【方法点睛】波及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特别点( 一般为接、切点 ) 或线作截面,把空间问题转变为平面问题,再利用平面几何知识找寻几何体中元素间的关系,或只画内切、外接的几何体的直观图,确立球心的地点,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.视频9.我国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不犯难,次日脚痛减一半,六朝才获得其关,要见次日行里数,请公认真算相还. ”其粗心为:“有一个人走 378 里路,第一天健步行走,从次日起脚痛每日走的行程为前一天的一半,走了6天后抵达目的地 . ”则这人第一天走的行程为()A. 192 里B. 96里C. 63里D.6里【答案】 A【分析】设第一天走了里,则是以为首项,以为公比的等比数列,依据题意得:解得应选10. 函数A.,B.在区间,,C.内是增函数,D.则实数的取值范围是【答案】 B 【分析】【剖析】对函数进行求导,依据函数单一递加易得在内恒成立,即果 .【详解】∵,∴,∵函数在区间内是增函数,∴在内恒成立,即,∴,应选B.【点睛】本题考察利用导数研究函数的单一性,将函数单一递加转变为属于中档题.,解出即得结是解题的重点,11. 已知抛物线的准线过双曲线的左焦点且与双曲线交于、两点,为坐标原点,且的面积为,则双曲线的离心率为A. B. 4 C. 3 D. 2【答案】【分析】D试题剖析:抛物线的准线方程为,所以双曲线的左焦点,进而,把代入得,所以的面积为,解得,所以离心率,应选 D.考点:抛物线的方程、双曲线的几何性质.【方法点晴】本题主要考察了抛物线的方程、双曲线的简单几何性质,属于基础题. 正确运用双曲线的几何性质是本题解答的重点,第一依据抛物线方程求出准线方程即得双曲线的焦点坐标,求出的值,由双曲线标准方程求得弦的长,表示出的面积,进而求得值,最后由离心率的定义求出其值.12. 已知函数,,为的零点,为图象的对称轴,且在,上单一,则的最大值为A.11B.9C.7D.5【答案】 B【分析】,则,得,又,则,得,当时,则,则,所以,在不但一;当,则,则,所以,在单一递减。
高三理科数学上学期期末测评试卷及答案

上海市闵行区高三第一学期期末质量监控数学试卷(理).1一.填空题(本大题满分60分)1.设集合U {1,2,3,4,5},=集合A={1,23}B={2,34},,,,则U(A B)=____________.2.在等比数列{}n a 中,218,64,a a ==则公比q 为=___________ . 3.不等式|32|1x -<的解是____________. 4.已知点Z 是复数21iz i-=+在复平面内对应的点,则点Z 在第_______象限. 5.函数2()log (1)f x x =-的反函数是1()f x -=_________.6.在6(1)x -的二项展开式中,中间项的系数是__________.7.已知圆锥的底面积为π,母线长为2,则该圆锥的母线与底面所成的角的大小是__________. 8.根据右面的框图,打印的最后一个数据是__________.9.已知数列{}n a 是以13为首项,以2-为公差的等差数列,n S 是其前n 和,则n S 的最大值是____.10.四位同学各自制作了一张贺卡,分别装入空白信封内,这四位同学每人 随机地抽取一封,则恰好有一人抽取到的贺卡是其本人制作的概率是______11.已知x 是1245x 、、、、这五个数据的中位数,又知115y x--、、、这四个 数据的平均数为3,这x y +的最小值为_________ .12.若关于x 的不等式211()022n x x +-≥对任意*n N ∈在(,]x λ∈-∞恒成立,则实常数λ的取值范围是__________.二.选择题(本大题满分16分)13.某人在超市一次性购买了20斤大米和10斤食用油,大米的价格是1.9元/斤,食用油的价格是15元/斤,则购买这两种商品的总花费可以用下列各式计算得到的是 ( ) A .20 1510 1.9B .20 1.910 15 C .() 1.920 1015⎛⎫ ⎪⎝⎭ D .()1.920 1015⎛⎫⎪⎝⎭14.如图为函数log n y m x =+的图像,其中m n 、 ( )A .0,1m n <>B .0,1m n >>C .0,01m n ><<D .0,01m n <<<15.给定空间中的直线l 及平面α,条件“直线l 与平面α内无数条直线都垂直”是“直线l 与平面α垂直”的 ( ) A .充分非必要条件 B .必要非充分条件 C. 充要条件 D. 既非充分也非必要条件 16.一质点A 从原点O 出发沿向量1(2,0)OA =到达点1A ,再沿y 轴正方向从点1A 前进11||2OA 到达点2A ,再沿1OA 的方向从点2A 前进121||2OA 到达点3A ,再沿y 轴正方向从点3A 前进131||2OA 到达点4A ,┅,这样无限前进下去,则质点A 最终到达的点坐标是 ( ) A .42(4,2)22n n -- B .(4,2) C .8844(,)338338n n -- D .84(,)33三.解答题(满分74分)17.(本题满分12分)如图,直四棱柱1111ABCD A B C D -中,底面ABCD 是直角梯形,//AB DC ,,AD AB ⊥ 且2,3,AD DC AB ===求异面直线11D C 与DB 所成角的大小.(结果用反三角函数值表示)18.(本题满分14分)某医药研究所开发一种新药,据监测:服药后每毫升血液中的含药量()f x 与时间x 之间满足如图所示曲线.当[0,4]x ∈时,所示的曲线是二次函数图像的一部分,满足21()(4)44f x x =--+,当(4,19]x ∈时,所示的曲线是函数12log (3)4y x =-+的图像的一部分.据测定:每毫升血液中的含药量不少于1微克时治疗疾病有效.请你算一下,服用这种药一次大概能维持多长时间的有效时间?(精确到0.1小时)ABCD A 1B 1C 1D 119.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知角α的顶点在原点,始边与x轴的正半轴重合,终边经过点(P -.(1)求行列式sin tan 1 cos ααα的值;(2)若函数()cos()cos sin()sin ()f x x x x R αααα=+++∈,求函数2(2)2()2y x f x π=-+的最大值,并指出取到最大值时x 的值.20.(本题满分16分)本题共有3个小题,第1、2小题满分各4分,第3小题满分8分.已知向量2(1,2),(3,),(),a x p b x f x a b p =++==是实数.(1)若存在唯一实数x ,使a b +与(1,2)c =平行,试求p 的值; (2)若函数()y f x =是偶函数,试求函数()f x 在区间[1,3]-上的值域;(3)已知α:函数()f x 在区间1[,)2-+∞上是增函数,β:方程()f x p =有小于2-的实根.试问:α是β的什么条件(指出充分性和必要性)?请说明理由.21.(本题满分18分)本题共有3个小题,第1小题满分3分,2小题满分5分,第3小题满分10分.第3小题根据不同的思维层次予以不同评分.对于函数()y f x =,定义:若存在非零常数M T 、,使函数()f x 对定义域内的任意x 实数,都满足()(),f x T f x M +-=则称函数()y f x =是准周期函数,常数T 称为函数()y f x =的一个准周期.如函数()(1)()x f x x x Z =+-∈是以2T =为一个准周期且2M =的准周期函数.(1) 试判断2π是否是函数()sin f x x =的准周期,说明理由;(2)证明函数()2sin f x x x =+是准周期函数,并求出它的一个准周期和相应的M 的值; (3)请你给出一个准周期函数(不同于题设和(2)中函数),指出它的一个准周期和一些性质,并画出它的大致图像.参考答案一、1.{1,4,5} 2.18 3.1(,1)34.四5.1()21xf x -=+ 6.20- 7.O 60 8.63 9.49 10.13 11.110212.(,1]-∞- 二、13.C 14.D 15.B 16.D 三、17.2arctan )3或 18. 由204,1(4)414x x ≤≤⎧⎪⎨--+≥⎪⎩解得:44x -≤≤ ① 由12419,log (3)41x x <≤⎧⎪⎨-+≥⎪⎩解得:411x <≤ ②由①、②知:411x -≤≤11(410.5--≈所以,服用这种药一次大概能维持的有效时间为10.5小时. 19. (1)因为角α终边经过点(P -,所以1sin ,cos 223ααα==-=-sin tan sin cos tan 1 cos 4312αααααα∴=-=-+=; (2)()cos()cos sin()sin cos ()f x x x x x R αααα=+++=∈22)2cos221cos22sin(2)16y x xx xxππ∴=-+=++=++函数max3,y∴=此时()6x k k Zππ=+∈20. (1)22(1,2),(3,),(4,2),a x pb x a b x x p=++=∴+=+++2(1,2)2(4)2a b c x x p+=∴+=++又与平行,即2260x x p--+=,依题意可知,方程2260x x p--+=有两个相等的实根,∴△=4718(6)0,8p p--=∴=(2)2()3(2)3f x a b x P x==+++是偶函数,(2)0,2p p∴+==-即()[1,3][3,30]f x∴-在上的值域是(3)由:α函数()f x在区间1[,)2-+∞上是增函数,知2162p+-≤-,1,A=[1,+)p∴≥∞记由:β方程23(2)30x p x p+++-=有小于-2的实根,2323,21x xp xx++∴=<--且232383(1)8(2)11x xp x xx x++==-+-<---又的值域为11(,)3+∞111,(,)33p B∴>=+∞记AB,所以α是β的必要不充分条件.21. (1)()sin ,f x x =(2)()sin(2)sin 0f x f x x x ππ∴+-=+-= 2π∴不是函数()f x 的准周期(2)(2)()[2(2)sin(2)](2sin )=24sin 2sin 4f x f x x x x x x x x x πππππ+-=+++-+++--=∴()2sin f x x x =+是准周期函数,2T π=是它的一个准周期,相应的4M π= (3)①写出一个不同于题设和(2)中函数,如3sin ,2(1),23sin ,[]xy x x y x y x x y x =+=+-=+=等得1分(0),()sin(),()cos()y kx b k y kx b A x y kx b a x ωϕωϕ=+≠=+++=+++,或其它一一次函数(正比例函数)与周期函数的线性组合的具体形式得3分②指出所写函数的一个准周期,得2分③指出它的一些性质,如定义域、值域、奇偶性、单调性、最值、┅,(写出一条得1分,写出两条以上得2分,可以不证明)④画出其大致图像,得3分. 参考图像:212sin(2)3y x x π=+++的图像如下:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,中有一个是符合题目要求的.
1.设全集 , , 则实数a的值为
A 2 B 8 C D
2.已知曲线y=f(x)过原点,以点 为切点的切线的斜率 是,那么曲线y=f(x)的方程是
三.解答题
20.解:(Ⅰ)在边长为1的正方体 内, ……………………………3分
……………8分
21.解:(Ⅰ)根据抛物线方程 ,可得 ……………………………………1分
设直线 的方程为 ,将其与 的方程联立,消去 得
设 的坐标分别为 ,则
(Ⅱ)
22.解:(Ⅰ)
A直线AB B直线BC上C直线CA上D 内部
7.设 是双曲线 的两个焦点,点P在双曲线上,且 =0,则 的值等于
A2 B C4 D8
8.在等差数列 中,若 ,则n的值为
A14 B15 C16 D17
9.若函数f(x)满足 f(x)=f( -x), 当 时, :则
Af(1)<f(2)<f(3) Bf(2)<f(3)<f(1)
16.P是双曲线 右支上一点, 是双曲线的左、右焦点,O为坐标系原点, ,若| |=2则 _______.
三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.
17.已知非零向量 与 满足: 垂直, 垂直,求 与 的夹角。
18.设锐角 中,
( )求A大小;
( )求当 取得最大值时B的大小。
Cf(3)<f(2)<f(1) Df(3)f(1)<f(2)
10长方体 的8个顶点在同一球面上,且AB=2,AD= , ,则顶点A、B间的球面距离是
A B C D
11在 中, 则 的面积最大值为
A B C D
12.已知F是椭圆 的右焦点,过倾斜角为 的直线交椭圆于A,B两点,若|AF|=2|FB|,则椭圆的离心率为
19.已知f(x)=kx+b的图像与x,y轴分别交于A,B, .
(1)设不等式 的解集为M,若不等式 在 上均成立,求a的取值范围;
(2)对(1)中的a,解关于x的不等式 .
20.如图所示,在边长为1的正方体 中,E为AD中点。
a) 求二面角 的平面角的余弦值;
b) 求点E到平面 的距离。
21已知抛物线C: ,F是C的焦点,过点F的直线l与C相交于A,B两点,O 记为坐标原点。
A B C D
二、填空题:本大题共4小题,每小题5分,共16分.请将答案填在横线上.
13.数列 中, 且数列 是等差数列,则 _________.
14.定义在R上的函数y=f(x)有反函数,则函数y=f(x+1)+2与 的图像关于 直线__________对称。
15.已知 ,AB与 所成角分别为 ,若|AB|=12,则AB与 所成角的正弦值为__________.
(1)求 的值;
(2)设 ,当三角形OAB的面积 ,求 的取值范围。
22.数列 的前项和为 ,且 ,数列 中 , , 是 中的第 。
(1)求 的通项公式
(2)证明存在t,使 为等比数列;
(3)证明
2008秋期高三数学(理)试题答案
一.选择题
BABBC AABDC AD
二.填空题
13. 14. 15. 16.6
A B C D
3.若奇函数f(x)的定义域为 ,则a的值为
A 1 B 2 C 3 D 4
4.一动圆与直线 有公共点,且圆心(a,b)满足 ,则动圆面积最小时的半径r为
A B 1 C D 2
5.设 (a>0,a 1)满足f(9)=2,则 等于
A B C D2
6.斜三棱柱 中, , 则 底面上的射影必落在