初三数学一模试题 (含答案) (2)
2024北京平谷区初三一模数学试题及答案

2024北京平谷初三一模数 学一、选择题(共16分,每题2分)第1—8题均有四个选项,符合题意的选项只有一个.1. 从水利部长江水利委员会获悉,截止2024年3月24日,南水北调中线一期工程自2014年12月全面通水以来,已累计调水700亿立方米.其中70 000 000 000用科学记数法表示为( ) A .8710⨯B .9710⨯C .10710⨯D .11710⨯2. 下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.3. 如图,点C 为直线AB 上一点,CD ⊥CE ,若∠1=65°,则∠2的度数是 A.15° B.25° C.35° D.4. 已知1x −<<0,下列四个结论中,错误的是 A. x <1 B. 0x −> C. 1x −> D.x+1>05. 如果正多边形的每个内角都是120°,则它的边数为( ) A. 5B. 6C. 7D.86. 先后两次抛掷同一枚质地均匀的硬币,则两次都是正面向上的概率是( )A. 14B. 13C. 12D. 237.已知两组数据(1)3005,3005,3003,3000,2994;(2)5,5,3,0,-6,设第一组数据的平均值为_1x ,方差为21s ,设第二组数据的平均值为_2x ,方差为22s ,下列结论正确的是:A.__221212,s x x s == B.__221212,s x x s >> C.__221212,s x x s => D.__221212,s x x s >=8. 如图,正方形ABCD 中,点E 、H 、G 、F 分别为AB 、BC 、CD 、AD 边上的点,点K 、M 、N 为对角线BD 上的点,四边形EKNF 和四边形MHCG 均为正方形,它们的面积分别表示为S 1,和S 2,给出下面三个结论:①12S S =;②2DF AF =;③12ABCD 9=S +2S 4S 正方形; A. ② B ①.③C. ②③D. ①②③上述结论中,所有正确结论的序号是( ) 二、填空题(共16分,每题2分)659.x 的取值范围是______. 10. 分解因式:22x a a ax ++=__________________. 11.化简:3113x x x+−−的结果为 . 12.写出一个大于1小于4的无理数: . 13. 如图,反比例函数(0)ky k x=≠经过点A 、点B ,则m=______. 14.若关于x 的一元二次方程220x x k +=+有两个不相等的实数根,则k 的取值范围为_____.15. 如图,△ABC 内接于⊙O ,BC 为⊙O 的直径,D 为⊙O 上一点,连接AD 、DC 若∠D=20°,则ACB ∠的度数为______.16.某工艺坊加工一件艺术品,完成该任务共需A ,B ,C ,D ,E ,F 六道工序,其中A ,B 是前期准备阶段,C ,D ,E 是中期制作阶段,F 为最后的扫尾阶段,三个阶段不能改变顺序,也不能同时进行,但各阶段内的几个工序可以同时进行,完成各道工序所需时间如下表所示:在不考虑其它因素的前提下,加工该件艺术品最少需要_____________分钟;现因情况有变,需将加工时间缩短到30分钟.每道工序加工时间每缩短一分钟需要增加投入费用如上表,则所增加的投入最少是_____________元.三、解答题(共68分,第17—19题,每题5分,第20题,6分,第21题,5分,第22—23题,每题6分,第24—25题,每题5分,第26题6分;第27—28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17. 计算:112cos3012−⎛⎫︒+− ⎪⎝⎭18.解不等式组:32162x x x x −⎧⎪⎨−+⎪⎩><.19. 已知250,x x +−=求代数式(1)(x 1)x(2)x x +−++的值.20. 我国古代数学著作《九章算术》里记载了这样一个有趣的问题:“今有善行者行100步,不善行者60步.今不善行者先行100步,善行者追之,问几何步追之?”其意思是:走路快的人走100步时,走路慢的人只走了60步,现在走路慢的人先走100步,走路快的人去追他,问走路快的人走多少步能够追上他?请你解决该问题.21.在平面直角坐标系xOy 中,一次函数y =k x +b (k≠0)的图象由函数y x =的图象平移得到,且经过点(0,3).(1)求这个一次函数的解析式;(2)当x >0时,对于x 的每一个值,一次函数12y x n =+的值小于函数y =k x +b (k≠0)的值且大于0,直接写出n 的取值范围.22.如图,Rt △ABC 中,∠ACB=90°,点D 、E 分别是BC 、AB 边的中点,连接DE 并延长,使EF=2DE ,连接AF 、CE.(1)求证:四边形ACEF 是平行四边形; (2)若∠B=30°,求证:四边形ACEF 是菱形.23.如图,△ABC 内接于O ,∠ACB=45°,连接OA ,过B 作O 的切线交AC 的延长线于点D ,. (1)求证:D OAD ∠=∠;(2)若BC =tanD 34=,求O 半径的长.24.光合作用是指在光的照射下,植物将二氧化碳和水转化为有机物,并产生氧气的过程,呼吸作用指的是植物将有机物和氧气分解成二氧化碳和水以维持植物生命所必要的过程,光合作用产氧速率与呼吸作用耗氧速率差距越大越利于有机物的积累,植物生长越快,水果的品质越好.下表是某农科院为了更好的指导果农种植草莓,在0℃至50℃气温,水资源及光照充分的条件下,对温度对光合作用和呼吸作用的影响进行研究的相关数据:(1)通过观察表格数据可以看出,若设温度为x ,光合作用产氧速率、呼吸作用耗氧速率是这个自变量的函数.建立平面直角坐标系,描出表中各组数值所对应的点,下图中已经描出部分点,请补全其余点,并画出函数图象:(2)结合函数图象,解决问题:(结果取整)①最适合草莓生长的温度约为______℃;②当温度约在什么范围内时,呼吸作用耗氧速率大于光合作用产氧速率,呼吸作用成为植物的主要活动,植物生长缓慢.25.4月24日是中国的航天日.为了激发全民尤其是青少年崇尚科学、勇于创新的热情,某学校在七、八年级进行了一次航天知识竞赛,现从七、八年级参加该活动的学生的成绩中各随机抽取20个数据,分别对这20个数据进行整理、描述和分析,下面给出了部分信息.a .七年级参加活动的20名学生成绩的数据的频数分布直方图如下(数据分成5组:5060x ≤<,6070x ≤<,7080x ≤<,8090x ≤<,90100x ≤≤);26.在平面直角坐标系xoy 中,抛物线2y x bx =−. (1)当抛物线过点(2,0)时,求抛物线的解析式;(2)若抛物线上存在两点11(x ,y )A 和22(x ,y )B ,若对于11x 2,≤≤2x 2b =+都有120y y <,求b 的取值范围.27.如图,在△ABC 中,∠BAC=90°,AB =A C ,点D 为BC 边中点,DE ⊥AB 于E ,作∠EDC 的平分线交AC 于点F ,过点E 作DF 的垂线交DF 于点G ,交BC 于点H.(1)依题意补全图形; (2)求证:DH=BE ;(3)判断线段FD 、HC 与BE 之间的数量关系,并证明.28. 平面直角坐标系xOy 中,已知⊙M 和平面上一点P ,若PA 切⊙M 于点A ,PB 切⊙M 于点B ,且90°≤∠APB <180°则称点P 为⊙M 的伴随双切点. (1)如果⊙O 的半径为2① 下列各点1(1)P −,02,(2)P −,23,(3,3)P 4,(1,2)P −− 是⊙O 的伴随双切点的是 ;② 直线y x b =+上存在点P 为⊙O 的伴随双切点,则b 的取值范 围 ;(2)已知:点E (1,2)、F (0,-2),过点F 作y 轴的垂线l ,点C (m ,0)是x 轴上一点,若直线l 上存在以CE 为直径的圆伴随双切点,直接写出m 的取值范围.参考答案一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分) 三、解答题(共68分,第17—19题,每题5分,第20题,6分,第21题,5分,第22—23题,每题6分,第24—25题,每题5分,第26题6分;第27—28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.解:112cos3012−⎛⎫︒++− ⎪⎝⎭=2212⨯++−−........................................................4 =1.. (5)18.解不等式组:32162x x x x −⎧⎪⎨−+⎪⎩><解①得1x >−........................................................2 解②得4x <.. (4)14x ∴−<< (5)19.先化简,再求值:(1)(x 1)x(2)x x +−++2212x x x =−++........................................................2 2221x x =+−.. (3)22x 50,+x=5x x +−=∴........................................................4 10-19∴==原式.. (5)20. 解:设走路快的人走了x 步追上走路慢的人 (2)31005x x =+························································4 解得:x=250························································5 答:走路快的人250步追上走路慢的人 (6)(方法不唯一,其他方法依步骤给分)21.(1)∵一次函数y =k x +b (k≠0)的图象由函数y x =的图象平移得到∴k=1························································1 ∵经过点(0,3)∴b=3 (2)3y x ∴=+(2) 03n ∴≤≤时结论成立.························································5 22.解:(1)∵点D 、E 分别是BC 、AB 边的中点∴DE ∥AC ,且12DE AC =························································1 ∵EF=2DE∴EF=AC (2)∴四边形ACEF 是平行四边形 (3)(2)Rt △ABC 中,∵∠ACB=90°,E 为AB 中点, ∴12CE AB AE ==························································4 ∵∠B=30° ∴∠BAC=60°∴△AEC 是等边三角形························································5 ∴AC=EC∴四边形ACEF 是菱形 (6)23.(1)证明:连接OB ∵BD 是O 的切线∴∠OBD=90° (1)∵∠ACB=45°∴∠AOB=90°························································2 ∴OA ∥BD∴ADB OAD ∠=∠· (3)(2)过点B 作BH ⊥AD 于点H ∴∠AHB=∠DHB=90°∵∠ACB=45°,BC =∴BH=HC=4 (4)∵∠HBM+∠BMH=90° ∠OAM+∠AMO=90° ∠BMH=∠AMO ∴∠MBH=∠OAM=∠D4tanD 3=∴tan ∠MBH 34=∴MH=3,BM=5························································5 设O 的半径为x ∴OM=x-5∵△AOM ∽△BHM 354x x −∴=解得x=20 (6)24.解(1)补全函数图象 (2)(2)①最适合草莓生长的温度约为___36___℃;(33-37均可)························································3 ②064250x x ≤≤≤≤℃℃或℃℃(答案不唯一)························································5 25.(1)补全a 中频数分布直方图; (1)(2)88.5; 94.························································3 (3)435. (5)26.(1)抛物线的对称轴为x=b (1)∵抛物线过点(0,0)和(2,0)∴b=1 (2)∴抛物线的解析式为22y x x =− (2)∵抛物线的对称轴为x=b ,∴(b+2,0)点一定位于对称轴的右侧························································3 情况1:当原点位于对称轴的左侧时此时,有2222b b b +>⎧⎨<⎩解得12b <<························································4 情况2:当原点位于对称轴的右侧时此时,有220b b <+<解得22b b <⎧⎨<−⎩ 解得2b <− (5)综上, 1∴<b<2或b<-2 (6)27.(1)补全图形 (1)(2) 证明: ∵DF 平分∠EDC∴∠1=∠2∵DF ⊥EH∴∠EGD=∠HGD=90°∵∠1=∠2,DG=DG∴△EDG ≌△HDG (2)∴DE=DH∵∠BAC=90°,AB=AC∴∠B=45°∵ DE ⊥AB∴∠BED=90°∴ ∠B=∠EDB=45°∴DE=BE∴DH=BE (3)(3)222BE HC DF += (4)方法1:作DM ⊥AC 于M (5)∵CD=BD ,∠DMC=∠BED=90°,∠B=∠C=45°∴△BED ≌△CMD ∴DE=DM ,∵∠BAC=90°, DE ⊥AB∴DE ∥AC∴∠1=∠3∵DF 平分∠EDC∴∠1=∠2∴∠2=∠3∴CD=CF (6)∵CM=DM=BE=DH∴CF-CM=CD-DH∴FM=HC在Rt △FDM 中∵222FM DM DF +=∴.222BE HC DF += (7)方法2:在CF 上截取CK=CH ,连接DK 并延长使DM=DK ,连接BM ,EM..........................................5 ∵CD=BD ,DK=DM ,∠KDC=∠BDM∴△KDC ≌△BMD ∴KC=BM ,∠C=∠4∴KC ∥BM∴∠ABM=∠BAC=90°∵∠BAC=90°, DE ⊥AB∴DE ∥AC∴∠1=∠3∵DF 平分∠EDC∴∠1=∠2∴∠2=∠3∴CD=CF (6)∵ CK=CH∴FK=DH∴DE=FK∵ED ∥AC∴∠EDM=∠5∴△EMD ≌△FDK.∴DF=ME∴222BE HC DF +=.........................................7 方法3:连接AD ,在AB 上截取BM=AF ,连接DM. Rt △ABC 中,∠BAC=90°,D 为BC 中点 ∴AD=BD ,∠4=∠B=45°∵AF=BM∴△ADF ≌△BMD.........................................5 ∴DF=DM∵AB=AC ,BM=AF∴AB-BM=AC-AF∴AM=CF∵∠BAC=90°, DE ⊥AB∴DE ∥AC∴∠1=∠3∵DF 平分∠EDC∴∠1=∠2∴∠2=∠3∴CD=CF (6)∴AM=CD∵DE ⊥AB ,∠BAD=45°∴AE=DE∴AE=DH∴ME=HC在Rt △EDM 中∵222EM DE DM +=∴222BE HC DF += (7)28.解:(1)①P 2,P 4; (2)②44b −≤≤ (4)(2)11m ≥+≤或m (7)。
2024北京人大附中初三一模数学试题及答案

2024北京人大附中学初三模拟数学一、选择题(共16分,每题2分)第1—8题均有四个选项,其中只有一个是符合题意的.1.(2分)2022年5月18日是第46个国际博物馆日,今年国际博物馆日的宣传主题是“博物馆的力量”,在以下几幅古代纹样图案中,利用中心对称进行整体构图的是()A.B.C.D.2.(2分)在第46个国际博物馆日来临之际.中国国家博物馆推出了丰富多彩的“云上观展”活动.观众有机会在屏幕上欣赏国博140万余件藏品的真容,将140万用科学记数法表示为()A.1.4×105B.1.4×106C.14×105D.140×1043.(2分)下列各组角中,互为余角的是()A.30°与150°B.35°与65°C.45°与45°D.25°与75°4.(2分)下列说法中错误的是()A.成轴对称的两个图形的对应点连线的垂直平分线是它们的对称轴B.关于某条直线对称的两个图形全等CD.两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧5.(2分)有一枚均匀的正方体骰子,骰子各个面上的点数分别为1,2,3,4,5,6,若任意抛掷一次骰子,朝上的点数记为x,则x>3的概率是()A.B.C.D.6.(2分)实数a、b在数轴上的对应点的位置如图所示,下列式子成立的是()A.a>b B.|a|<|b|C.a+b>0D.<07.(2分)李老师是一位运动达人,他通过佩戴智能手环来记录自己一个月(30天)每天所走的步数,并绘制成如图统计表,在每天所走的步数这组数据中,众数和中位数分别是()A.1.6,1.5B.1.7,1.6C.1.7,1.7D.1.7,1.558.(2分)某学校对教室采用药薰消毒法进行消毒.现测得不同时刻的y与x的数据如表:A.B.C.D.二、填空题9.(2分)若有意义,则x的取值范围是.10.(2分)把多项式a3﹣2a2b+ab2分解因式的结果是.11.(2分)若n为整数,且n<<n+1,则n的值为.12.(2分)分式方程的解x=.13.(2分)如图,点A,B,C,D在⊙O上,∠CAD=30°,∠ABD=50°,则∠ADC=.14.(2分)如图,在△ABC中,按以下步骤作图:①以点A为圆心,适当长为半径作弧,分别交AB,AC于点M,N;②分别以点M,N为圆心,大于的长为半径作弧,两弧交于点P;③作射线AP交BC 于点D.若AB:AC=2:3,△ABD的面积为4,则△ACD的面积为.15.(2分)如图,已知等腰三角形ABC,AB=AC,∠A=40°,若以点B为圆心,BC长为半径画弧,交腰AC于点E,则∠ABE=°.16.(2分)以下是小亮的妈妈做晚饭的食材准备及加工时间列表,有一个炒菜锅,一个电饭煲,一个煲汤锅,两个燃气灶可用,做好这顿晚餐一般情况下至少需要分钟.17.(5分)计算:()0﹣2sin30°++()﹣1.18.(5分)解不等式组:,并写出它的所有整数解.19.(5分)下面是小文设计的“过圆外一点作圆的切线”的作图过程.已知:⊙O和圆外一点P.求作:过点P的⊙O的切线.作法:①连接OP;②以OP为直径作OM,交⊙O于点A,B;③作直线P A,PB;所以直线P A,PB为⊙O的切线.根据小文设计的作图过程,完成下面的证明.证明:连接OA,OB.∵OP为OM的直径,∴∠OAP=∠=°()(填推理的依据).∴OA⊥AP,⊥BP.∵OA,OB为⊙O的半径,∴直线P A,PB为⊙O的切线()(填推理的依据).20.(5分)已知关于x的一元二次方程x2﹣4mx+4m2﹣9=0.(1)求证:此方程有两个不相等的实数根;(2)如果此方程有一个实数根为0,求m的值.21.(6分)已知双曲线y=和直线y=kx+2相交于点A(x1,y1)和点B(x2,y2),且+=10,求k 的值.22.(6分)在△ABF中,C为AF AB=AC.(1)尺规作图:作出以AB为直径的⊙O,⊙O分别交AC、BC于点D、E,在图上标出D、E,在图上标出D、E(保留作图痕迹,不写作法).(2)若∠BAF=2∠CBF,求证:直线BF是⊙O的切线;(3)在(2)中,若AB=5,sin∠CBF=,求BC和BF的长.23.(6分)如图,在平面直角坐标系xOy中,直线y=2x与函数y=(x>0)的图象交于点A(1,2).(1)求m的值;(2)过点A作x轴的平行线l,直线y=2x+b与直线l交于点B,与函数y=(x>0)的图象交于点C,与x轴交于点D.①当点C是线段BD的中点时,求b的值;②当BC>BD时,直接写出b的取值范围.24.(6分)某景观公园内人工湖里有一组小型喷泉,水柱从垂直于湖面的水枪喷出,水柱落于湖面的路径形状是抛物线.现测量出如下数据,在距水枪水平距离为d米的地点,水柱距离湖面高度为h米.(1)在下边网格中建立适当的平面直角坐标系,根据已知数据描点,并用平滑的曲线连接.(2)请结合表中所给数据或所画图象,估出喷泉的落水点距水枪的水平距离约为米(精确到0.1);(3)公园增设了新的游玩项目,购置了宽度3米,顶棚到水面高度为4.5米的平顶游船,游船从喷泉正下方通过,别有一番趣味,请通过计算说明游船是否有被喷泉淋到的危险.25.(6分)如图1,长度为6千米的国道AB两侧有M,N两个城镇,从城镇到公路分别有乡镇公路连接,连接点为C和D,其中A、C之间的距离为2千米,C、D之间的距离为1千米,N、C之间的乡镇公路长度为2.3千米,M、D之间的乡镇公路长度为3.2千米.为了发展乡镇经济,方便两个城镇的物资输送,现需要在国道AB上修建一个物流基地T.设A、T之间的距离为x千米,物流基地T沿公路到M、N两个城镇的距离之和为y千米.以下是对函数y随自变量x的变化规律进行的探究,请补充完整.(1)通过取点、画图、测量,得到x与y的几组值,如表:(3)结合画出的函数图象,解决问题:①若要使物流基地T沿公路到M、N两个城镇的距离之和最小,则物流基地T应该修建在何处?②如图3,有四个城镇M、N、P、Q分别位于国道A﹣C﹣D﹣E﹣B两侧,从城镇到公路分别有乡镇公路连接,若要在国道上修建一个物流基地S,使得S沿公路到M、N、P、Q的距离之和最小,则物流基地T应该修建在何处?26.(6分)在平面直角坐标系xOy中,抛物线y=x2﹣2mx+m2+1与y轴的交点为A,过点A作直线l垂直于y轴.(1)求抛物线的对称轴(用含m的式子表示).(2)将抛物线在y轴左侧的部分沿直线l翻折,其余部分保持不变,组成图形G.点M(x1,y1),N (x2,y2)为图形G上任意两点.①当m=0时,若x1<x2,判断y1与y2的大小关系,并说明理由;②若对于x1=m﹣2,x2=m+2,都有y1>y2,求m的取值范围.27.(6分)如图,△ABC是等边三角形,D,E两点分别在边AB,AC上,满足BD=AE,BE与CD交于点F.(1)求∠BFD的度数;(2)以C为中心,将线段CA顺时针旋转60°得到线段CM,连接MF,点N为MF的中点,连接CN.①依题意补全图形;②若BF+CF=k•CN,求k的值.28.(6分)在平面直角坐标系xOy中,对已知的点A,B,给出如下定义:若点A恰好在以BP为直径的圆上,则称点P为点A关于点B的“联络点”.(1)点A的坐标为(2,﹣1),则在点P1(1,2),,P3(﹣2,1)中,O关于点A的“联络点”是(填字母);(2)直线与x轴,y轴分别交于点C,D,若点C关于点D的“联络点”P满足,求点P的坐标;(3)⊙T的圆心在y轴上,半径为,点M为y轴上的动点,点N的坐标为(4,0),在⊙T上存在点M关于点N的“联络点”P,且△PMN为等腰三角形,直接写出点T的纵坐标t的取值范围.参考答案一、选择题(共16分,每题2分)第1—8题均有四个选项,其中只有一个是符合题意的.1.【分析】根据中心对称图形的概念判断.把一个图形绕某一点旋转180度,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【解答】解:选项A、B、C都不能找到这样的一个点,使图形绕某一点旋转180度后与原来的图形重合,所以不是中心对称图形,选项D能找到这样的一个点,使图形绕某一点旋转180度后与原来的图形重合,所以是中心对称图形,故选:D.【点评】本题考查的是中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成n时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:140万=1400000=1.4×106.故选:B.【点评】本题考查科学记数法表示绝对值较大的数的方法,准确确定a与n值是关键.3.【分析】根据余角的定义判断即可.【解答】解:45°+45°=90°,故选:C.【点评】本题主要考查了余角和补角的定义.余角:如果两个角的和是一个直角,那么称这两个角互为余角.补角:如果两个角的和是一个平角,那么这两个角叫互为补角.4.【分析】根据轴对称图形的定义和性质及直角三角形的性质逐一判断即可得.【解答】解:A.成轴对称的两个图形的对应点连线的垂直平分线是它们的对称轴,此选项正确;B.关于某条直线对称的两个图形全等,此选项正确;C.两个全等三角形的对应高相等,此选项正确;D.两个图形关于某直线对称,则这两个图形不一定分别位于这条直线的两侧,此选项错误;故选:D.【点评】本题主要考查轴对称图形,解题的关键是掌握轴对称图形的定义及其性质.5.【分析】由朝上的面的点数有6种等可能结果,其中x>3的情况有4,5,6共3种情况,根据概率公式计算可得.【解答】解:任意抛掷一次骰子,朝上的面的点数有6种等可能结果,其中x>3的情况有4,5,6共3种情况,所以x>3的概率是.故选:A.【点评】本题主要考查概率公式,掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数是解题的关键.6.【分析】先由数轴可得﹣2<a<﹣1,0<b<1,且|a|>|b|,再判定即可.【解答】解:由图可得:﹣2<a<﹣1,0<b<1,∴a<b,故A错误;|a|>|b|,故B错误;a+b<0,故C错误;<0,故D正确;故选:D.【点评】本题主要考查了实数与数轴,解题的关键是利用数轴确定a,b的取值范围.利用数轴可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.7.【分析】在这组数据中出现次数最多的是1.7万步,得到这组数据的众数;把这组数据按照从小到大的顺序排列,第15、16个数的平均数是中位数.【解答】解:在这组数据中出现次数最多的是1.7,即众数是1.7;把这组数据按照从小到大的顺序排列,第15、16个两个数的平均数是(1.6+1.6)÷2=1.6,所以中位数是1.6.故选:B.【点评】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.8.【分析】直接利用表格中数据分别得出函数解析式,进而得出答案.【解答】解:由表格中数据可得:0≤x<8,数据成比例增长,是正比例函数关系,设解析式为:y=kx,则将(2,1.5)代入得:1.5=2k,解得:k=,故函数解析式为:y=x(0≤x<8),由表格中数据可得:8≤x,数据成反比例递减,是反比例函数关系,设解析式为:y=,则将(12,4)代入得:a=48,故函数解析式为:y=(x≥8).故函数图象D正确.故选:D.【点评】此题主要考查了反比例函数的应用,正确得出函数关系式是解题关键.二、填空题9.【分析】根据分式的分母不为0时,分式有意义,进行判断即可.【解答】解:由题意得:x+1≠0,∴x≠﹣1;故答案为:x≠﹣1.【点评】本题考查分式有意义的条件.熟练掌握分式的分母不为0时,分式有意义,是解题的关键.10.【分析】直接提取公因式a,进而利用完全平方公式分解因式得出即可.【解答】解:a3﹣2a2b+ab2=a(a2﹣2ab+b2)=a(a﹣b)2,故答案为:a(a﹣b)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练利用乘法公式是解题关键.11.【分析】根据算术平方根的定义估算无理数的大小即可.【解答】解:∵<<,即4<<5,且n为整数,n<<n+1,∴n=4,故答案为:4.【点评】本题考查估算无理数的大小,掌握算术平方根的定义是解决问题的前提.12.【分析】利用解分式方程的一般步骤解答即可.【解答】解:去分母得:2x=3﹣2×2(x﹣1),去括号得:2x=3﹣4x+4,移项,合并同类项得:6x=7,∴x=,经检验,x=是原方程的解,∴x=.故答案为:.【点评】本题主要考查了分式方程的解法,熟练掌握分式方程的解法的一般步骤是解题的关键.13.【分析】直接利用圆周角定理以及结合三角形内角和定理得出∠ADC=180°﹣∠DAC﹣∠ACD,进而得出答案.【解答】解:∵∠ABD=50°,∴∠ACD=50°,∵∠CAD=30°,∴∠ADC=180°﹣∠DAC﹣∠ACD=180°﹣30°﹣50°=100°.故答案为:100°.【点评】此题主要考查了圆周角定理以及三角形内角和定理,正确得出∠ABD度数是解题关键.14.【分析】利用基本作图得到AD平分∠BAC,再根据角平分线的性质得到点D到AB、AC的距离相等,然后根据三角形面积公式得到S△ABD:S△ACD=AB:AC,从而可求出S△ACD.【解答】解:由作法得AD平分∠BAC,∴点D到AB、AC的距离相等,∴S△ABD:S△ACD=AB:AC=2:3,∴S△ACD=S△ABD=×4=6.故答案为:6.【点评】本题考查了作图﹣基本作图:熟练掌握5种基本作图是解决问题的关键.也考查了角平分线的性质.15.【分析】利用等腰三角形的性质先求出∠C、∠BEC,再利用三角形的外角与内角的关系得结论.【解答】解:∵AB=AC,∠A=40°,∴∠C=∠ABC=(180°﹣∠A)=70°.∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BC=BE,∴∠C=∠BEC=70°.∵∠BEC=∠A+∠ABE,∴∠ABE=∠BEC﹣∠A=30°.故答案为:30.【点评】本题考查了等腰三角形的性质,掌握“等边对等角”及“三角形的外角等于与它不相邻的两个内角的和”等知识点是解决本题的关键.16.【分析】由题意可知,煮饭准备时间需3分钟,煮饭需要30钟,妈妈可在等待饭熟的这30分钟内先完成煲汤和炒菜,所以妈妈做这顿饭至少需要3+30=33分钟.【解答】解:3+30=33(分钟),答:妈妈做晚饭最少要用33分钟,故答案为:33.【点评】本题考查了学生在生活中利用统筹方法解决实际问题的能力.三、解答题:本大题有12个小题,共66分.解答应写出文字说明、证明过程或演算步骤。
2024广东省广州市天河区中考一模数学试题含答案解析

2024届初三毕业班综合测试数学本试卷共三大越25小题,共4页,满分120分.考试时间120分钟注意事项:1.答卷前,考生必须用黑色字迹的钢笔或签字笔将自己的学校、姓名、班级、座位号和考生号填写在答题卡相应的位置上,再用2B 铅笔把考号的对应数字涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔或涂改液.不按以上要求作答的答案无效.4.考生必须保证答题卡的整洁,考试结束后,将试卷和答题卡一并交回.一、选择题(本题有10个小题,每小题3分,满分30分,每小题给出的四个选项中.只有一个是正确的)1. 如图,数轴上点A 所表示的数的相反数为( )A. 3−B. 3C. 13−D. 13【答案】A【解析】【分析】通过识图可得点A 所表示的数为3,然后结合相反数的概念求解.【详解】解:由图可得,点A 所表示的数为3,∴数轴上点A 所表示的数的相反数为-3,故选:A .【点睛】本题考查了数轴上的点击相反数的概念,准确识图,理解相反数的定义是解题关键. 2. 据国家统计局公布,2023年第一季度,全国居民人均可支配收入10870元.数据10870用科学记数法表示为( )A. 41.08710×B. 410.8710×C. 310.8710×D. 31.08710× 【答案】A【解析】【分析】用科学记数法表示较大的数的一般形式为10n a ×,其中110a ≤<,n 等于原数的整数位数减1,即可得到答案.【详解】解:用科学记数法表示较大的数的一般形式为10n a ×,其中110a ≤<,n 等于原数的整数位数减1,∴410870 1.08710=×,故答案选:A .【点睛】本题考查了科学记数法,掌握科学记数法的表示方法是解题的关键.3. 下列几何体中,各自的三视图完全一样的是( ).A. B. C. D.【答案】D【解析】【分析】本题主要考查了常见的几何体的三视图,熟知常见几何体的三视图是解题的关键.【详解】解:A 、俯视图是三角形,主视图是长方形,左视图是长方形,中间有一条竖直实线,不符合题意;B 、俯视图是一个圆,左视图和主视图都是等腰三角形,不符合题意;C 、俯视图是一个圆,左视图和主视图都是长方形,不符合题意;D 、主视图,俯视图,左视图都是圆,符合题意;故选:D .4. 下列运算正确的是( )A. ()2211m m −=−B. ()3326m m =C. 734m m m ÷=D. 257m m m +=【答案】C【解析】【分析】根据幂的运算法则,完全平方公式处理.【详解】解:A. ()22121m m m −=−+,原运算错误,本选项不合题意;B. ()3328m m =,原运算错误,本选项不合题意;C. 734m m m ÷=,符合运算法则,本选项符合题意;D. 25m m +,不能进一步运算化简,原运算错误,本选项不合题意;故选:C .【点睛】本题考查乘法公式在整式乘法中的运用,幂的运算法则,掌握相关法则和公式是解题的关键. 5. 一组数据:3,4,4,4,5,若去掉一个数据4,则下列统计量中发生变化的是( )A. 众数B. 中位数C. 平均数D. 方差【答案】D【解析】【分析】根据众数、中位数、平均数及方差可直接进行排除选项.【详解】解:由题意得: 原中位数为4,原众数为4,原平均数为3444545x ++++==,原方差为()()()()()2222223444444454255S −+−+−+−+− =; 去掉一个数据4后的中位数为4442+=,众数为4,平均数为344544x +++==,方差为()()()()2222234444454142S −+−+−+− =;∴统计量发生变化的是方差;故选D .【点睛】本题主要考查平均数、众数、众数及方差,熟练掌握求一组数据的平均数、众数、众数及方差是解题的关键.6. 某运输公司运输一批货物,已知大货车比小货车每辆多运输5吨货物,且大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同,设有大货车每辆运输x 吨,则所列方程正确的是( ) A 75505x x =− B. 75505x x =− C. 75505x x =+ D. 75505x x =+ 【答案】B【解析】【分析】根据“大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同”即可列出方程.【详解】解:设有大货车每辆运输x 吨,则小货车每辆运输()5x −吨,则75505x x =−. 故选B【点睛】本题考查分式方程应用,理解题意准确找到等量关系是解题的关键..的7. 下列四个函数图象中,当x <0时,函数值y 随自变量x 的增大而减小的是( )A. B. C. D.A. 55.5mB. 【答案】D【解析】【详解】A 、根据函数的图象可知y 随x 的增大而增大,故本选项不符合题意;B 、根据函数的图象可知在第二象限内y 随x 的增大而减增大,故本选项不符合题意;C 、根据函数的图象可知,当x <0时,在对称轴的右侧y 随x 的增大而减小,在对称轴的左侧y 随x 的增大而增大,故本选项不符合题意;D 、根据函数的图象可知,当x <0时,y 随x 的增大而减小;故本选项符合题意.故选 D .【点睛】本题考查了函数的图象,函数的增减性,熟练掌握各函数的性质是解题的关键.8. 如图,小亮为了测量校园里教学楼AB 的高度,将测角仪CD 竖直放置在与教学楼水平距离为的地面上,若测角仪的高度为1.5m ,测得教学楼的顶部A 处的仰角为30 ,则教学楼的高度是( )54m C. 19.5m D. 18m【答案】C【解析】 【分析】过D 作DE AB ⊥交AB 于E ,得到DE ,在Rt ADE △中,tan 30AE DE=o ,求出AE ,从而求出AB 【详解】过D 作DE AB ⊥交AB 于E ,DE BC ==Rt ADE △中,tan 30AE DE =o18m AE ∴= 18 1.519.5m AB ∴=+=在故选C【点睛】本题主要考查解直角三角形,能够构造出直角三角形是本题解题关键9. 如图,O 是ABC 的外接圆,且AB AC =,30BAC ∠=°,在 AB 上取点D (不与点A ,B 重合),连接BD ,AD ,则BAD ABD ∠+∠的度数是( )A. 60°B. 105°C. 75°D. 72°【答案】C【解析】 【分析】连接CD ,根据题意,得,BAD BCD ABD ACD ∠=∠∠=∠,结合AB AC =,30BAC ∠=°,得到180752−=°∠∠=°BAC ACB ,计算BAD ABD ∠+∠即可,本题考查了圆周角定理,等腰三角形的性质,熟练掌握圆周角定理,等腰三角形的性质是解题的关键.【详解】连接CD ,根据题意,得,BAD BCD ABD ACD ∠=∠∠=∠, ∵AB AC =,30BAC ∠=°, ∴180752−=°∠∠=°BAC ACB , ∴75BAD ABD BCD ACD ACB ∠+∠=∠+∠=∠=°,故选C ..10. 如图,M 是ABC 三条角平分线的交点,过M 作DE AM ⊥,分别交AB 、AC 于点D 、E 两点,设BD a =,DE b =,CE c =,关于x 的方程()210ax b x c +++=的根的情况是( )A. 一定有两个相等的实数根B. 一定有两个不相等的实数根C. 有两个实数根,但无法确定是否相等D. 没有实数根【答案】B【解析】 【分析】M 是ABC 三条角平分线的交点,过M 作DE AM ⊥,则得出BDM MEC BMC ∠=∠=∠,即可得出DBM MBC ∽,再求出BMC MEC ∽,DBM EMC ∽,即可得出:214ac b =,即可求解. 【详解】AM 平分BAC ∠,DE AM ⊥, ADM AEM ∴∠=∠,1122MDME DE b ===, 1902BDM MEC BAC ∴∠=∠=°+∠, 1902BMC BAC ∴∠=°+∠, BDM MEC BMC ∴∠=∠=∠,M 是ABC 的内角平分线的交点,∴DBM MBC ∽,同理可得出:BMC MEC ∽,∴DBM EMC ∽, ∴BD MD ME CE=, BD EC MD ME ∴⋅=⋅,即:214ac b =, ∴222(1)421210b ac b b b b ∆=+−=++−=+>,∴关于x 的方程2(1)0ax b x c +++=的根的情况是:一定有两个不相等的实数根.故选:B .【点睛】此题主要考查了根的判别式,相似三角形的判定与性质,根据已知得出BDM MEC BMC ∠=∠=∠是解题关键.二、填空题(本题有6个小题,每小题3分,共18分)11. 方程420x +=的解为______.【答案】2x =−【解析】【分析】根据解方程的基本步骤解答即可,本题考查了解方程的基本步骤,熟练掌握步骤是解题的关键.【详解】420x +=,24x =−,解得2x =−,故答案为:2x =−.12. 因式分解:x 2﹣3x=_____.【答案】x (x ﹣3)【解析】【详解】试题分析:提取公因式x 即可,即x 2﹣3x=x (x ﹣3). 考点:因式分解.13. 现有50张大小、质地及背面图案均相同的《西游记》人物卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为____.【答案】15【解析】【详解】因为通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3,则这些卡片中绘有孙悟空这个人物的卡片张数=0.3×50=15(张).所以估计这些卡片中绘有孙悟空这个人物的卡片张数约为15张.故答案为15.14. 已知()1,1P x ,()2,1Q x 两点都在抛物线231y x x =−+上,那么12x x +=________.【答案】3【解析】【分析】根据题意可得点P 和点Q 关于抛物线的对称轴对称,求出函数的对称轴即可进行解答. 【详解】解:根据题意可得:抛物线的对称轴为直线:33222b x a −=−=−=, ∵()1,1P x ,()2,1Q x , ∴12322x x +=, ∴123x x +=. 故答案为:3.【点睛】此题考查了二次函数的性质,解题的关键是根据题意,找到P 、Q 两点关于对称轴对称求解. 15. 如图,平面直角坐标系中,A 与x 轴相切于点B ,作直径BC ,函数()200yx x=>的图象经过点C ,D 为y 轴上任意一点,则ACD 的面积为_______.【答案】5【解析】【分析】本题考查了反比例函数系数k 的几何意义,切线的性质;根据反比例函数系数k 的几何意义可得20OB BC ⋅=,由切线的性质可得BC x ⊥轴,再根据三角形的面积公式列式求解即可.【详解】解:∵点C 在函数()200y x x=>的图象上, ∴20OB BC ⋅=,∵A 与x 轴相切于点B ,∴BC x ⊥轴,∴BC y ∥轴, ∴111205244ACD S AC OB BC OB =???, 故答案为:5.16. 如图,在矩形ABCD 中,6AB =,8AD =,点E ,F 分别是边CD ,BC 上的动点,且90AFE ∠=°.(1)当5BF =时,tan FEC ∠=______; (2)当AED ∠最大时,DE 的长为_______.【答案】 ①.65 ②. 103##133 【解析】【分析】(1)证明90AFB EFC FEC ∠=°−∠=∠,利用tan tan AFB FEC ∠=∠计算即可; (2)当BC 与O 相切时,AFD ∠的值最大,此时, AED ∠也最大,利用三角形相似计算即可.【详解】(1)∵矩形ABCD 中,6AB =,8AD =,∴90,90ABF FCE °°∠=∠=∵90AFE ∠=°,∴90AFB EFC FEC ∠=°−∠=∠,∴6tan tan 5AB AFB FEC BF ∠=∠==, 故答案为:65. (2)如图,取AE 的中点O ,连接,,OD OF DF .∵矩形ABCD 中,6AB =,8AD =,∴90ADE ∠=°,∵90AFE ∠=°,∴A 、D 、E 、F 四点共圆,∴AED AFD ∠=,∴当BC 与O 相切时,AFD ∠的值最大,此时, AED ∠也最大,∴OF BC ⊥,∵矩形ABCD 中,6AB =,8AD =,∴90ADE ABF ∠=∠=°,∴OF AB EC , ∴EO CF OA BF =, ∴142BF CF BC ===, ∵90AFE ∠=°,∵矩形ABCD 中,6AB =,8AD =,∴90,90ABF FCE °°∠=∠=∵90AFE ∠=°,∴90AFB EFC FEC ∠=°−∠=∠,∴AFB FEC ∽△△, ∴BF AB EC FC =, ∴464EC =, ∴83EC =, ∴810633DE CD EC =−=−=, 故答案为:103. 【点睛】本题考查了矩形的性质,正切函数,三角形相似的判定和性质,切线的性质,四点共圆,圆周角定理,熟练掌握正切函数,切线性质,四点共圆是解题的关键.三、解答题(本大题有9小题,共7分,解答要求写出文字说明,证明过程或计算步骤)17. 解不等式:6327x x −>−.【答案】1x −>【解析】【分析】按照解不等式的基本步骤解答即可.本题考查了解不等式,熟练掌握解题的基本步骤是解题的关键.【详解】6327x x −−>,移项,得6237x x −−>合并同类项,得44x −>,系数化为1,得1x −>.18. 如图,四边形ABCD 中,AB DC =,AB DC ,E ,F 是对角线AC 上两点,且AE CF =.求证:ABE CDF △≌△.【答案】见解析【解析】【分析】本题考查了平行线的性质,三角形全等的判定,熟练掌握判定定理是解题的关键.根据AB DC 得BAE DCF ∠=∠,证明即可.【详解】∵AB DC ,∴BAE DCF ∠=∠,在ABE 和CDF 中AB DC BAE DCF AE CF = ∠=∠ =∴ABE CDF △≌△.19. 为打造书香文化,培养阅读习惯,某中学计划在各班建设图书角,并开展主题为“我最喜欢阅读的书篇”的调查活动,学生根据自己的爱好选择一类书籍(A :科技类,B :文学类,C :政史类,D :艺术类,E :其他类).张老师组织数学兴趣小组对学校部分同学进行了问卷调查.根据收集到的数据,绘制了两幅不完整的统计图(如图所示).根据图中信息,请回答下列问题:(1)填空:参与本次问卷调查活动的学生人数是______;(2)甲同学从A ,B ,C 三类书籍中随机选择一种,乙同学从B ,C ,D 三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.【答案】(1)50 (2)29【解析】【分析】(1)根据样本容量=频数÷所占百分数,求得样本容量后,计算解答.(2)利用画树状图计算即可.本题考查了条形统计图、扇形统计图,画树状图求概率,熟练掌握统计图的意义,准确画树状图是解题的关键.【小问1详解】∵4?8%50÷=(人),故答案为:50.【小问2详解】画树状图如下:共有9种等可能的结果,其中抽到相同类有2种可能的结果,∴相同的概率为:29. 20. 已知关于x 的函数()31111m m y x m m m +=+≠−++图象经过点()1,A m n −. (1)用含m 的代数式表示n ;(2)当m =k y x=的图象也经过点A ,求k 的值. 【答案】(1)1nm =+ (2)4【解析】【分析】(1)把点的坐标代入解析式,化简计算即可;(2)当m =)1A +,代入解析式,计算即可. 本题本题考查了反比例函数与点的关系,熟练掌握这些知识是解题的关键.【小问1详解】 解:根据题意,得()()213111111m m m n m m m m m ++=×−+==++++. 【小问2详解】解:当m =时,此时点)1A −+,故)11514k =+=−=. 21. 如图,在ABC 中,90ABC ∠=°,60A ∠=°,3AB =.(1)尺规作图:在BC 上找一点P ,作P 与AC ,AB 都相切,与AC 的切点为Q ;(保留作图痕迹) (2)在(1)所作的图中,连接BQ ,求sin CBQ ∠的值.【答案】(1)见解析 (2)1sin 2CBQ ∠= 【解析】【分析】(1)结合切线的判定与性质,作BAC ∠的平分线,交BC 于点P ,以点P 为圆心,PB 的长为半径画圆即可.(2)由题意可得Rt Rt ABP AQP △≌△,则AB AQ =,可得ABQ 为等边三角形,即60ABQ ∠=°,则30CBQ ∠=°,进而可得答案.【小问1详解】解:如图,作BAC ∠的平分线,交BC 于点P ,以点P 为圆心,PB 的长为半径画圆,交AC 于点Q , 则P 即为所求.;【小问2详解】解:由(1)可得,BP PQ =,PQ AC ⊥,90AQP ∴∠=°,AP AP = ,()Rt Rt HL ABP AQP ∴ ≌,AB AQ ∴=,60BAC ∠=° ,ABQ ∴ 为等边三角形,60ABQ ∴∠=°,30CBQ ∴∠=°,1sin sin 302CBQ ∴∠=°=. 【点睛】本题考查作图—复杂作图、切线的判定与性质、等边三角形的性质、特殊角的三角函数值等知识点,熟练掌握相关知识点是解答本题的关键.22. 如图是气象台某天发布的某地区气象信息,预报了次日0时至8时气温随着时间变化情况,其中0时至5时的图象满足一次函数关系式y kx b =+,5时至8时的图象满足函数关系式21660y x x =−+−.请根据图中信息,解答下列问题:(1)填空:次日0时到8时的最低气温是______;(2)求一次函数y kx b =+解析式; (3)某种植物在气温0℃以下持续时间超过4小时,即遭到霜冻灾害,需采取预防措施.请判断次日是否的需要采取防霜措施,并说明理由.【答案】(1)5−℃(2)835y x =−+ (3)需要采取防霜措施,见解析【解析】【分析】(1)根据题意,当5x =时,函数最小值,代入解析式21660y x x =−+−计算即可.(2)把()()0,3,5,5−分别代入y kx b =+中,计算即可; (3)令0y kx b =+=,216600y x x =−+−=,计算交点坐标的横坐标的差,对照标准判断即可. 本题考查了待定系数法,图象信息识读,图象与x 轴交点坐标的计算,熟练掌握待定系数法,交点坐标的计算是解题的关键.【小问1详解】根据题意,当5x =时,函数有最小值,代入解析式21660y x x =−+−得,2580605y =−+−=−,故答案为:5−℃.【小问2详解】把()()0,3,5,5−分别代入y kx b =+中, 得553k b b +=− = , 解得853k b =− = , ∴835y x =−+. 【小问3详解】 令0835y x =−+=, 解得158x =; 令216600y x x =−+−=,解得126,10x x ==(舍去), 故()156 4.125h 8−=, ∵4.1254>∴遭到霜冻灾害,故需要采取防霜措施.23. 在初中物理中我们学过凸透镜的成像规律.如图MN 为一凸透镜,F 是凸透镜的焦点.在焦点以外的主光轴上垂直放置一小蜡烛AB ,透过透镜后呈的像为CD .光路图如图所示:经过焦点的光线AE ,通过透镜折射后平行于主光轴,并与经过凸透镜光心的光线AO 汇聚于C 点.(1)若焦距4OF =,物距6OB =.小蜡烛高度1AB =,求蜡烛的像CD 的长度;(2)设OB x OF =,AB y CD=,求y 关于x 的函数关系式,并通过计算说明当物距大于2倍焦距时,呈缩小的像.【答案】(1)2米 (2)1y x =−,说明见解析【解析】【分析】本题主要考查了相似三角形的实际应用,平行四边形的性质与判定;(1)先证明ABF EOF ∽,利用相似三角形的性质得到2OE =,再证明四边形OECD 是平行四边形,可得2CD OE ==米;(2)由(1)得ABF EOF ∽,2CD OE ==,则AB OB OF CD OF −=,据此可得1y x =−,当2OB OF>,即2x >时,11y x =−>,据此可得结论. 【小问1详解】解:由题意得,AB OE ∥,∴ABF EOF ∽, ∴AB BF OE OF =,即1644OE −=, ∴2OE =,∵OE CD CE OD ∥,∥,的∴四边形OECD 是平行四边形,∴2CD OE ==米,∴蜡烛的像CD 的长度为2米;【小问2详解】解:由(1)得ABF EOF ∽,2CD OE == ∴AB BF OE OF =,即AB OB OF CD OF−=, ∴1y x =−, 当2OB OF >,即2x >时,11y x =−>, ∴1AB CD>,即AB CD >, ∴物高大于像高,即呈缩小的像.24. 矩形ABCD 中,4AB =,8BC =.(1)如图1,矩形的对角线AC ,BD 相交于点O .①求证:A ,B ,C ,D 四个点在以O 为圆心的同一个圆上;②在O 的劣弧AD 上取一点E ,使得AE AB =,连接DE ,求AED △的面积.(2)如图2,点P 是该矩形的边AD 上一动点,若四边形ABCP 与四边形GHCP 关于直线PC 对称,连接GD ,HD ,求GDH 面积的最小值.【答案】(1)①见解析;②485(2)8【解析】【分析】(1)①根据矩形的性质,得到90ABC ∠=°,得到点A ,B ,C 在以O 为圆心,OA 为半径的圆上,根据矩形的性质,得OA OB OC OD ===,判定点D 在以O 为圆心的同一个圆上,继而得到四点共圆;②过点E 作在EG AD ⊥于点D ,根据AE AB =,得到ADE ADB ∠=∠,结合4AE AB ==,8BC =,得到1tan tan 2AB EG ADE ADB BC GD ∠=∠===,设2EG x GD x ==,,则82AG AD GD x =−=−,利用勾股定理计算x ,利用面积公式解答即可.(2)根据折叠的性质,得到8,4,90CB CH BA HG CHG ====∠=°,根据CH CD DH ≤+,得到4DH CH CD −=≥,当点C ,D ,H 三点共线时,4DH =最小,此时GDH 面积的为1144822GH DH ×=××=,最小. 【小问1详解】①∵矩形ABCD ,∴90ABC ∠=°,OA OB OC OD ===,∴点A ,B ,C 在以O 为圆心,OA 为半径的圆上,∵OA OB OC OD ===,∴点D 在以O 为圆心的同一个圆上,故A ,B ,C ,D 四个点在以O 为圆心的同一个圆上;②如图,过点E 作在EG AD ⊥于点D ,∵AE AB =,∴ADE ADB ∠=∠,∵4AE AB ==,8BC =, ∴1tan tan 2AB EG ADE ADB BC GD ∠=∠===, 设2EG x GD x ==,,则82AG AD GD x =−=−, ∴()228216x x −+=, 解得12,45x x ==(舍去), ∴AED △的面积112488255××=. 【小问2详解】根据折叠的性质,得到8,4,90CB CH BA HG CHG ====∠=°, ∵CH CD DH ≤+,∴4DH CH CD −=≥,∴当点C ,D ,H 三点共线时,4DH =最小,此时GDH 面积的为1144822GH DH ×=××=,最小.【点睛】本题考查了矩形的性质,构造辅助圆,正切函数,勾股定理,三角形不等式,熟练掌握正切函数,辅助圆,勾股定理,三角形不等式是解题的关键.25. 已知抛物线()21:1C y a x h =−−,直线()2:1l y k x h =−−,其中02a ≤<,0k >. (1)求证:直线l 与抛物线C 至少有一个交点;(2)若抛物线C 与x 轴交于()1,0A x ,()2,0B x 两点,其中12x x <,且121033x x <+<,求当1a =时,抛物线C 存在两个横坐标为整数的顶点;(3)若在直线l 下方的抛物线C 上至少存在两个横坐标为整数的点,求k 的取值范围.【答案】(1)见解析 (2)()()1,1,2,1−−(3)4k >【解析】【分析】(1)联立()()211y a x h y k x h =−− =−− ,解方程,判断方程的解得个数即可解答;(2)根据1a =时,()21:1C y x h =−−,结合抛物线C 与x 轴交于()1,0A x ,()2,0B x 两点,结合12x x <,则12,11x h x h ==+−,且121033x x <+<,求得11124h <<,确定h 的整数解有1,2两个,得证.(3)根据题意,得当2x h =+时,21y y >恒成立.建立不等式解答即可.本题考查了抛物线与一次函数的综合,不等式组的解集与整数解,熟练掌握抛物线的性质是解题的关键.【小问1详解】联立()()211y a x h y k x h =−− =−−, 解方程,得,ah k x h x a+==, 当x h =时,1y =−,即直线与抛物线恒过点(),1h −,故直线l 与抛物线C 至少有一个交点.【小问2详解】当1a =时,()21:1C y x h =−−,∵抛物线C 与x 轴交于()1,0A x ,()2,0B x 两点, ∴1x h −=±,∵12x x <, ∴12,11x hx h ==+−, ∵121033x x <+<, ∴420333h <−< 解得11124h <<, ∵h 时整数,∴1,2h h ==, 故抛物线C 存在两个横坐标为整数的顶点,且顶点坐标为()()1,1,2,1−−.【小问3详解】.∵如图所示:由(1)可知:抛物线C 与直线l 都过点(),1A h −.当02a ≤<,0k >,在直线l 下方的抛物线C 上至少存在两个横坐标为整数点, 即当2x h =+时,21y y >恒成立.故()()22121k h h a h h +−−+−−>,整理得:2k a >.又∵2k a >,∴024a <<,∴4k >.。
2024北京海淀区初三一模数学试题及答案

2024北京海淀初三一模数 学2024.04学校________姓名__________准考证号________第一部分 选择题一、迭择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1.下列几何体放置在水平面上,其中俯视图是圆的几何体为2.据报道,2024年春节假期北京接待游客约1750万人次,旅游收入同比增长近四成.将17 500 000用科学记数法表示应为 (A)175×105(B)1.75×106(C)1.75×107(D)0.175×1083.如图,AB ⊥BC ,AD ∥BE ,若∠BAD=28°,则∠CBE 的大小为 (A)66° (B)64° (C)62°(D)60°4.实数a 在数轴上的对应点的位置如图所示,下列结论中正确的是(A)a ≥-2(B)a<-3(C)-a>2(D)-a ≥35.每一个外角都是40°的正多边形是 (A )正四边形(B )正六边形(C )正七边形(D)正九边形6.若关于x 的一元二次方程x 2+2x +m =0有两个相等的实数根,则实数m 的值为 (A)1(B)-1(C)4(D)-47.现有三张背面完全一样的扑克牌,它们的正而花色分别为◆, , ,若将这三张扑克牌背面朝上,洗匀后从中碗机抽取两张,则抽取的两张牌花色相同的概率为(A)16(B)13(C)12(D)238.如图.AB 经过圆心O ,CD 是⊙O 的一条弦,CD ⊥AB ,BC 是⊙O 的切线.再从条件①,条件②,条件③中选择一个作为已知,便得AD=BC. 条件①:CD 平分AB条你②OA 条件③:AD 2=AO ·AB 则所有可以添加的条件序号是 (A) ①(B) ①③(C) ②③(D) ①②③第二部分 非选择题二、填空题(共16分,每题2分)9.x 的取值范围是_______. 10.分解因式:a 3-4a=_______. 11.方程1231x x =− 的解为_______.12.在平面直角坐标系xOy 中,若函数(0)ky k x=≠的图象经过点A (a ,2)和B (b ,-2).则a +b 的值为_______.13.如图,在△ABC 中,∠ACB=90°,AB=5,AC=3.点D 在射线BC上运动(不与点B 重合).当BD 的长为______时, AB=AD. 14.某实验基地为全面掌握“无絮杨”树苗的生长规律,定期对2000棵该品种树苗进行抽测.近期从中随机抽测了100棵树苗,获得了它们的高度x (单位:cm).数据经过整理后绘制的频数分布直方图如右图所示.若高度不低于300cm 的树苗为长势良好,则估计此时该基地培育的2000棵“无絮杨”树苗中长势良好的有_________棵.15.如图,在正方形ABCD 中.点E ,F ,G 分别在边CD ,AD ,BC 上,FD<CG.若FG=AE ,∠1=a ,则∠2的度数为_____(用含a 的式子表示).16.2019年11月,联合国教科文组织将每年的3月14日定为“国际数学日”,也被许多人称为“π节”.某校今年“π节”策划了五个活动,规则见下图:小云参与了所有活动.(1)若小云只挑战成功一个,则挑战成功的活动名称为__________;(2)若小云共挑战成功两个,且她参与的第四个活动成功,则小云最终剩下的“π币”数量的所有可能取值为______.三、解答题(共68分,第17-19题,每题5分,第20-21题,每题6分,第22-23题,每题5分,第24题6分,第25题5分,第26题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程. 17.计算:112sin 601()2−︒+−+18.解不等式组:435,212.3x x x −<⎧⎪+⎨>−⎪⎩19.已知240b a −=,求代数式241(1)2a b b+−+的值.20.如图,在ABCD 中,O 为AC 的中点,点E ,F 分別在BC ,AD 上,EF 经过点O ,AE=AF.(1)求证:四边形AECF 为菱形;(2)若E 为BC 的中点,AE=3,AC=4.求AB 的长.21.下图是某房屋的平面示意图.房主准备将客厅和卧室地面铺设木地板,厨房和卫生间地面铺设瓷砖.将房间地面全部铺设完预计需要花费10 000元,其中包含安装费1270元.若每平方米木地板的瓷砖的价格之比是5:3,求每平方米木地板和瓷砖的价格.22.在平面直角坐标系xOy 中,函数y =kx +b (k ≠0)的图象经过点A(1,2)和B(0,1). (1)求该函数的解析式;(2)当x <l 时.对于x 的每一个值,函数y =mx -1(m ≠0)的值小于函数y =kx +b (k ≠0)的值,直接写出m 的取值范围.23.商品成本影响售价,为避免因成本波动导致售价剧烈波动,需要控制售价的涨跌幅.下面给出了商品售价和成本(单位:元)的相关公式和部分信息: a.计算商品售价和成本涨跌幅的公式分别为:100%100%−−=⨯⨯当周售价前周售价当周成本前周成本售价涨跌幅,成本涨跌幅=;前周售价前周成本b.规定当周售价涨跌幅为当周成本涨跌幅的一半;c.甲、乙两种商品成本与售价信息如下:根据以上信息,回答下列问题:(1)甲商品这五周成本的平均数为___________,中位数为___________;(2)表中m 的值为____________,从第三周到第五周,甲商品第_______周的售价最高;(3)记乙商品这40周售价的方差为 21S ,若将规定“当周售价涨跌福为当周成本涨跌福的一半”更改为“当周售价涨跌幅为当周成本涨跌辐的四分之一”,重新计算每周售价,记这40周新售价的方差为22S ,则21S ____22S ;(填“>”“=”或“<”).24.如图.AB 、CD 均为⊙O 的直径.点E 在BD ̂上,连接AE ,交CD 于点F,连DE ,∠EDB+∠EAD=45°,点G 在BD 的延长线上,AB=AG. (I)求证:AG 与⊙O 相切;(2)若BG=1tan 3EDB ∠=,求EF 的长.25.某校为培养学生的阅读习惯,发起“阅读悦听”活动,现有两种打卡奖励方式: 方式一:每天打卡可领取60min 听书时长;方式二:第一天打卡可领取5min 听书时长,之后每天打卡领取的听书时长是前一天的2倍. (1)根据上述两种打卡奖励方式补全表二:表一 每天领取听书时长达了变化趋势.其中表示方式二变化趋势的虚线是________(填a 或b ),从第_______天完成打卡时开始,选择方式二累计领取的听书时长超过方式一;(3)现有一本时长不超过60min 的有声读物,小云希望通过打卡领取该有声读物.若选择方式二比选择方式一所需的打卡天数多两天,则这本有声读物的时长t (单位:min )的取值范围是______.26.在平面坐标系xOy 中,点(m ,n )在抛物线2(0)y ax bx a =+>上,其中m ≠0. (1)当m =4,n =0时.求抛物线的对称轴; (2)已知当0<m <4时,总有n <0. ①求证:4a +b ≤0;②点12(,),(3,)P k y Q k y 在该抛物线上,是否存在a ,b ,使得当1<k <2时,都有12y y <?若存在,求出a 与b 之间的数量关系;若不存任,说明理由.27.在△ABC 中.∠ACB=90°,∠ABC=30°,将线段AC 绕点A 顺时针旋转α((0°<α≤60°)得到线段AD.点D 关于直线BC 的对称点为E.连接AE ,DE.(1)如图1,当α=60°时,用等式表示线段AE 与BD 的数量关系,并证明; (2)连接BD ,依题意补全图2.若AE=BD ,求α的大小.28.在平面直角坐标系xOy中,对于图形M与图形N给出如下定义:P为图形N上任意一点,将图形M绕点P顺时针旋转90°得到M’,将所有M’组成的图形记作M’,称M’是图形M关于图形N的“关联图形”.(1)已知A(-2,0),B(2,0),C(2,t),其中t≠0.①若t=1,请在图中画出点A关于线段BC的“关联图形”;②若点A关于线段BC的“关联图形”与坐标轴有公共点.立接写出t的取值范围;(2)对于平面上一条长度为a的线段和一个半径为r的圆,点S在线段关于圆的“关联图形”上,记点S的纵坐标的最大值和最小值的差为d,当这条线段和圆的位置变化时,直接写出d的取值范围(用含a和r的式子表示).海淀区九年级第二学期期中练习数学试卷参考答案第一部分 选择题一、选择题 (共16分,每题2分)第二部分 非选择题二、填空题(共16分,每题2分)9.1x ≥ 10.(2)(2)a a a −+11.1x = 12.0 13.8 14.94015.180α︒−16.(1)鲁班锁;(2)1,2,3三、解答题(共68分,第17-19题,每题5分,第20-21题,每题6分,第22-23题,每题5分,第24题6分,第25题5分,第26题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17. 解:原式212=++− 12=+−3=18. 解:原不等式组为435212.3x x x −<⎧⎪⎨+>−⎪⎩,①②解不等式①,得2x <.解不等式②,得1x >. ∴原不等式组的解集为12x <<. 19. 解: 原式241212a b b b +=−++2411a b +=+.∵240b a−=,∴24b a=.∴原式41 41aa+ =+1 =.20.(1)证明:∵四边形ABCD为平行四边形,∴AD // BC.∴AFO CEO∠=∠,FAO ECO∠=∠.∵O为AC的中点,∴AO CO=.∴△AOF≌△COE.∴AF EC=.∵AF//EC,∴四边形AECF为平行四边形.∵AE AF=,∴四边形AECF为菱形.(2)解:∵O为AC的中点,4AC=,∴122OA AC==.∵四边形AECF为菱形,∴AC EF⊥.∴90AOE∠=︒.∴在Rt△AOE中,由勾股定理得OE=.∵E为BC的中点,∴2AB OE==.21. 解:设每平方米木地板的价格为5x元,则每平方米瓷砖的价格为3x元.由题意可得,123(3615)5100001270x x⨯++⨯=−.解得30x=.∴5150x=,390x=.答:每平方米木地板的价格为150元,每平方米瓷砖的价格为90元.22.解:(1)∵函数(0)y kx b k =+≠的图象经过点(1,2)A 和(0,1)B ,∴21.k b b +=⎧⎨=⎩,解得11.k b =⎧⎨=⎩,∴该函数的解析式为1y x =+. (2)13m ≤≤.23.解:(1)32,25;(2) 60,四; (3) >.24.(1)证明:∵BE BE =,∴BAE BDE ∠=∠. ∵45EDB EAD ∠+∠=︒,∴45BAE EAD ∠+∠=︒,即45BAD ∠=︒. ∵AB 为O 的直径, ∴90ADB ∠=︒. ∴AD BG ⊥. ∵AB AG =,∴45BAD GAD ∠=∠=︒. ∴90BAG ∠=︒. ∴AB AG ⊥.∵AB 为O 的直径, ∴AG 与O 相切.(2)解:连接BE ,如图.∵AB AG =,AD BG ⊥,BG =∴12BD BG == 在Rt △ADB 中,90ADB ∠=︒,45BAD ∠=︒,可得AB =∴12OA AB ==. ∵BAE BDE ∠=∠, ∴1tan tan 3BAE BDE ∠=∠=.∵AB 为O 的直径,∴90AEB ∠=︒.在Rt △AEB 中,1tan 3BAE ∠=,可得13BE AE =.由勾股定理得 222BE AE AB +=.∴2221()3AE AE +=.∴6AE =. ∵290BOD BAD ∠=∠=︒. ∴90AOF ∠=︒.在Rt △AOF 中,1tan 3BAE ∠=,OA =OF =.由勾股定理得 103AF =. ∴108633EF AE AF =−=−=. 25.解:(1)60n ,525n ⨯−;(2) a ,7; (3)1535t <≤.26.解:(1)由题意可知,点(40),在抛物线2(0)y ax bx a =+>上,∴1640a b +=. ∴4b a =−. ∴4222b aa a−==−−. ∴抛物线的对称轴为直线2x =.(2)① 法一:令0y =,则20(0)ax bx a +=>. 解得0x =或b x a=−. ∴抛物线2(0)y ax bx a =+>与x 轴交于点(00),,(0)b a−,. ∵0a >,∴抛物线开口向上. (ⅰ)当0b <时,0ba−>.∴当0bx a <<−时,0y <;当0x <或b x a>−时,0y >. ∵当04m <<时,总有0n <. ∴4ba−≥.∵0a >, ∴40a b +≤. (ⅱ)当0b >时,0ba−<. ∴当0bx a −<<时,0y <;当b x a<−或0x >时,0y >. ∴当04m <<时,0n >,不符合题意. 综上,40a b +≤. 法二:∴由题意可知,2am bm n +=.若0n <,则2()0am bm m am b +=+<. ∵0m >, ∴0am b +<. ∵0a >, ∴b m a<−. ∴当0bm a<<−时,0n <. ∵当04m <<时,总有0n <. ∴4ba−≥.∵0a >, ∴40a b +≤. ② 存在.设抛物线的对称轴为x t =,则2b t a=−. ∵,∴当x t ≥时,y 随x 的增大而增大;当x t ≤时,y 随x 的增大而减小. ∵12k <<,∴336k <<,3k k <. (ⅰ)当1t ≤时,∵3t k k ≤<. ∴12y y <,符合题意. (ⅱ)当12t <≤时,当2t k ≤<时, ∵3t k k <<. ∴12y y <. 当1k t <<时,设点1()P k y ,关于抛物线对称轴x t =的对称点为点01'(,)P x y , 则0x t >,0t k x t −=−. ∴02x t k =−. ∵1k t <<,12t <≤, ∴23t k −<. ∴03t x <<. ∵336k <<. ∴03t x k <<. ∴12y y <.∴当12t <≤时,符合题意. (ⅲ)当23t <≤时,令12k t =,332k t =,则12y y =,不符合题意.(ⅳ)当36t <<时,令3k t =,则3k k t <≤. ∴12y y >,不符合题意. (ⅴ)当6t ≥时,∵3k k t <<,∴12y y >,不符合题意. ∴ 当2t ≤,即22ba−≤时,符合题意. ∵0a >, ∴40a b +≥. 由①可得40a b +≤. ∴40a b +=.27.(1)线段AE 与BD的数量关系:AE .证明:连接BE ,如图1.∵点D ,E 关于直线BC 对称, ∴直线BC 是线段DE 的垂直平分线. ∴BD BE =.∴30DBC EBC ∠=∠=. ∴60DBE ∠=.∴△DBE 是等边三角形.∴BD BE DE ==,60BDE BED ∠=∠=. ∵△ABC 中,90ACB ∠=,30ABC ∠=, ∴2AB AC =.依题意,得AD AC =,点D 在AB 上. ∴2AB AD =. ∴.BD AD = ∴.DE AD =∴30.DAE DEA ∠=∠= ∴90.BEA ∠= ∴在Rt △ABE 中,tan tan 60 3.AEABE BE=∠== ∴AE. ∴.AE =(2)依题意补全图2,如图.B图1方法一:解:延长AC 至F ,使CF AC =,连接BF ,BE ,EF ,CD ,CE ,如图2. ∵90ACB ∠=, ∴.AB BF = ∵60BAC ∠=,∴△ABF 是等边三角形. ∴AB AF BF ==,60BFC ∠=. ∵点D ,E 关于直线BC 对称, ∴直线BC 是线段DE 的垂直平分线. ∴BD BE =,CD CE =. ∴DCB ECB ∠=∠. ∵90ACB DCF ∠=∠=, ∴DCA ECF ∠=∠. ∵AC FC =, ∴△DAC ≌△EFC . ∴CAD CFE ∠=∠. ∵AE BD =, ∴BE AE =.∵EF EF =,BF AF =, ∴△BEF ≌△AEF .∴30BFE AFE ∠=∠=. ∴30CAD AFE ∠=∠=. ∴30.α= 方法二:解:如图3,取AB 中点F ,连接DF ,BE ,CD ,CE ,设DBC β∠=.F∵点D ,E 关于直线BC 对称, ∴直线BC 是线段DE 的垂直平分线. ∴BD BE =,CD CE =. ∴DBC EBC β∠=∠=.∴30EBA β∠=︒+,30DBA β∠=︒−. ∵AE BD =, ∴AE BE =.∴30EAB EBA β∠=∠=︒+. ∵90ACB ∠=︒,30ABC ∠=︒, ∴60BAC ∠=︒. ∴30EAC β∠=︒−. ∴EAC DBA ∠=∠. 由(1)可得2.AB AC = ∵F 为AB 中点, ∴22.AB AF BF == ∴.AC AF BF ==∵AC BF =,EAC DBA ∠=∠,AE BD =, ∴△ACE ≌△BFD . ∴CE FD =. ∴CD FD =.∵AD AD =,AF AC =, ∴△ADF ≌△ADC . ∴30FAD CAD ∠=∠=︒. ∴30α=︒.28.(1)①如图,线段B'C'即为所求.②4t ≤−或2t ≥.图3FD≤≤+. (2)d a。
山东省济南市历城区2024届九年级下学期中考一模数学试卷(含答案)

2024年九年级学业水平模拟测试(一)数学试题(2023.4)一、选择题(本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.)1.下列几何体的主视图和俯视图完全相同的是( )2.根据中国航天局提供的资料,天和核心舱组合体运行轨道参数是:远地点高度约394900米;近地点高度约384000米;将数据394900用科学记数法可以表示为( )A. 39.49×10⁴B. 0.3949×10⁶D. 3.949×10⁶3. 如图, 已知直线AB∥CD, EG平分∠BEF, ∠1=36°,则∠2的度数是( )A. 70°B. 72°C. 36°D. 54°4.实数a,b,c在数轴上的对应点的位置如图所示,则下列式子正确的是( )A. a+c<0B. a+b<a+cC. ac>bcD. ab>ac5.下列运算中,正确的是( )A.x⁹÷x³=x³D.x³+x=x6.每年的4月22日是世界地球日,2023年世界地球日的主题是“众生的地球” 某校在此期间组织学生开展“爱护地球”图标设计征集活动,如图所示图标是中心对称图形的是( )7.如图,正比例函数. 的图象与反比例函数y2=k2(k2鈮?)的图x象相交于A ,B 两点,已知点B 的横坐标为3,当y ₂<y ₁时,x 的取值范围是 ( )A. x<-3或0<x<3B. x<-3C. x>3D. -3<x<0或x>38.在项目化学习中,“水是生命之”项目组为了解本地区人均淡水消耗量,需要从四名同学(两名男生,两名女生)中随机抽取两人,组成调查小组进行社会调查,恰好抽到一名男生和一名女生的概率是 ( )A. B. C.12 D. Error! Cannot insertreturn character.9. 如图, 在△ABC 中, 分别以A, B 为圆心, 以大于 Error! Digitexpected.的长为半径作弧,两弧相交于F ,G 两点,作直线 FG 分别交AB, BC 于点M, D; 再分别以A, C 为圆心,以大于 Error! Digit expected.的长为半径作弧,两弧相交于H ,I 两点,作直线HI分别交AC, BC于点N, E; 若 BD =32,DE =2,EC =52,则AC 的长为 ( ) A.3102B.332C.352D.32210. 阅读材料: 已知点P(x ₀, y ₀) 和直线y=kx+b, 则点P 到直线y=kx+b 的距离d 可用公式 d =|kx 0―y 0+b|1+k 2计算.例如:求点P(-2,1)到直线y=x+1的距离.其中k=1,b=1.所以点P (-2, 1) 到直线y=x+1的距离为 d =|kx 0―y 0+b|1+k 2=|ln(―2)―1+1|1+12=22=2.根据以上材料,有下列结论:①点(2,0) 到直线y=-2x 的距离是 LJ②直线y=-2x 和直线y=-2x+6的距离是 ʏ③抛物线 y =x²―4x +3上存在两个点到直线y=-2x 的距离是. Error! Digit expected.④若点 P 是抛物线 y =x²―4x +3上的点,则点P 到直线y=-2x 距离的最小值是 ÿ其中,正确结论的个数是 ( ) A. 1B. 2C. 3D. 4二、填空题(本题共6小题,每小题4分,共24分.)11. 分解因式: m 2―4m +4=.12.不透明袋中有红、白两种颜色的小球,这些球除颜色外无其他差别.从袋中随机取出一个球是红球的概率为0.6,若袋中有4个白球,则袋中红球有个.13. 方程Error! Digit expected.的解为.14. 如图, 正八边形ABCDEFGH的边长为3, 以顶点A为圆心, AB的长为半径画圆, 则阴影部分的面积为(结果保留π)15.中国人逢山开路,遇水架桥,靠自己勤劳的双手创造了世界奇迹.雅西高速是连接雅安和西昌的高速公路,被国内外专家学者公认为全世界自然环境最恶劣、工程难度最大、科技含量最高的山区高速公路之一,全长240km.一辆货车和一辆轿车先后从西昌出发驶向雅安,如图,线段OM表示货车离西昌距离y₁(km)与时间x(h)之间的函数关系,线段AN表示轿车离西昌距离y₂(km)与时间x(h)之间的函数关系,则货车出发小时后与轿车相遇.16. 如图, 正方形ABCD中, AB=4, 点E为AD上一动点, 将三角形ABE沿BE折叠, 点A落在点F处,连接DF并延长,与边AB交于点G,若点G为AB中点,则AE=.三、解答题(本题共10小题,共86分.解答应写出文字说明、证明过程或演算步骤.)17. (6分) 计算:18. (6分) 解不等式组并写出其所有整数解.19.(6分)如图, 在▱ABCD中, E, G, H, F分别是AB, BC, CD, DA上的点, 且BE=DH,AF=CG.求证:EF=GH.20.(8分)综合与实践活动中,要利用测角仪测量塔的高度,如图,塔AB前有一座高为DE的观景台,已知( CD=8m,CD的坡度为i=13,点E,C,A在同一条水平直线上.某学习小组在观景台C处测得塔顶部B的仰角为,在观景台D处测得塔顶部B的仰角为:(1) 求DE的长;(2) 求塔AB的高度. (结果精确到1m)(参考数据:21.(8分)某校开展“图书月”活动,为了解七年级学生的阅读情况,小华设计调查问卷,用随机抽样的方式调查了部分学生,并对相关数据进行了收集、整理、描述和分析.下面是其中的部分信息:a.将学生每天阅读时长数据分组整理,绘制了如下两幅不完整的统计图表.七年级学生每天阅读时长情况统计表组别每天阅读时长(单位: 分钟)人数(单位: 人)A 0≤x<308B 30≤x<60nC 60≤x<9016D90≤x<1208b. 每天阅读时长在60≤x<90的具体数据如下: 60, 60, 66, 68,69, 69, 70, 70, 72,73, 73, 73, 80, 83, 84, 85根据以上信息,回答下列问题:(1) 表中n=, 图中m=;(2)C 组这部分扇形的圆心角是°;(3)每天阅读时长在60≤x<90这组具体数据的中位数是 ,众数是;(4)各组每天平均阅读时长如表:组别A 0≤x<30B 30≤x<60C 60≤x<90D 90≤x<120平均阅读时长(分钟)204575.599求被调查学生的平均阅读时长.22.(8分)如图, AB 是⊙O 的直径, C 是⊙O 上一点, 过点C 作⊙O 的切线CD, 交AB 的延长线于点D ,过点A 作.于点 E.(1) 若 ∠DAC =25°,求的度数;(2) 若( OB =4,BD =2,求CE 的长.23.(10分)2023年中国新能汽车市场火爆.某汽车销售公司为抢占先机,计划购进一批新能汽车进行销售.据了解,1辆A型新能汽车、3辆B型新能汽车的进价共计55万元;4辆A型新能汽车、2辆B 型新能汽车的进价共计120万元.(1)求A,B型新能汽车每辆进价分别是多少万元.(2)公司决定购买以上两种新能汽车共100辆,总费用不超过1180万元,该汽车销售公司销售1辆A型新能汽车可获利0.9万元,销售1辆B型新能汽车可获利0.4万元,若汽车全部销售完毕,那么销售A型新能汽车多少辆时获利最大?最大利润是多少?24.(10分) 如图, 在平面直角坐标系xOy中, 直线y=2x+4与函数的图象交于点A(1,m), 与x轴交于点B.(1) 求m, k的值;(2) 过动点P (0, n) (n>0) 作平行于x轴的直线, 交直线y=2x+4于点C,交函数的图象于点D,①当n=2时,求线段CD的长;②若CD鈮?OB,,结合函数的图象,直接写出n的取值范围.25.(12分) 如图所示, 中, 若D是内一点,将线段CD绕点C顺时针旋转Error! Digit expected.得到CE, 连结AD, BE.(1) ①如图1,判断AD与BE的位置关系并给出证明;②如图2, 连接AE, BD, 当. AE=AB时,请直接用等式表示线段BD和CD的数量关系;(2) 如图3,O是斜边AB的中点,M为BC上方一点,且CM与斜边AB的交点在线段OA上, 若求. BM的长.26.(12分)如图,在平面直角坐标系中,二次函数. y =x²+bx +c 的图象与x 轴交于点. A (―1,0)和点B (3, 0), 与y 轴交于点C.(1)求二次函数的表达式;(2)如图,二次函数图象的顶点为.对称轴与直线BC 交于点D ,在直线BC 下方抛物线上是否存在一点 M (不与点 N 重合),使得 S NDC =S MDC ?若存在,请求出点M 的坐标;若不存在,请说明理由;(3)将线段AB 先向右平移一个单位,再向上平移6个单位,得到线段EF ,若抛物线与线段EF 只有一个公共点,请直接写出a 的取值范围.2024年九年级学业水平模拟测试(一)数学试题(答案)一、选择题12345678910D C B D C C A B A D二、填空题11.;12. 6;13.;14.;15. 1.8;16. .三、解答题17.原式=……………………………………………………………………………4分==………………………………………………………………………………………………………………6分18.解:解不等式①得:,………………………………………………………………………………2分解不等式②得:,..........................................................................................4分该不等式组的解集为:, (5)分该不等式组的整数解为:.………………………………………………………………………6分19.证明:∵四边形ABCD为平行四边形,∴∠A=∠C,AB=CD,…………………………………………………………………………………………2分又∵BE=DH,∴AB-BE=CD-DH,∴AE=CH, (3)分在△AEF和△CHG中,∴△AEF≌△CHG(SAS) (5)分∴EF=HG. (6)分20. (1)解:在Rt△DCE中,的坡度为,,∴, (1)分∴.即的长为. (2)分(2)解:设,在Rt△DCE中,,∴.…………………………………………………………………3分在Rt△BCA中,由,,,则.∴.…………………………………………………………………………………4分即的长为.如图,过点作,垂足为.根据题意,,∴四边形是矩形.∴,.可得.………………………………………………………………………………5分在中,,∴,………………………………………………………………………………………………6分解得:………………………………………………………………………………………………7分15m答:塔的高度约为. (8)分21. (1); (2)分(2)72; (3)分(3),; (5)分(4)20×10%+45×60%+75.5×20%+99×10%=54(分钟). (8)分22.(1)解:连接OC,∵O与CD相切于点C,∴OC⊥CD,∠OCD=90°,……………………………………1分∵于点,∴,∴∠AEC=∠OCD,∴AE∥OC,∴∠EAC=∠ACO,…………………………………………………………………………………………2分又∵OA=OC,∴∠DAC=∠ACO,……………………………………………………………………………………3分∴∠EAC=∠DAC=25°…………………………………………………………………………………4分(2)解:,,,.…………………………………………………………………………………5分,, (6)分,……………………………………………………………………………………………………7分. (8)分23. (1)设A型新能汽车每辆进价为a万元,B型新能汽车每辆进价为b万元.…………………1分由题意,得……………………………………………………………………………………3分解得 (4)分答:A型新能汽车每辆进价为25万元,B型新能汽车每辆进价为10万元.…………………………5分(2)设购买A型新能汽车x辆,则购买B型新能汽车辆.………………………………6分由题意,得.解得.……………………………………………………………………………………………………7分设销售A型新能汽车x辆所获利润为W万元.则.…………………………………………………………………………8分∵,∴W随x的增大而增大.∴当时,W有最大值46万元.…………………………………………………………………………9分答:当销售A型新能汽车12辆时获利最大,最大利润为46万元.……………………………………10分24. 解:(1)直线经过点,,………………………………………………………………………………………………1分反比例函数的图象经过点,;………………………………………………………………………………………………2分(2)①当时,点的坐标为,当时,,解得,点D的坐标为,……………………………………………………………………………………4分当时,,解得,点C的坐标为,……………………………………………………………………………………6分;……………………………………………………………………………………………7分②的取值范围为(1分)或(2分).………………………………………………10分25. 解:(1)AD⊥BE…………………………………………………………………………………………1分延长AD交CB于O点,交BE于H点.∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,由旋转的性质得:CD=CE,∠DCE=90°,∵∠ACD+∠DCB=90°,∠BCE+∠DCB=90°,∴∠ACD=∠BCE,又∵AC=BC,CD=CE,∴△ACD≌△BCE(SAS),…………………………………………………………………………3分∴∠CAD=∠CBE又∵∠AOC=∠BOH;∴△AOC∽△BOH,∴∠BHO=∠ACO=90°;∴AD⊥BE.…………………………………………………………………………………………5分(2)BD=CD;………………………………………………………………………………8分(3)解:如图,过点O作ON⊥OM,且ON=OM,连接NM、NC,N C交BM于点H,ON交MB于F点,连接OC,则∠NOM=90°,∵△ABC是等腰直角三角形,O是斜边AB的中点,∴CO⊥AB,CO=AB=OB,∴∠COB=∠NOM=90°,∴∠NOC=∠MOB,∴△NOC≌△MOB(SAS),………………………………………………………………………………9分∴CN=BM,∠ONC=∠OMB,又∵∠OFM=∠HFN,∴∠MHN=∠MOF=90°,∵∠BMC=45°,∴△CMH是等腰直角三角形,∴CH=MH=CM=12,……………………………………………………………………………10分在Rt△NOM中,NM=OM==13,…………………………………………………11分在Rt△NHM中,NM=13,MH=12,∴NH=5∴CN=CH+HN=17,∴BM=CN=17………………………………………………………………………………………………12分(此题方法不唯一,阅卷组可根据不同方法设置不同标准.)26.解:(1)把A(-1,0),B(3,0)代入二次函数y=x2+bx+c可得,,…………………………………………………………………………………………2分解得:,…………………………………………………………………………………………3分∴二次函数的表达式为y=x2-2x-3.………………………………………………………………………4分(2)由题意可得:N(1,-4),…………………………………………………………………………5分∵S△NDC=S△MDC,∴过点N作CD的平行线,与抛物线交于点M,由B(3,0),C(0,-3)可得直线DC的表达式为,……………………………………6分∵MN∥DC,N(1,-4),∴直线MN的表达式为,…………………………………………………………………7分∴,解得:,………………………………………………………………………8分∴M(2,-3).…………………………………………………………………………………………9分(3)………………………………………………………………………12分(答出一种情况得1分)。
2024北京大兴区初三一模数学试卷和答案

2024北京大兴初三一模数 学考生须知:1.本试卷共6页,共28道题.满分100分.考试时间120分钟.2.在试卷和答题卡上准确填写姓名、准考证号、考场号和座位号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束,将本试卷、答题卡和草稿纸一并交回.一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1. 下面几何体中,是圆锥的为( )A. B. C. D.2. 2024年是京津冀协同发展十周年,高标准建设雄安新区成效显著.从新区设立至2023年底,累计开发面积184平方公里,4017栋楼宇拔地而起,总建筑面积4370万平方米.将43700000用科学记数法表示应为( )A. 643.710⨯B. 74.3710⨯C. 84.3710⨯D. 90.43710⨯3. 五边形的内角和为( )A. 180︒B. 360︒C. 540︒D. 720︒4. 如图,直线AB ,CD 相交于点O ,OE AB ⊥,若30AOC ∠=︒,则EOD ∠的大小为( )A. 30︒B. 60︒C. 120︒D. 150︒5. 实数a ,b ,c 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A. 0b c ->B. 0ac >C. 0b c +<D. 1ab <6. 不透明的盒子中装有3个小球,每个小球上面写着一个汉字分别是“向”、“前”、“冲”,这3个小球除汉字外无其他差别,从中随机摸出一个小球,记录其汉字,放回并摇匀,再从中随机摸出一个小球,记录其汉字,则两次都摸到“冲”字的概率是( )A. 23 B. 13 C. 16 D. 197. 若关于x 的一元二次方程220x x m +-=有两个不相等的实数根,则实数m 的取值范围是( )A. 1m >-B. 1m ≥-C. 1m >D. m 1≥8. 如图,在ABC 中,90BAC ∠=︒,AD BC ⊥于点D ,设BD a =,DC b =,AD c =,给出下面三个结论:①2c ab =;②2a b c +≥;③若a b >,则a c >.上述结论中,所有正确结论的序号是( )A.①②B. ①③C. ②③D. ①②③二、填空题(共16分,每题2分)9. 在实数范围内有意义,则实数x 的取值范围是______.10.分解因式:24ab a -=_______.11. 方程1341x x =-的解为______.12. 在平面直角坐标系xOy 中,若点(5,2)A 和(,2)B m -在反比例函数(0)k y k x=≠的图象上,则m 的值为______.13. 如图,AB 是O 的直径,点C ,D 在O 上,若AC BC =,则D ∠的度数为______︒.14. 如图,在矩形ABCD 中,AC 与BD 相交于点O ,OE BC ⊥于点E .若4AC =,30DBC ∠=︒,则OE 的长为______.15. 某年级为了解学生对“足球”“篮球”“排球”“乒乓球”“羽毛球”五类体育项目的喜爱情况,现从中随机抽取了100名学生进行问卷调查,根据数据绘制了如图所示的统计图.若该年级有800名学生,估计该年级喜爱“篮球”项目的学生有______人.16. 某公园门票价格如下表:某学校组织摄影、美术两个社团的学生游览该公园,两社团的人数分别为a 和()b a b >.若两社团分别以各自社团为单位购票,共需1560元;若两社团作为一个团体合在一起购票,共需1170元,那么这两个社团的人数为=a ______,b =______.购票人数1~4041~8080以上门票价格20元/人16元/人13元/人三、解答题(共68分,第17-20题,每题5分,第21题6分,第22-23题,每题5分,第24-26题,每题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17. 计算:0|3|(2024)2cos 45π-+++-︒18. 解不等式组:4125213x x x x -≥+⎧⎪-⎨<⎪⎩19. 已知2310a a +-=,求代数式2(1)(4)2a a a +++-的值.20. 某学校开展“浸书香校园,品诗词之美”读书活动.现有A ,B 两种诗词书籍整齐地叠放在桌子上,每本A 书籍和每本B 书籍厚度的比为5:6,根据图中所给出的数据信息,求每本A 书籍的厚度.21. 如图,在正方形ABCD 中,点E ,F 分别在BC ,AD 上,BEDF =,连接CF ,射线AE 和线段DC 的延长线交于点G .(1)求证:四边形AECF 是平行四边形;(2)若2tan 3BAE ∠=,9DG =,求线段CE 的长.22. 种子被称作农业的“芯片”,粮安天下,种子为基.农科院计划为某地区选择合适的甜玉米种子,随机抽取20块自然条件相同的试验田进行试验,得到各试验田每公顷产量(单位:t ),并对数据(每公顷产量)进行了整理、描述和分析,下面给出了部分信息:a .20块试验田每公顷产量的频数分布表如下:每公顷产量(t)频数7.407.45x ≤<37.457.50x ≤<27.507.55x ≤<m 7.557.60x ≤<67.607.65x ≤≤5b .试验田每公顷产量在7.557.60x ≤<这一组的是:7.55 7.55 7.57 7.58 7.59 7.59c . 20 块试验田每公顷产量的统计图如下:(1)写出表中m 的值;(2)随机抽取的这20块试验田每公顷产量的中位数为______.(3)下列推断合理的是______(填序号);①20块试验田的每公顷产量数据中,每公顷产量低于7.50t 的试验田数量占试验田总数的25%;②3号试验田每公顷产量在20块试验田的每公顷产量数据中从高到低排第5名.(4)1~10号试验田使用的是甲种种子,11~20号试验田使用的是乙种种子,已知甲、乙两种种子的每公顷产量的平均数分别为7.537t 及7.545t ,若某种种子在各试验田每公顷产量的10个数据的方差越小,则认为这种种子的产量越稳定.据此推断:甲、乙两种种子中,这个地区比较适合种植的种子是______(填“甲”或“乙”).23. 在平面直角坐标系xOy 中,函数(0)y kx b k =+≠的图象经过点(1,3)A 和(1,1)B --,与过点(2,0)-且平行于y 轴的直线交于点C .(1)求该函数的表达式及点C 的坐标;(2)当2x <-时,对于x 的每一个值,函数(0)y nx n =≠的值大于函数(0)y kx b k =+≠的值且小于2-,直接写出n 的取值范围.24. 某洒水车为绿化带浇水,图1是洒水车喷水区域的截面图,其上、下边缘都可以看作是抛物线的一部分,下边缘抛物线是由上边缘抛物线向左平移得到的.喷水口H 距地面的竖直高度OH 为1.5m ,喷水区域的上、下边缘与地面交于A ,B 两点,上边缘抛物线的最高点C 恰好在点B 的正上方,已知6m OA =,2m OB =,2m CB =.建立如图2所示的平面直角坐标系.(1)在①21(2)28y x =-++,②21(2)28y x =--+两个表达式中,洒水车喷出水的上边缘抛物线的表达式为______,下边缘抛物线的表达式为______(把表达式的序号填在对应横线上);(2)如图3,洒水车沿着平行于绿化带的公路行驶,绿化带的横截面可以看作矩形DEFG ,水平宽度3m DE =,竖直高度0.5m DG =.如图4,OD 为喷水口距绿化带底部的最近水平距离(单位:m ).若矩形DEFG 在喷水区域内,则称洒水车能浇灌到整个绿化带.①当 2.6m OD =时,判断洒水车能否浇灌到整个绿化带,并说明理由;②若洒水车能浇灌到整个绿化带,则OD 的取值范围是______.25. 如图,过O 外一点A 作O 的切线,切点为点B ,BC 为O 的直径,点D 为O 上一点,且BD BA =,连接CD ,AD ,线段AD 交直径BC 于点E ,交O 于点F ,连接BF .(1)求证:EF BF =;(2)若1sin 3A =,25OE =,求O 半径的长.26. 在平面直角坐标系xOy 中,()11,M x y ,()22,N x y 是抛物线2(0)y ax bx c a =++<上任意两点.设抛物线的对称轴为直线x t =.(1)若22x =,2y c =,求t 的值;(2)若对于112t x t +<<+,245x <<,都有12y y >,求t 的取值范围.27. 在ABC 中,AC BC =,90ACB ∠=︒,点D 是线段AB 上一个动点(不与点A ,B 重合),()045ACD αα∠=<<︒,以D 为中心,将线段DC 顺时针旋转90︒得到线段DE ,连接EB .(1)依题意补全图形;(2)求EDB ∠的大小(用含α的代数式表示);(3)用等式表示线段BE ,BC ,AD 之间的数量关系,并证明.28. 在平面直角坐标系xOy 中,已知点(,0)T t ,T e 的半径为1,过T e 外一点P 作两条射线,一条是T e 的切线,另一条经过点T ,若这两条射线的夹角大于或等于45︒,则称点P 为T e 的“伴随点”.(1)当0=t 时,①在1(1,0)P ,2P ,3(1,1)P -,4(1,2)P -中,T e 的“伴随点”是______.②若直线12y x b =+上有且只有一个T e 的“伴随点”,求b 的值;(2)已知正方形EFGH 的对角线的交点(0,)M t ,点11,22E t ⎛⎫-+ ⎪⎝⎭,若正方形上存在T e 的“伴随点”,直接写出t 的取值范围.参考答案一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1. 【答案】D【分析】本题考查了常见几何体的识别,观察所给几何体,可以直接得出答案.【详解】解:A 选项为正方体,不合题意;B 选项为球,不符合题意;C 选项为五棱锥,不合题意;D 选项为圆锥,符合题意.故选:D .2. 【答案】B【分析】本题考查科学记数法,科学记数法的表示形式为 10n a ⨯ 的形式,其中 110a ≤<,n 为整数(确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位).【详解】解:43700000=74.3710⨯,故选:B .3. 【答案】C【分析】本题考查了n 边形内角和公式,熟练记忆公式是解题的关键.代入公式即可求解.【详解】解:五边形的内角和为()52180540-⨯︒=︒,故选:C .4. 【答案】B【分析】本题主要考查的是对顶角的性质和垂线,依据垂线的定义可求得90EOB ∠=︒,然后依据对顶角的性质可求得BOD ∠的度数,最后依据EOD EOB DOB ∠=∠-∠求解即可.【详解】解:∵OE AB ⊥,∴90EOB ∠=︒.∵30DOB AOC ∠=∠=︒,∴903060EOD EOB DOB ∠=∠-∠=︒-︒=︒.故选:B .5. 【答案】C【分析】本题考查了根据点在数轴的位置判断式子的正负.熟练掌握根据点在数轴的位置判断式子的正负是解题的关键.由数轴可知,32101a b c -<<-<<-<<<,则0b c -<,0ac <,0b c +<,1ab >,然后判断作答即可.【详解】解:由数轴可知,32101a b c -<<-<<-<<<,∴0b c -<,0ac <,0b c +<,1ab >,∴A 、B 、D 错误,故不符合要求;C 正确,故符合要求;故选:C .6. 【答案】D【分析】本题考查的是列表法或画树状图求解概率,根据题意列出表格即可求解.【详解】解:根据题意列表如下:向前冲向向,向前,向冲,向前向,前前,前前,冲冲向,冲前,冲冲,冲共有9种等可能得情况,其中两次都摸到“冲”字的情况有1种,则两次都摸到“冲”字的概率是:19,故选:D .7. 【答案】A【分析】本题考查了根的判别式:一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=-有如下关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根.根据判别式的意义得到()22410m ∆=-⨯⨯->,然后求出不等式的解集即可.【详解】解:根据题意得()22410m ∆=-⨯⨯->,解得1m >-.故选:A .8. 【答案】D【分析】由90BAC ∠=︒,AD BC ⊥,得到ABD CAD ∽△△,BD AD AD DC =,将BD a =,DC b =,AD c =代入,即可判断①正确,由()2222a b a b ab -=+-,()2222a b a b ab +=++,将2c ab =代入,整理后即可判断②正确,将2c b a=,代入a b >,即可判断③正确,本题考查了,相似三角形的性质与判定,完全平方公式的应用,解不等式,解题的关键是:熟练掌握完全平方公式的变形及应用.【详解】解:∵90BAC ∠=︒,AD BC ⊥,∴90BAD CAD ∠+∠=︒,90BAD ABD ∠+∠=︒,90BAD ADC ∠=∠=︒,∴CAD ABD ∠=∠,∴ABD CAD ∽△△,∴BD AD AD DC=即:a c c b =,整理得:2c ab =,故①正确,∵()2222a b a b ab -=+-,即:()2222a b a b ab +=-+, ∴()()()222222244a b a b ab a b ab a b c +=++=-+=-+,∵()20a b -≥,∴()224a b c +≥,∵0a >、0b >、0c >,∴2a b c +≥,故②正确,∵a b >,2c b a=,∴2c a a>,∵0a >,∴22a c >,∴a c >,故③正确,综上所述,①②③正确,故选:D .二、填空题(共16分,每题2分)9. 【答案】3x ≥【分析】此题主要考查了分式有意义及二次根式有意义的条件,正确掌握相关定义是解题关键.由分式有意义及二次根式有意义的条件,进而得出x 的取值范围.【详解】由二次根式的概念,可知30x -≥,解得3x ≥.故答案为:3x ≥10. 【答案】()()22a b b +-.【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式a 后继续应用平方差公式分解即可【详解】解:()()()224422a a a a b b b b -=-=+-,故答案为:()()22a b b +-.11. 【答案】1x =【分析】本题考查了解分式方程,先将分式方程化为一元一次方程,再解一元一次方程,最后检验即可求解,注意分式的方程需要检验是解题的关键.【详解】解:1341x x =-∴413x x -=,解得:1x =,经检验,1x =是原分式方程的解,∴1x =,故答案为:1x =.12. 【答案】5-【分析】本题考查了反比例函数图象上点的坐标特征,先把(5,2)A 代入(0)k y k x=≠求出10,k =再把(,2)B m -代入10y x=,求出5m =-.【详解】解:把(5,2)A 代入(0)k y k x =≠得:25k =,解得,10,k =∴反比例函数解析式为10y x =,把(,2)B m -代入10y x =,得:102m-=,解得,5m =-,故答案为:5-13. 【答案】45【分析】本题主要考查了圆周角定理,先由直径所对的圆周角为90︒,可得90ACB ∠=︒,然后由AC BC =得:45CAB CBA ∠=∠=︒,然后根据同弧所对的圆周角相等,即可求出D ∠的度数.【详解】解:∵AB 是O 的直径,∴90ACB ∠=︒,∵AC BC =,∴45CAB CBA ∠=∠=︒,∴45D CAB ∠=∠=︒.故答案为:4514. 【答案】1【分析】本题考查矩形的性质,等腰三角形的判定和性质,解直角三角形,根据矩形的性质,得到OB OC =,根据三线合一结合30度角的直角三角形的性质,求解即可.【详解】解:∵矩形ABCD ,∴OB OC =,90BCD ∠=︒,4BD AC ==,∵30DBC ∠=︒,∴122CD BD ==,∴BC =,∵OB OC =,OE BC ⊥,∴12BE BC ==,∴tan 301OE BE =⋅︒==;故答案为:1.15. 【答案】240【分析】本题主要考查了样本估计总体.用800乘以喜爱“篮球”项目所占的百分比,即可.【详解】解:30800240100⨯=人,即该年级喜爱“篮球”项目的学生有240人.故答案为:24016. 【答案】 ①. 60 ②. 30【分析】本题考查了二元一次方程组的应用,由两次门票费用,列出方程组,可求解.【详解】解:∵1170不能整除16,∴两个部门的人数81a b +≥,又1560不能整除16,∴每个部门的人数不可能同时在41~80之间,由于a b >,所以,当140,4180b a ≤≤≤≤,则有:()20161560131170b a a b +=⎧⎨+=⎩解得,6030a b =⎧⎨=⎩故答案为:60,30.三、解答题(共68分,第17-20题,每题5分,第21题6分,第22-23题,每题5分,第24-26题,每题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17. 【答案】4+【分析】本题考查了实数的混合运算,掌握相关运算法则是解题关键.先计算绝对值、零指数幂、二次根式、特殊角的三角函数值,再计算加减法即可.【详解】解:0|3|(2024)2cos 45π-+++-︒312=++-⨯31=++-4=.18. 【答案】3x ≥【分析】本题主要考查了解一元一次不等式组,先求出每个不等式的解集,再根据 “同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可.【详解】解:4125213x x x x -≥+⎧⎪⎨-<⎪⎩①②解不等式①,得3x ≥.解不等式②,得1x >-.∴不等式组的解集为3x ≥.19. 【答案】1【分析】本题考查整式的混合运算、代数式求值,熟练掌握运算法则是解答的关键.先根据整式的混合运算法则结合完全平方公式化简原式,再将已知化为2262a a +=代入求解即可.【详解】解:2(1)(4)2a a a +++-222142a a a a =++++-2261a a =+-.2310a a +-= ,231a a ∴+=.2262a a ∴+=.∴原式2261a a =+-21=-1=.20. 【答案】每本A 书籍厚度为1cm【分析】本题主要考查了二元一次方程的应用,设每本A 书籍厚度为cm x ,桌子高度为cm y ,根据等量关系,列出方程组,解方程组即可.【详解】解:设每本A 书籍厚度为cm x ,桌子高度为cm y ,由题意可得:37965825x y x y +=⎧⎪⎨⨯+=⎪⎩,解得176x y =⎧⎨=⎩,答:每本A 书籍厚度为1cm .21. 【答案】(1)见解析 (2)2CE =【分析】本题考查了平行四边形的判定,正方形的性质,正切的定义;(1)根据正方形的性质得出AD BC ∥,AD BC =.根据题意得出AF CE =,即可得证;(2)根据正方形的性质得出2tan tan 3BAE G ∠==,在Rt ADG 中,得出6CD =则3CG =,根据2tan 3CEG CG ==,即可求解.【小问1详解】证明: 四边形ABCD 是正方形,∴AD BC ∥,AD BC =.BE FD =,∴AD FD BC BE -=-.即AF CE =.又 AF CE ∥,∴四边形AECF 是平行四边形.【小问2详解】解: 四边形ABCD 是正方形,∴AD BC ∥,90BCD D ∠=∠=︒,AD CD =.∴BAE G ∠=∠,90ECG ∠=︒,∴2tan tan 3BAE G ∠==.在Rt ADG 中, 2tan 3ADG DG ==,9DG =,∴6AD =.∴6CD =.∴3CG =.在Rt ECG 中, 2tan 3CEG CG ==,∴2CE =.22. 【答案】(1)4 (2)7.55(3)① (4)乙【分析】本题考查了频数分布表,求中位数,根据方差判断稳定性:(1)运用频数总数减去已知频数即可得出m ;(2)根据中位数的定义可求解;(3)从统计图中可得每公顷产量低于7.50t 的试验田数量有5块,可判断①;3号试验田每公顷产量在20块试验田的每公顷产量数据中从高到低排第4名可判断②.(4)根据图象判断稳定性即可得出结果.【小问1详解】解:2032654m =----=【小问2详解】解:随机抽取的这20块试验田每公顷产量的中位数是7.557.60x ≤<这一组的第1个和第2个数据,即:7.55和7.55,故中位数为:7.557.557.552+=,故答案为:7.55;【小问3详解】解:20块试验田的每公顷产量数据中,每公顷产量低于7.50t 的试验田数量有5块,所以,占试验田总数的百分数为510025%20⨯=,故①正确;3号试验田每公顷产量在20块试验田的每公顷产量数据中从高到低排第4名,故②错误,故答案为:①【小问4详解】解:从20 块试验田每公顷产量的统计图中可看出甲种种子每公顷产量波动大,乙种种子每公顷产量波动小,据此推断:甲、乙两种种子中,这个地区比较适合种植的种子是乙;故答案为:乙23. 【答案】(1)21y x =+;(2,3)--(2)312n ≤≤【分析】本题考查待定系数法求一次函数解析式,一次函数图象及性质,用数形结合思想考虑本题是解答本题的关键.(1)将两点代入函数解析式中即可求得函数解析式,再将2x =-代入解析式即可求出点C 坐标;(2)根据题意将(2,2)--代入(0)y nx n =≠求出n 的最小值,再根据题意将C 代入求出n 的最大值,即为本题答案.【小问1详解】解:∵函数(0)y kx b k =+≠的图象经过点(1,3)A 和(1,1)B --,∴将点(1,3)A 和(1,1)B --代入(0)y kx b k =+≠中,31k b k b +=⎧⎨-+=-⎩,解得:21k b =⎧⎨=⎩,∴该函数的表达式为:21y x =+,∵与过点(2,0)-且平行于y 轴的直线交于点C ,∴将2x =-代入21y x =+中,得=3y -,∴(2,3)C --;【小问2详解】解:∵当2x <-时,对于x 的每一个值,函数(0)y nx n =≠的值大于函数(0)y kx b k =+≠的值且小于2-,,通过图象可知,当(0)y nx n =≠的函数值小于2-时,即将(2,2)--H 代入(0)y nx n =≠中,1n =,当(0)y nx n =≠的函数值大于函数(0)y kx b k =+≠的值将(2,3)C --代入(0)y nx n =≠中,32n =,∴n 的取值范围为:312n ≤≤.24. 【答案】(1)②,① (2)①不能;理由见解析;②21OD ≤≤-【分析】本题考查了二次函数的实际应用,(1)由题意可知:顶点坐标()2,2C ,()0,1.5H ,利用待定系数法即可求出函数解析式为:()21228y x =--+,利用()0,1.5H 关于对称轴2x =的对称点为:()4,1.5,可知下边缘抛物线是由上边缘抛物线向左平移4个单位得到,求出下边缘抛物线为:()21228=-++y x ;(2)①根据 2.6m OD =,将 5.6x =代入上边缘抛物线的函数解析式得出0.380.5y =<,即可求解;②当点B 和点D 重合时,d 有最小值,此时2d =;当上边缘抛物线过点F 时,d 有最大值,231=+-=-d ;所以21d ≤≤-.【小问1详解】解:由题意可知:()2,2C ,故设上边缘抛物线的函数解析式为:()222y a x =-+,∵()0,1.5H ,将其代入()222y a x =-+可得:()21.5022=-+a ,解得:18a =-,∴上边缘抛物线的函数解析式为:()21228y x =--+,解:∵()0,1.5H 关于对称轴2x =的对称点为:()4,1.5,∴下边缘抛物线是由上边缘抛物线向左平移4个单位得到,∴下边缘抛物线为:()21228=-++y x ,故答案为:②,①.【小问2详解】①不能,理由如下,依题意, 2.63 5.6OE =+=将 5.6x =代入上边缘抛物线的函数解析式()21228y x =--+得()215.6220.380.58y =--+=<∴绿化带不全在喷头口的喷水区域内,∴洒水车不能浇灌到整个绿化带;②解:设灌溉车到绿化带的距离OD 为d ,要使灌溉车行驶时喷出的水能浇灌到整个绿化带,则当点B 和点D 重合时,d 有最小值,此时2d =;当上边缘抛物线过点F 时,d 有最大值,3m DE =,0.5m EF =.∴令()21220.58=--+=y x ,解得:2x =+2x =-,结合图像可知:()2+Fd ∴的最大值为:231=+-=-d ;∴21d ≤≤-.故答案为:21OD ≤≤-.25. 【答案】(1)证明见解析(2)92【分析】(1)由切线的定义可得出90A AEB ∠+∠=︒,由直径所对的圆周角等于90︒得出90CDE BDE ∠+∠=︒,由等边对等角得出BDA A ∠=∠,等量代换得出CDE AEB ∠=∠,由同弧所对的圆周角相等得出C D E C B F ∠=∠, 进而可得出AEB CBF ∠=∠ ,由等角对等边得出EF BF =.(2)连接CF ,先证明==AF BF EF ,设BF EF AF x ===,则2AE x =,解直角三角形Rt ABE 得出23BE x =,再证明BCF A ∠=∠,得出1sin sin 3A BCF =∠=,进一步得出22()BC OB OE BE ==+,即523223x x ⎛⎫=+ ⎪⎝⎭,解出x 即可求解.【小问1详解】证明: AB 为O 的切线,∴90OBA ∠=︒.∴90A AEB ∠+∠=︒.BC 为O 的直径,∴90CDB ∠=︒.∴90CDE BDE ∠+∠=︒.BD BA =,∴BDA A ∠=∠.∴CDE AEB ∠=∠.又CDE CBF ∠=∠ ,AEB CBF ∴∠=∠.EF BF ∴=.【小问2详解】连接CF .AB 为O 的切线,∴90OBA ∠=︒.∴90AEB A ∠+∠=︒,90EBF FBA ∠+∠=︒.AEB CBF ∠=∠,∴FBA A ∠=∠.∴AF BF =.∴==AF BF EF .设BF EF AF x ===,则2AE x =.在Rt ABE 中, 1sin 3A =,2AE x =,∴23BE x =.BC 为直径,∴90CFB ∠=︒.BCF BDA ∠=∠,BDA A ∠=∠,∴BCF A ∠=∠.∴1sin sin 3A BCF =∠=.在Rt BFC △中,BF x =,∴3BC x =.22()BC OB OE BE ==+,∴523223x x ⎛⎫=+⎪⎝⎭.解得3x =.∴92OB =.∴O 半径的长为92.【点睛】本题主要考查了切线的定义,直径所对的圆周角等于90︒,同弧所对的圆周角相等,解直角三角形的相关计算,等角对等边等知识,掌握这些性质是解题的关键.26. 【答案】(1)1t =(2)2t ≤或7t ≥【分析】本题主要考查了二次函数的图象和性质等知识,(1)将22x =,2y c =代入解析式,得出2b a =-即可得解;(2)分①当点N 在对称轴上或对称轴右侧时,②当点N 在对称轴上或对称轴左侧时两种情况讨论组成不等式组即可得解;解题的关键是理解题意,灵活运用所学知识解决问题.【小问1详解】22x =,2y c =,42a b c c ∴++=,2b a ∴=-,12bt a ∴=-=,【小问2详解】2(0)y ax bx c a =++<,∴抛物线开口向下,抛物线的对称轴为x t =,112t x t +<<+,∴点M 在对称轴的右侧,①当点N 在对称轴上或对称轴右侧时,抛物线开口向下,∴在对称轴右侧,y 随x 的增大而减小.由12y y >,∴12x x <,∴4,24t t ≤⎧⎨+≤⎩,解得42t t ≤⎧⎨≤⎩,∴2t ≤,②当点N 在对称轴上或对称轴左侧时,设抛物线上的点()22,N x y 关于x t =的对称点为()2,N d y ',2t x d t ∴-=-,解得22d t x =-,∴()222,N t x y '-,245x <<,∴225224t t x t -<-<-,在对称轴右侧,y 随x 的增大而减小,由12y y >,∴122x t x <-,∴5225t t t ≥⎧⎨+≤-⎩,解得57t t ≥⎧⎨≥⎩,∴7t ≥,综上所述,t 的取值范围是2t ≤或7t ≥.27. 【答案】(1)补全图形见解析(2)45α︒-(3)BC BE =+;证明见解析【分析】本题主要考查旋转的性质,全等三角形的性质与判定,三角形外角的性质,勾股定理等:(1)根据题目叙述作图即可;(2)由三角形外角性质得45CDB A ACD α∠=∠+∠=︒+,根据90CDE ∠=︒可得结论; (3)过点D 作DM AB ⊥,交AC 于点F ,交BC 的延长线于点M .证明DCM DEB △≌△,得出CM BE =,再证明CF CM =,CF BE =,在Rt FAD △中,由勾股定理得出AF =,得出AC FC =+,由CF BE =,BC AC =可得出结论【小问1详解】补全图形如下:【小问2详解】解: AC BC =,90ACB ∠=︒,∴45A ABC ∠=∠=︒.∴45CDB A ACD α∠=∠+∠=︒+.90CDE ∠=︒,∴45EDB CDE CDB α∠=∠-∠=︒-.【小问3详解】解:用等式表示线段BE ,BC ,AD 之间的数量关系是BC BE =+.证明:过点D 作DM AB ⊥,交AC 于点F ,交BC 的延长线于点M .90MDB CDE ∠=∠=︒,∴CDM EDB ∠=∠.45MBD ∠=︒,∴45M MBD ∠=∠=︒.∴DM DB =.又 DC DE =,∴DCM DEB △≌△.∴CM BE =.45M ∠=︒,90ACB ∠=︒,∴45CFM M ∠=∠=︒.∴CF CM =.∴CF BE =.在Rt FAD △中,45A ∠=︒,∴45AFD A ∠=∠=︒,∴,AD FD =AF ∴==.AC AF FC =+ ,AC FC ∴=+.CF BE = ,BC AC =,BC BE ∴=+.28. 【答案】(1)①2P ,3P ;②b =(232t <≤或32t -≤<【分析】(1)①设射线PM 与T e 相切于点M ,连接TM ,根据题目中的定义得出1PT <≤,分别求出四个点与()0,0T 间的距离,然后进行判断即可;②根据直线12y x b =+上有且只有一个T e 的“伴随点”,得出直线12y x b =+与以()0,0T为半径的圆相切,设直线12y x b =+与x 轴,y 轴分别交于点A 、B ,与以()0,0T 为半径的圆相切于点C ,连接TC ,求出BT ===,得出b =,即可求出结果;(2)分两种情况进行讨论:当0t >时,当0t <时,分别画出图形,列出不等式组,解不等式组即可.【小问1详解】解:①如图1,设射线PM 与T e 相切于点M ,连接TM ,∴TM PM ⊥,当45P ∠=︒时,PTM △为等腰直角三角形,∴1PM TM ==,PT ===,∴当点P 在T e 外,45P ≥︒∠时,1PT <≤,当0=t 时,点()0,0T ,∵11PT =,2PT =,3PT ==4PT ==>∴在1(1,0)P ,2P ,3(1,1)P -,4(1,2)P -中,T e 的“伴随点”是2P ,3P ;故答案为:2P ,3P②∵当点P 在T e 外,45P ≥︒∠时,1PT <≤∴点P 在以T 为半径的圆上或圆内且在以1为半径的圆外,如图2:∵直线12y x b =+上有且只有一个T e 的“伴随点”,∴直线12y x b =+与以()0,0T 为圆心,为半径的圆相切,∴0b ≠,设直线12y x b =+与x 轴,y 轴分别交于点A 、B ,与以()0,0T 为半径的圆相切于点C ,连接TC ,∴TC AB ⊥,令0x =,y b =,令0y =,2x b =-,∴()2,0A b -,()0,B b ,∴2AT b =-,BT b =,在Rt ATB △中,1tan 122bBTAT b ∠===-,1290∠+∠=︒,∵TC AB ⊥,∴2390∠+∠=︒,∴13∠=∠,∴1312tan tan ==∠∠,在Rt TCB 中132tan BC CT ===∠,∴BC =∴BT ===,∴b =∴b =;【小问2详解】解:∵正方形EFGH 的对角线的交点(0,)M t ,点11,22E t ⎛⎫-+ ⎪⎝⎭,∴点11,22G t ⎛⎫- ⎪⎝⎭,11,22F t ⎛⎫+ ⎪⎝⎭,11,22H t ⎛⎫-- ⎪⎝⎭,当0t >时,如图所示:此时正方形EFGH 上的点到圆心T 的最大距离为ET ,最小距离为GT ,∵正方形上存在T e 的“伴随点”,且点P 在以T为圆心,以为半径的圆上或圆内且在以1为半径的圆外,∴1ET >,GT ≤,∵12ET t ⎫==+⎪⎭,12GT ==-,∴11212t ⎫+>⎪⎭-≤,32t <≤;当0t <时,如图所示:此时正方形EFGH 上的点到圆心T 的最大距离为GT ,最小距离为ET ,∵正方形上存在T e 的“伴随点”,且点P 在以T为圆心,以为半径的圆上或圆内且在以1为半径的圆外,∴ET ≤,1GT >,∵12ET ==+,12GT t ⎫==-⎪⎭,∴12112t +≤⎫->⎪⎭,解得:32t -≤<;综上分析可知:t 32t <≤或32t -≤<.【点睛】本题主要考查了切线的性质,解直角三角形,勾股定理,两点间距离公式,等腰直角三角形的性质,解不等式组,解题的关键是数形结合,注意进行分类讨论.。
2024届上海市金山区初三一模数学试卷(含答案)

2024届上海市金山区初三一模数学试卷(满分 150 分,考试时间 100 分钟)(2024.1)考生注意:1.本试卷含三个大题,共25题;2.务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)1.把抛物线22y x =向左平移1个单位后得到的新抛物线的表达式是(▲)(A )221y x =-;(B )221y x =+;(C )()221y x =-;(D )()221y x =+.2.已知点E 是平行四边形ABCD 的边AD 上一点,联结CE 和BD 相交于点F ,如果AE ∶ED =1∶2,那么DF ∶FB 为(▲)(A )1∶2;(B )1∶3;(C )2∶3;(D )2∶5.3.在直角坐标平面的第一象限内有一点A (a ,b ),如果射线OA 与x 轴正半轴的夹角为α,那么下列各式正确的是(▲)(A )b=a ·tan α;(B )b=a ·cot α;(C )b=a ·sin α;(D )b=a ·cos α.4.抛物线2y ax bx c =++的图像如图所示,下列判断中不正确的是(▲)(A )a <0;(B )b <0;(C )c >0;(D )a +b +c <0.5.将一张矩形纸片沿较长边的中点对折,如果得到的两个矩形都和原来的矩形相似,那么原来矩形较长边和较短边的比是(▲)(A )2∶1;(B1;(C )3∶1;(D∶1.6.如图在4×1的方格中,每一个小正方形的顶点叫做格点,以其中三个格点为顶点的三角形称为格点三角形,△ABC 就是一个格点三角形,现从△ABC 的三个顶点中选取两个格点,再从余下的格点中选取一个格点联结成格点三角形,其中与△ABC 相似的有(▲)(A )1个;(B )2个;(C )3个;(D )4个.二、填空题:(本大题共12题,每题4分,满分48分)7.如果053a b b =≠(),那么a b b-=▲.8.化简:2(3)6a b b -+-=▲.9.已知两个相似三角形的相似比为2︰3,那么这两个三角形的周长比为▲.10.点P 是线段AB 的黄金分割点(AP >BP ),AB =2,那么线段AP 的长是▲.yxO 1(第4题图)ABC(第6题图)11.抛物线2233y x =-的顶点坐标是▲.12.如果点A (2,a )、B (3,b )在二次函数23y x x =-的图像上,那么a ▲b (填“>”“<”或“=”).13.如果α是直角三角形的一个锐角,sin α=45,那么tan α=▲.14.如图,已知D 、E 、F 分别是△ABC 的边AB 、AC 、BC 上的点,DE ∥BC ,EF ∥AB ,△ADE 、△EFC 的面积分别为1、4,四边形BFED 的面积为▲.15.如图,在山坡上种树,要求株距(相邻两树间的水平距离)是4米,斜坡的坡度i =1∶2,那么相邻两树间的坡面距离为▲米.16.如图,为了绕开岛礁区,一艘船从A 处向北偏东60°的方向行驶8海里到B 处,再从B 处向南偏东45°方向行驶到发点A 正东方向上的C 处,此时这艘船距离出发点A 处▲海里.17.把矩形ABCD 绕点C 按顺时针旋转90°得到矩形A ´B ´CD ´,其中点A 的对应点A ´在BD 的延长线上,如果AB=1,那么BC=▲.18.在△ABC 中,AC=6,P 是AB 边上的一点,Q 为AC 边上一点,直线PQ 把△ABC 分成面积相等的两部分,且△APQ 和△ABC 相似,如果这样的直线PQ 有两条,那么边AB 长度的取值范围是▲.三、解答题:(本大题共7题,满分78分)19.(本题满分10分)计算:2sin 451cot 60cos30tan 45︒-+︒⋅︒︒.20.(本题满分10分)某学校有一喷水池,如果以喷水口(点A )所在的铅垂线为y 轴,相应的地面水平线为x 轴,1米为单位长度建立直角坐标系xOy,喷出的抛物线形水柱在最高处(点P )距离y 轴1米,水柱落地处(点B )距离y 轴4米,喷水口距离地面为2米,求抛物线形水柱的最高处距离地面的高度.1y xO2B4P1A A BC DEF(第14题图)(第15题图)(第16题图)21.(本题共2小题,第(1)小题6分,第(2)小题4分,满分10分)已知:如图,AM 是△ABC 的中线,点G 是重心,点D 、E 分别在边AB 和BC 上,四边形BEGD 是平行四边形.(1)求证DE ∥AC ;(2)设BA a = ,BC b = ,用向量a 、b表示DE =22.(本题满分10分)随着人民生活水平的日益提高,许多农村的房屋普遍进行了改造,小明家改造时在门前安装了一个遮阳棚,如图,在侧面示意图中,遮阳篷AB 长为4米,与墙面AD 的夹角∠BAD=75.5°,靠墙端A 离地高AD 为3米,当太阳光线BC 与地面DE 的夹角为45°时,求阴影CD 的长.(结果精确到0.1米;参考数据:sin75.5°≈0.97,cos75.5°≈0.25,tan75.5°≈3.87)23.(本题共2小题,每小题6分,满分12分)已知:如图,在四边形ABCD 中,对角线AC 和BD 相交于点O ,∠BAC =∠BDC .(1)求证:△AOD ∽△BOC ;(2)过点A 作AE ∥CD ,AE 交BD 与点E ,求证:AB AD AE BC ⋅=⋅.ABCDOABC DE24.(本题共3小题,每小题4分,满分12分)已知:在平面直角坐标系xOy 中,抛物线2y ax bx c =++经过点A (-1,0)、B (3,0)、C (0,-3).(1)求抛物线的表达式和顶点P 的坐标;(2)点D 在抛物线对称轴上,∠PAD=90°,求点D 的坐标;(3)抛物线的对称轴和x 轴相交于点M ,把抛物线平移,得到新抛物线的顶点为点Q ,QB=QM ,QO 的延长线交原抛物线为E ,QO=OE ,求新抛物线的表达式.25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)已知:如图,在△ABC 中,AB=AC ,∠CAD=∠ABC ,DC ⊥AC ,AD 与边BC 相交于点P .(1)求证:212AB AD BC =⋅;(2)如果sin ∠ABC=45,求BP ∶PC 的值;(3)如果△BCD 是直角三角形,求∠ABC 的正切值.O11yxABCDP参考答案一、选择题(本大题6 小题,每小题4 分,满分24 分)1.D ;2.C ;3.A ;4.D ;5.B ;6.C.二、填空题:(本大题共12题,每题4分,满分48分)7.23;8.2a - ;9.2∶3;101-;11.(0,-3);12.<;13.43;14.4;15.16.4;17.152;18.62623≠≤≤AB AB 且.三、解答题:(本大题共7题,满分78分)19.解:原式=22121⎛⎫- ⎪⎝⎭,-----------------------------------------------------------(8分)=0.----------------------------------------------------------------------------------------(2分)20.解:设抛物线的解析式为()20y ax bx c a =++≠-------------------------------------(1分)由题意得,抛物线经过A (0,2)、B (4,0),顶点P 的横坐标为1,∴2164012c a b c ba ⎛=++= -=⎝-----------------------------------------------------------------------------(3分)解得:11,,242a b c =-==,.-------------------------------------------------------------(2分)∴抛物线的解析式是211242y x x =-++,顶点P 坐标为(1,2.25).---------(2分)∴抛物线形水柱的最高处距离地面的高度是2.25米.-----------------------------------(2分)21.(1)证明:∵AM 是△ABC 的中线,点G 是重心,∴AG=2GM ,---------------------(1分)∵四边形BEGD 是平行四边形,∴DG ∥BE ,EG ∥BD ,∴13BD MG BA MA ==,23BE AG BM MA ==-------------------------------------------------------(2分)∵BM=MC ,∴13BE BC =--------------------------------------------------------------------------(1分)∴BE BDBC BA=--------------------------------------------------------------------------------------(1分)∴DE ∥AC ------------------------------------------------------------------------------------------(1分)(2)1133DE b a =------------------------------------------------------------------------------------(4分)22.解:作BM ⊥ED ,BN ⊥AD ,垂足分别为M 、N ,-----------------------------------------(1分)在△ABN 中,∠ANB =90°,∴AN=AB ·cos ∠BAD =4×0.25=1,-----------------------------------------------------------(2分)BN=AB ·sin ∠BAD =4×0.97=3.88,--------------------------------------------------------(2分)∴ND=2,-------------------------------------------------------------------------------------------(1分)在四边形BMDN 中,∠BMD=∠MDA=∠DNB=90°,∴在四边形BMDN 是矩形,∴BM=ND =2,BN=MD=3.88,---------------------------(1分)在△ABN 中,∠ANB =90°,∠BCM =45°,∴BM=MC=2,------------------------------------------------------------------------------------(1分)∴CD=MD -MC=1.88≈1.9(米).-------------------------------------------------------------(1分)答:阴影CD 的长是1.9米.-------------------------------------------------------------------(1分)23.证明:(1)∵∠BAC =∠BDC ,∠AOB =∠DOC ,∴△AOB ∽△DOC ,-----------(2分)∴AO DO BO CO=,-----------------------------------------------------------------------------------(1分)∵∠AOD =∠BOC ,------------------------------------------------------------------------------(1分)∴△AOD ∽△BOC .------------------------------------------------------------------------------(2分)(2)∵△AOB ∽△DOC ,∠BAO =∠CDO ,∵AE ∥CD ,∴∠AED =∠CDO ,-------------------------------------------------------------(1分)∴∠AED =∠BAC ,--------------------------------------------------------------------------------(1分)∵△AOD ∽△BOC ,∴∠ADE =∠BCA ,-----------------------------------------------------(1分)∴△AED ∽△BAC ,------------------------------------------------------------------------------(1分)∴AE AD BA BC=,∴AB AD AE BC ⋅=⋅.--------------------------------------------------------(2分)24.解:(1)由题意得:09303a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得:a =1,b =1,c =4,∴抛物线的表达式为223y x x =--.-------------------------(2分)∵()222314y x x x =--=--,∴顶点P 的坐标是(1,-4).----------------------(2分)(2)抛物线的对称轴为直线1=x ,--------------------------------------------------------------(1分)设点D 的坐标为(1,m ),∵∠PAD=90°,∴222PA AD PD +=,∴222+=,-----------(1分)解得,1m =,点D 的坐标为(1,1)-----------------------------------------------------(2分)(3)由题意,点M 坐标是(1,0),作MH ⊥x 轴,垂足为点H ,∵QB=QM ,∴MH=HB ,∴点H 的坐标为(2,0),点Q 的横坐标为2,---------(1分)设点Q 的坐标是(2,t ),∵QO=OE ,∴点Q 和点E 关于原点O 对称,∴点E 的坐标为(-2,-t ),--------(1分)∴()()22223t --⨯--=-,解得5t =-,点Q 的坐标是(2,-5),-------------------(1分)∴新抛物线的表达式是()225y x =--,即241y x x =--.-------------------------------(1分)25.(1)证明:∵∠CAD=∠ACB ,∠ACP=∠BCA ,∴△ACP ∽△BCA ,∴AC CP BC AC =,∴2AC CP BC =⋅.----------------------------------------------------------------(1分)∵AB=AC ,∴∠ABC=∠ACB ,∵∠CAD=∠ABC ,∴∠CAD=∠ACB ,∴P A=PC ,--------------------------------------(1分)∵DC ⊥AC ,∴∠ACD=90°,∴∠CAD+∠ADC=90°,∠ACB+∠PCD=90°,∴∠ADC=∠PCD ,∴PD=PC ,∴12AP PD PC AD ===,-------------------------------(1分)∴212AB AD BC =⋅-------------------------------------------------------------------------------(1分)(2)作AH ⊥BC ,垂足为点H ,在Rt △ABH 中,∠AHB=90°,sin ∠ABC 45AH AB ==,设AH=4k ,AB=5k ,则BH=3k .---------------------------------------------------------------(1分)∵AB=AC ,∴BH=HC=3k ,∴BC=6k ,∵2AB CP BC =⋅,∴256CP k =,-------------------------------------------------------------(1分)∴116BP k =,∴BP ∶PC=1125.-----------------------------------------------------------------(2分)(3)显然∠BCD ≠90°,如果∠CBD =90°,∵∠AHB =90°,∴AH ∥BD ,∴PH AP BP PD=,∵AP=PD ,∴PH=BP ,设PH=BP=m ,∴BH=CH=2m ,CP=3m ,BC=4m ,----------------------------------------------------------(1分)∵2AB CP BC =⋅,∴AB =,-----------------------------------------------------------(1分)在Rt △ABH 中,∠AHB=90°,∴AH =,∴tan ∠ABC AHBH==,即∠ABC .-------------------------------------(1分)如果∠CDB =90°,∵∠ACD =90°,∴AC ∥BD ,∴BP PD CP AP=,∵AP=PD ,∴BP=PC ,-------------------------------------------------------(1分)∵AB=AC ,∴四边形ABDC 是正方形,----------------------------------------------------(1分)∴∠ABC=45°,∠ABC 的正切值为1.---------------------------------------------------------(1分)综上所述,如果△BCD 是直角三角形,∠ABC 或1.。
2024年浙江省宁波市镇海区九年级中考一模数学试题(解析版)

镇海区2024年初三模拟考试试卷数学 学科考生须知:1.全卷共三个大题,24个小题.满分为120分,考试时间为120分钟.2.请将学校、姓名、班级填写在答题卡的规定位置上.3.请在答题卡的规定区域作答,在试卷上作答或超出答题卡的规定区域作答无效.试题卷Ⅰ一、选择题(每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求)1. 在实数,中,最小的数是( )A. B. C. D. 【答案】D【解析】【分析】本题考查了实数的大小比较,根据负数小于0,0小于正数,即可求解.【详解】解:∴最小,故选:D .2. 据统计,2024年春节期间,国内旅游出行474000000人次,其中数474000000用科学记数法表示为( )A. B. C. D. 【答案】C【解析】【分析】此题考查科学记数法表示较大的数的方法.科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.【详解】解:数474000000用科学记数法表示为.故选:C .3. 下列计算正确的是( )102-102-201-<<<2-74.7410⨯747.410⨯84.7410⨯90.47410⨯10n a ⨯1||10a ≤<n n a n 84.7410⨯A. B. C. D. 【答案】C【解析】【分析】本题考查整式的运算.利用合并同类项法则,同底数幂乘法法则,幂的乘方法则,平方差公式逐项判断即可.【详解】解:与不是同类项,无法合并,则选项A 不符合题意;,则选项B 不符合题意;,则选项C 符合题意;,则选项D 不符合题意;故选:C .4. 一城市准备选购一千株高度大约为2m 的某种风景树来进行街道绿化, 有四个苗圃生产基地投标(单株树的价格都一样). 采购小组从四个苗圃中都任意抽查了20株树苗的高度,得到的数据如下:树苗平均高度(单位:m )标准差甲苗圃1.8 0.2乙苗圃1.8 0.6丙苗圃2.0 0.6丁苗圃2.0 0.2请你帮采购小组出谋划策,应选购( )A. 甲苗圃的树苗B. 乙苗圃的树苗;C. 丙苗圃的树苗D. 丁苗圃的树苗【答案】D【解析】【分析】根据标准差和方差可以反映数据的波动大小,选出合适苗圃的树苗;再比较它们的高度,进而确32a a a-=326a a a ⋅=()236a a =()()2212121a a a +-=-3a 2a 3256a a a a ⋅=≠()236a a =()()2221214121a a a a +-=-≠-定选购哪家的树苗.【详解】由于标准差和方差可以反映数据的波动大小,所以甲苗圃与丁苗圃比较合适;又因为丁苗圃树苗平均高度大于甲苗圃,所以应选丁苗圃的树苗.故选D .【点睛】考查了标准差,标准差也均称方差,方差是反映一组数据波动大小的特征数,方差越大,数据的波动性越大;方差越小,稳定性越好.5. 若点是第二象限的点,则a 的取值范围是( )A. B. C. D. 或【答案】A【解析】【分析】本题考查了象限内点的坐标特征,解不等式方程组,掌握第二象限内点的坐标特征是解题关键.根据第二象限内的点横坐标小于0,纵坐标大于0,列不等式组求解即可.【详解】解:点是第二象限的点,,解得:,故选:A .6. 如图是一架人字梯,已知米,AC 与地面BC 的夹角为,则两梯脚之间的距离BC 为( )A. 米B. 米C. 米D. 米【答案】A【解析】(),2G a a -a<02a <02a <<a<02a > (),2G a a -020a a <⎧∴⎨->⎩a<02AB AC ==α4cos α4sin α4tan α4cos α【分析】根据等腰三角形的性质得到,根据余弦的定义即可,得到答案.【详解】过点A 作,如图所示:∵,,∴,∵,∴,∴,故选:A .【点睛】本题考查的是解直角三角形的应用,明确等腰三角形的性质是解题的关键.7. 一次数学课上,老师让大家在一张长12cm ,宽5cm 的矩形纸片内,折出一个菱形;甲同学按照取两组对边中点的方法折出菱形见方案一,乙同学沿矩形的对角线AC 折出,的方法得到菱形见方案二,请你通过计算,比较这两种折法中,菱形面积较大的是( ).A. 甲B. 乙C. 甲乙相等D. 无法判断【答案】B【解析】【分析】方案一中,通过图可知四个小直角三角形全等,用矩形面积减去4个小直角三角形的面积,即可得菱形面积;方案二中,两个小直角三角形全等,设菱形边长为x ,在直角三角形中利用勾股定理可求x ,再利用底高可求菱形面积然后比较两者面积大小.12BD DC BC ==AD BC ⊥AB AC =AD BC ⊥BD DC =DC co ACα=cos 2cos DC AC αα=⋅=24cos BC DC α==(EFGH )CAE DAC ∠=∠ACF ACB ∠=∠(AECF )⨯.【详解】解:方案一中,、F 、G 、H 都是矩形ABCD 的中点,≌≌≌,,,,;方案二中,设,则,,,,≌,在中,,,,由勾股定理得,解得,,,,,,故甲乙.E HAE ∴ HDG △△FCG FBE 11111111551222222222HAE S AE AH AB AD =⋅=⨯⨯=⨯⨯⨯⨯= 4HAE ABCD EFGH S S S =- 矩形菱形1512542=⨯-⨯30=BE x =12CE AE x ==-AF EC = AB CD =AE CF =ABE ∴ CDF Rt ABE 5AB =BE x =12AE x =-222(12)5x x -=+11924x =111195955222448ABE S BE AB =⋅=⨯⨯= 2ABE ABCD EFGH S S S =- 矩形菱形595125248=⨯-⨯6025≈-3530=><故选B .【点睛】本题考查菱形的性质、勾股定理以及矩形的性质.注意掌握数形结合思想与方程思想的应用.8. 甲乙两人练习跑步,如果乙先跑10米,甲跑5秒就可追上乙;如果乙先跑2秒,甲跑4秒就可追上乙.设甲速度为x 米/秒,乙的速度为y 米/秒,则可列出的方程组为( )A. B. C. D. 【答案】B【解析】【分析】根据题意,确定等量关系即甲行驶路程等于乙的两次行驶路程的和,列出方程即可,本题考查了二元一次方程组的应用,熟练掌握方程组的应用是解题的关键.【详解】根据题意,得,故选B .9. 二次函数的图象如图所示.下列结论:①;②;③;④若图象上有两点,且,则.其中正确结论的个数为( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】本题主要考查了二次函数的图象与性质.依据题意,由抛物线开口向下,从而,又抛物线为,故,再结合抛物线与轴交于负半轴,可得,进而可以判断①;又,从而可以判断②;又当时,,又,故,进而可以判断的551046x y y x =+⎧⎨=⎩551046x y x y=+⎧⎨=⎩510546x y x y+=⎧⎨=⎩551046y x y x=+⎧⎨=⎩551046x y x y =+⎧⎨=⎩2(0)y ax bx c a =++≠0abc >40b a +=0b c +>()11,x y ()22,x y 1204x x <<<12y y <a<022b x a=-=40b a =->y 0c <4b a =-1x =0y a b c =++>a<00b c a +>->③;由抛物线的对称轴是直线,从而当时与当时函数值相等,进而可得当,则,故可以判断④.【详解】解:由题意,抛物线开口向下,.又抛物线为..抛物线与轴交于负半轴,.,故①正确.又,,故②正确.由题意,当时,.又,,故③正确.抛物线的对称轴是直线,当时与当时函数值相等.当,则,故④错误.综上,正确的有:①②③.故选:C .10. 如图,点E 、F 分别是正方形的边、上的点,将正方形沿折叠,使得点B 的对应点恰好落在边上,则的周长等于( )A B. C. D. 【答案】A【解析】.2x =0x =4x =1204x x <<<12y y > <0a ∴22b x a=-=40b a ∴=-> y 0c ∴<0abc ∴>4b a =-40b a ∴+=1x =0y a b c =++>a<00b c a ∴+>-> 2x =∴0x =4x =∴1204x x <<<12y y >ABCD AD BC ABCD EF B 'CD DGB '△2AB ABBF+【分析】本题考查正方形的性质,全等三角形的判定与性质,如图,作,连接,,可证,,根据全等三角形的性质可得,,等量代换即可求解.【详解】解:如图,作,连接,,∵四边形是正方形,∴,由折叠可得,∴,∵ ∴,∴,∴,在和中,∴∴,,在和中,BH A B ''⊥BG BB 'BB C BB H ''≌ BHG BAG ≌ HB CB ''=GH AG =BH A B ''⊥BG BB 'ABCD 90ABC C A ∠=∠=∠=︒BF B F '=90FB A ABC ''∠=∠=︒23∠∠=BHG ∠=90FB A ''∠=︒BH FB ∥24∠∠=3=4∠∠BCB 'V BHB ' 9034BHB C BB BB ∠=∠=︒⎧⎪∠==''∠⎨'⎪⎩()AAS BB C BB H ''≌ BC BH =HB CB ''=Rt BAG Rt BHG BG BG BH AB=⎧⎨=⎩∴,∴,∴,故选:A .试题卷Ⅱ二、填空题(每小题4分,共24分)11. 若分式的值为0,则x 的值是______.【答案】2【解析】【分析】根据分式的值为0,即分母不为0,分子为0得到x-2=0,且x+3≠0,求出x 即可.【详解】解:∵分式的值为0,∴x-2=0,且x+3≠0,∴x=2.故答案为:2.【点睛】本题考查了分式的值为0的条件:分式的值为0,要满足分母不为0,分子为0.也考查了解方程和不等式.12. 分解因式:_____.【答案】【解析】【分析】此题主要考查了提取公因式法以及公式法分解因式,首先提取公因式,进而利用平方差公式分解因式即可,正确应用平方差公式是解题关键.【详解】解:,,故答案为:.13. 在平行四边形中,,的平分线交边于点E ,则的长为______.()HL BHG BAG ≌ GH AG =2DGB C DG GH B H B D AD CD AD '''=+++=+= 23x x -+23x x -+24mx m -=()()22m x x +-m ()2244mx m m x -=-()()22m x x =+-()()22m x x +-ABCD 58AB BC ==,B ∠BE AD DE【答案】3【解析】【分析】本题考查平行四边形的性质、等腰三角形的判定和性质.根据平行四边形的性质可得,则,再由角平分线的定义可得,从而求得,则,从而求得结果.【详解】解:∵四边形是平行四边形,∴,∴,∵的平分线交于点E ,∴,∴,∴,∵,∴,故答案为:3.14. 一个圆锥的高为4,母线长为6,则这个圆锥的侧面积是______.【答案】【解析】【分析】本题考查了圆锥的计算.先利用勾股定理计算出这个圆锥的底面圆的半径,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算即可.【详解】解:这个圆锥的底面圆的半径,所以这个圆锥的侧面积.故答案为:.15. 有三面镜子如图放置,其中镜子和相交所成的角,已知入射光线经反射后,反射光线与入射光线平行,若,则镜子和相交所成的角AD BC ∥AEB CBE ∠=∠ABE CBE ∠=∠AEB ABE ∠=∠AE AB =ABCD AD BC ∥AEB CBE ∠=∠B ∠BE AD ABE CBE ∠=∠AEB ABE ∠=∠AE AB =58AB BC ==,853DE AD AE BC AB =-=-=-===1262π=⨯⨯=AB BC 110ABC ∠=︒EF ,,AB BC CD EF AEF α∠=BC CD______.(结果用含的代数式表示)【答案】【解析】【分析】本题考查了入射角和反射角、平行线以及三角形内角和等知识,解题的关键在于正确画出辅助线【详解】根据入射光线画出反射光线,交于点,同理根据入射光线画出反射光线,交于点,根据入射光线画出反射光线,过点作的平行线,使得.入射角等于反射角入射角等于反射角根据入射角等于反射角,可知:的BCD ∠=α90α︒+FE EG BC G EG GH CD H GH HK G EF GP EF HK BEG AEF α∴∠=∠=1802GEF α∴∠=︒-110ABC ∠=︒18011070BGE αα∴∠=︒-︒-=︒- 70HGC BGE α∴∠=∠=︒-()180270402EGH αα∴∠=︒-⨯︒-=︒+GP EF HK180,180GEF EGP PGH GHK ∴∠+∠=︒∠+∠=︒402EGP PGH EGH α∠+∠=∠=︒+ 360GEF EGH GHK ∴∠+∠+∠=︒()()3601802402140GHK αα∴∠=︒-︒--︒+=︒()1180140202GHC KHD ∠=∠=︒-︒=︒18090BCD CGH GHC α∴∠=︒-∠-∠=︒+故答案为:.16. 如图,已知矩形,过点A 作交的延长线于点E ,若,则______.【解析】【分析】利用矩形的性质,证明,,,变形计算,结合勾股定理,解方程,正切函数解答即可.【详解】∵矩形,∴,∴,,∵,∴,∴,,∴,∴,∴,∴,90α︒+ABCD AE AC ⊥CB AED ACB ∠=∠2tan BAE ∠=1-ADF CEF △∽△ADE FEC ∽BAE BCA △△∽ABCD ,,90,AD BC AB CD ABC BCD AD BC ==∠=∠=︒ ADF CEF △∽△ADE CEF ∠=∠AED ACB ∠=∠ADE FEC ∽AD DF EC EF=EF EC AD ED =AD ED EF EC EF-=ED EC EF AD EC =+ ()·ED EC EC AD AD EC ED=+22ED AD AD EC =+根据勾股定理,得,∴,∴,∴,∴,∵,∴,∵,∴,∴,∴,∴,解得,解得(舍去),∵∴,.【点睛】本题考查了矩形的性质,三角形相似的判定和性质,勾股定理,正切函数,直角三角形的性质,解方程,熟练掌握三角形相似的判定和性质,正切函数,勾股定理,解方程是解题的关键.三、解答题(第17-19题每小题6分,第20、21题每小题8分,第22、23题每小题10分,第24题12分,共66分)17. 计算:(1)222ED CD EC =+222CD EC AD AD EC +=+ ()()222·AB EB BC BC BC EB BC ++=++222222AB EB EB BC BC BC EB BC BC +++=++ 2220AB EB EB BC BC ++-= AE AC ⊥90BAE AEB BCA ∠︒-∠=∠=90ABE CBA ∠∠=︒=BAE BCA △△∽AB BE BC AB=2AB BE BC = 2220EB EB BC BC +-= (1EB BC ==-±1,1EB EB BC BC=-=tan BE BAE AB ∠=2222tan 1BE BE BE BAE AB BE BC BC ∠====- 102212024(3)33-+-⨯--(2)先化简,再求值:,其中【答案】(1) (2),2【解析】【分析】本题主要考查了实数的运算,整式的化简求值,对于(1),根据,,,,再根据有理数运算法则计算;对于(2),先根据整式的乘法法则及公式化简,再代入求值即可.【小问1详解】;【小问2详解】原式.当时,原式.18. 某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分10分,成绩均记为整数分),并按测试成绩m (单位:分)分成四类:类,类,类,类,绘制出如图两幅不完整的统计图,请根据图中信息,解答下列问题:(1)本次抽样调查的人数为______,并补全条形统计图:(1)(1)(2)x x x x +-++12x =5312x +020241=2(93)-=2139-=1133-=02212024(3)33-+-⨯--111993=+⨯-213=+53=2212x x x=-++12x =+12x =11222=+⨯=A (10)m =B (79)m ≤≤C (46)m ≤≤D (3)m ≤(2)扇形统计图中A 类所对的圆心角是______°,测试成绩的中位数落在______类;(3)若该校九年级男生有500名,请估计该校九年级男生“引体向上”项目成绩为A 类或B 类的共有多少名?【答案】(1)50人,图见解析(2)72,B (3)估计该校九年级男生“引体向上”项目成绩为类或类的约有320名.【解析】【分析】本题考查条形统计图,扇形统计图,用样本估计总体,中位数;通过统计图之间的联系求出样本容量是解题的关键.(1)由统计图之间的联系求出样本容量,进一步求出组人数,补齐图形;(2)由组的占比求出对应圆心角;根据中位数定义,可知第25,26个数在组,故中位数在组;(3)由样本占比估计总本的人数.【小问1详解】解:本次抽样调查的人数为(人),组人数为(人),补全的条形统计图如图;故答案为:50人;【小问2详解】解:类所对的圆心角是;样本量为50,可知数据从大到小排列,第25,26个数在组,故中位数在类;故答案为:72,;小问3详解】解:类或类的共有(名),答:估计该校九年级男生“引体向上”项目成绩为类或类的共有320名.19. 如图,直线与双曲线相交于点.【A B C A B B 1020%50÷=C 501022315---=A 36020%72︒⨯=︒B B B A B 500(20%44%)320⨯+=A B y kx b =+(0)m y x x=>()()2,6,1A n B(1)求直线及双曲线对应的函数表达式;(2)直接写出关于x 的不等式的解集;(3)求的面积.【答案】(1)直线:,双曲线: (2)(3)8【解析】【分析】本题主要考查了一次函数,反比例函数的交点坐标,将点的坐标代入函数关系式是确定函数关系式的常用方法,理解交点坐标与不等式解集之间的关系是解本题的关键.(1)将代入到反比例函数解析式可得其解析式;先根据反比例函数解析式求得点的坐标,再由,坐标可得直线解析式;(2)根据图象得出不等式的解集即可;(3)设一次函数的图象与坐标轴交于,两点,分别过,两点作轴于,作轴于,根据题意可得,,从而求出,和,进而求出的值.【小问1详解】把代入,得:,∴反比例函数的解析式为;把代入,得:,∴,(0)m kx b x x +>>ABO 142y x =-+6(0)y x x =>26x <<()6,1B ()2,3A A B (0)m kx b x x+>>C D A B AE y ⊥E BF x ⊥F 2,1AE BF ==48OC OD ==,AOC S BOD S COD S △AOB S ()6,1B m y x=6m =6y x=()2,A n 6y x =3n =()2,3A把、代入,得:,解得:,∴一次函数的解析式为;故答案为:;.【小问2详解】由图象可知当时,,∴不等式的解集是,【小问3详解】设一次函数的图象与坐标轴交于,两点,分别过,两点作轴于,作轴于,∵、,∴,∵一次函数的解析式为,当时,,当当时,,解得,,∴点C 的坐标是,点D 的坐标是∴.∴,,()2,3A ()6,1B y kx b =+2361k b k b +=⎧⎨+=⎩124k b ⎧=-⎪⎨⎪=⎩142y x =-+5y x =-+4y x =26x <<(0)m kx b x x+>>(0)m kx b x x+>>26x <<C D A B AE y ⊥E BF x ⊥F ()2,3A ()6,1B 2,1AE BF ==142y x =-+0x =4y =0y =1042x =-+8x =()0,4()8,048OC OD ==,114,422AOC BOD S OC AE S OD BF =⋅==⋅= 1162COD S OC OD =⋅=△∴.20. 如图,已知和均是等边三角形,F 点在上,延长交于点D ,连接.(1)求证:四边形是平行四边形;(2)当点D 在线段上什么位置时,四边形是矩形?请说明理由.【答案】(1)见解析(2)当点D 在中点时,四边形是矩形,见解析【解析】【分析】本题考查了等边三角形的性质,平行四边形的判定与性质,矩形的判定等知识.熟练掌握等边三角形的性质,平行四边形的判定与性质,矩形的判定是解题的关键.(1)由和均是等边三角形,可得,则,进而可证四边形是平行四边形;(2)由,点D 在中点,可得,则,可证四边形是平行四边形,由,可证四边形是矩形.【小问1详解】证明:∵和均是等边三角形,∴,∴,∴四边形是平行四边形;【小问2详解】解:当点D 在中点时,四边形是矩形,理由如下;∵,点D 在中点,∴,∵四边形是平行四边形,∴,∴,∵,16448AOB COD AOC BOD S S S S =--=--= ABC AEF △AC EF BC AD CE ,ABDE BC ADCE BC ADCE ABC AEF △6060BAC AFE ACB FAE ∠=∠=︒∠=∠=︒,AB DE AE BD ∥,∥ABDE AB AC =BC AD BC BD CD ⊥=,AE CD =ADCE AD BC ⊥ADCE ABC AEF △6060BAC AFE ACB FAE ∠=∠=︒∠=∠=︒,AB DE AE BD ∥,∥ABDE BC ADCE AB AC =BC AD BC BD CD ⊥=,ABDE AE BD =AE CD =AE CD ∥∴四边形是平行四边形,∵,∴四边形是矩形.21. 如图的正方形网格中,每个小正方形的边长均为,的各个顶点都在格点上.(1)在边上作一点,使得的面积是,并求出的值;(2)作出边上的高,并求出高的长.(说明:只能使用没有刻度尺的直尺进行作图,并保留画图痕迹)【答案】(1)画图见解析,; (2)见解析,.【解析】【分析】()根据网格特征作即可;()根据网格特征作即可,本题考查了无刻度尺的直尺作图—作垂线,熟练掌握无刻度尺的直尺作图的方法是解题的关键.【小问1详解】如图,由网格的特征可知:,∴,∴,∴面积为,∴即为所求;ADCE AD BC ⊥ADCE 1ABC BC M ABM 83BM CMAC BD BD 12BM CM =165BD =112BM CM =2BD AC ⊥BG CH ∥CHM BGM ∽12BG BM CH CM ==ABM 1118443323ABC S =⨯⨯⨯= ABM【小问2详解】如图,根据网格作垂线的方法即可,∴即为所求,由网格的特征可知:,∴,∴.22. 星期日上午,小明从家里出发步行前往离家的镇海书城参加读书会活动,他以的速度步行了后发现忘带入场券,于是他停下来.打电话给家里的爸爸寻求帮助,爸爸骑着自行车从家里出发,沿着同一路线以的速度行进,同一时刻小明继续按原速步行赶往目的地.爸爸追上小明后载上他以相同的车速前往书城(停车载人时间忽略不计),到达书城后爸爸原速返回家.爸爸和小明离家的路程与小明所用时间的函数关系如图所示.(1)求爸爸在到达镇海书城前,他离开家的路程s 关于t 的函数表达式及a 的值.(2)爸爸出发后多长时间追上小明?此时距离镇海书城还有多远?【答案】(1),(2)爸爸出发3分钟后追上小明,此时距离镇海书城1275米【解析】【分析】本题考查一次函数的应用以及路程、速度、时间之间关系的应用,关键是用待定系数法求出函数解析式.(1)根据爸爸行驶的路程和爸爸的速度,求出爸爸到达书城所用时间,再根据待定系数法求函数解析式,再求出的值;BD 5AC ==1144522ABC S BD =⨯⨯=⨯⨯ 165BD =9:00 2.4km 75m/min 12min 9:15375m/min ()m s ()min t 3755625s t =-27.8a =a(2)设爸爸出发后分钟追上小明,根据两人路程相等列出方程,解方程求出,并求出距离书城的距离.【小问1详解】解:爸爸到达达镇海书城所用时间为,设爸爸在到达镇海书城前,他离开家的路程关于的函数表达式为,把,代入,得:,解得,爸爸在到达镇海书城前,他离开家的路程关于的函数表达式为;爸爸的速度不变,他返回家的时间和到达书城的时间均为,;【小问2详解】设爸爸出发后分钟追上小明,则,解得,此时,,答:爸爸出发后3分钟追上小明,此时距离镇海书城还有1275米.23. 根据以下素材,探索完成任务.设计跳长绳方案素材1:某校组织跳长绳比赛,要求如下:(1)每班需报名跳绳同学9人,摇绳同学2人;(2)跳绳同学需站成一路纵队,原地起跳,如图1.素材2:某班进行赛前训练,发现:(1)当绳子摇至最高处或最低处时,可近似看作两条对称分布的抛物线.已知摇绳同学之间水平距离为,绳子最高点为,摇绳同学的出手高度均为,如图x x 2400 6.4(min)375=s t s kt b =+(15,0)(21.4,2400)s kt b =+15021.42400k b k b +=⎧⎨+=⎩3755625k b =⎧⎨=-⎩∴s t 3755625s t =- ∴ 6.4min 152 6.427.8a ∴=+⨯=x 37575(12)x x =+3x =240037531275(m)-⨯=6m 2m 1m2;(2)9名跳绳同学身高如右表.【答案】任务1:;任务2:当绳子在最高点时,长绳不会触碰到位于最边侧的同学;任务3:方案可行【解析】【分析】本题考查了二次函数的应用,任务1:建立平面直角坐标系,待定系数法求解析式,即可求解;任务2,得出最右侧同学横坐标为代入解析式,结合按照排列方式可知最右(左)侧同学屈膝后身高即可求解;任务3,求得平移后的抛物线解析式,进而将代入,结合题意,即可求解.【详解】解:任务1:以两个摇绳人的中点所在直线与地面的交点为原点,地面所在直线为轴,建立直角坐标系,如图:由已知可得,在抛物线上,且抛物线顶点的坐标为,设抛物线解析式为,∴,解得:,∴抛物线的函数解析式为:任务2:∵抛物线的对称轴为直线,名同学,以轴为对称轴,分布在对称轴两侧,将同学按“中间高,两边低”的方式对称排列,同时保持的间距,则最右边侧的同学的坐标为即,当时,的21129y x =-+()1.8,1.7 1.8x =x ()()3,1,3,1-()0,222y ax =+192a =+19a =-21129y x =-+3x =9y 0.45m ()0.454,1.70⨯()1.8,1.71.8x =211.82 1.649y =-⨯+=按照排列方式可知最右(左)侧同学屈膝后身高:∴当绳子在最高点时,长绳不会触碰到位于最边侧的同学;任务3:∵当绳子摇至最高处或最低处时,可近似看作两条对称分布的抛物线.设开口向上的抛物线解析式为,对称轴为直线,则的顶点坐标为,∵,的开口大小不变,开口方向相反,∴当绳子摇至最低处时,抛物线的解析式为:∵将出手高度降低至.∴抛物线向下平移∴改变方案后的抛物线解析式为将,代入因此,方案可行24. 如图1,已知四边形内接于,且为直径.作交于点E ,交于点F .(1)证明:;(2)若,,求半径r ;(3)如图2,连接并延长交于点G ,交于点H .若,.①求;②连接,设,用含x 的式子表示的长.(直接写出答案)【答案】(1)见解析 (2) (3)①;②191.70 1.615 1.6420⨯=<2y1y =2y ()0,01y 2y 2219y x =-0.85m 10.850.15-=2310.159y x =--1.8x =223110.15 1.80.150.210.2599y x =-=⨯-=<ABCD O BD AF BC ∥CD O AF CD ⊥4cos 5DAF ∠=4AC =BE DF O AF CD =AEB BDC ∠=∠tan BDC ∠OE OE x =GH 52r =1tan 2BDC ∠=GH x =【解析】【分析】(1)根据圆周角定理得出,根据平行线的得出,即可证明结论;(2)证明,得出,根据,得出,根据,求出结果即可;(3)①过点O 作于点P ,于点Q ,证明矩形是正方形,设,,得出,,证明,得出,求出,得出;②连接,证明,得出,即,求出,证明,得出,根据,得出,证明,得出,证明,得出【小问1详解】证明:∵为直径,∴,∵,∴,即.【小问2详解】解:∵,∴,又∵,∴,90BCD ∠=︒90AED BCD ∠=∠=︒AEC DAB ∽ AC AE BD AD =4cos 5AE DAF AD ∠==45AC BD =4AC =OP DC ⊥OQ AF ⊥OPEQ OP a PE ==CE b =2BC a =()22CD PC a b ==+BEC DBC ∽ 2BC CE CD =⋅1b a =1tan 2OP a BDC DP a b ∠===+HF ODP MDE ∽OP DP ME DE ==ME x =AMN CBN ∽ 37AN AC x ==ODP MDE ∽CEB CBD ∠∠=DEG DAN ∽ AN AD EG DE ==EG AN ==ABE HFE ∽ EH AE ==BD 90BCD ∠=︒AF BC ∥90AED BCD ∠=∠=︒AF CD ⊥AF BC ∥EAC ACB ∠=∠ACB ADB Ð=ÐEAC ADB ∠=∠∵,∴,∴,∴,∴,∵,∴,即.【小问3详解】①如图2,过点O 作于点P ,于点Q ,如图所示:∵,∴四边形是矩形,∵,∴,∴矩形是正方形设,,∵,∴,∵,90AEC BAD ∠=∠=︒AEC DAB ∽ AC AE BD AD=4cos 5AE DAF AD ∠==45AC BD =4AC =5BD =52r =OP DC ⊥OQ AF ⊥90OPE PEQ OQE ∠=∠=∠=︒OPEQ AF CD =OP OQ =OPEQ OP a PE ==CE b =OP CD ⊥DP CP =DO OB =∴,,∵,∴,∵,∴,∵,∴,∴,∴,即:,解得:,∴;②如图,连接,由(3)①得,四边形为正方形,2BC a =()22CD PC a b ==+AF BC ∥AEB EBC ∠=∠AEB BDC ∠=∠EBC BDC ∠=∠BCE BCD ∠=∠BEC DBC ∽ BC EC DC BC=2BC CE CD =⋅()()222a b a b =⋅+1b a=1tan 2OP a BDC DP a b ∠===+HF OPEQ∵,∴,由,得,∴,∴,,∵,,∴为等腰直角三角形,∴,,∴,∵,,∴,∴,,解得:,∴,∵,∴,∴,∴,OE x =OP PE QE x ===1tan 2BDC ∠=DP =CP DP ==CE CP EP x =-=CD =AF CD =AF CD ⊥ADE V x AE DE ==EF CE x ==AC ==90OPD DEM ∠=∠=︒ODP MDE ∠=∠ODP MDE ∽OP DP ME DE==ME x =AM AE ME x x x =-==AF BC ∥AMN CBN ∽ 34AN AM NC BC ===37AN AC x ==∵,∴,∵,∴,∵,∴,∵,∴,∵,∴,∵,∴,∴,∴,∴∴,∵,∴,∵,∴,∴∴,∴.【点睛】本题主要考查了相似三角形的判定和性质,勾股定理,圆周角定理,等腰三角形的判定和性质,ODP MDE ∽CEB CBD∠∠= CDCD =CBD CAD ∠=∠CEB DEG ∠=∠DAN DEG ∠=∠ CFCF =EDG CAE ∠=∠AF BC ∥CAE ACB ∠=∠ AB AB =ADN ACB ∠=∠ADN EDG ∠=∠DEG DAN ∽ AN AD EG DE==EG AN x == BFBF =EAB EHF ∠=∠AEB HEF ∠=∠ABE HFE ∽ EH EF AE BE ==EH AE ==GH EH EG x =-=解题的关键是熟练掌握相关的判定和性质,数形结合,作出辅助线.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
密云县初三毕业暨升学一模考试数学试卷考 生须知1.本试卷分为第I 卷、第II 卷,共10页,共九道大题,25个小题,满分120分,考试时间120分钟.2.在试卷密封线内认真填写学校、姓名、班级和学号. 3.考试结束,请将试卷和机读卡一并交回.第I 卷(机读卷 共32分)考生须 知1.第I 卷共2页,共一道大题,8个小题.2. 试卷答案一律填涂在机读答题卡上.一.选择题(本大题共8小题,每小题4分)下列各题均有四个选项,其中只有一个是符合题意的.用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑.1.53-的绝对值是 A .35- B .53- C .53 D .352.下列计算正确的是A .330--=B .02339+=C .331÷-=-D .()1331-⨯-=-3.如图,由几个小正方体组成的立体图形的左视图是4.据测算,我国每天土地沙漠化造成的经济损失平均为150 000 000元,这个数字用科学记数法表示为A .15×107 元B .1.5×108元 C .0.15×109元 D .1.5×107元5.有5张写有数字的卡片(如图1),它们的背面都相同,现将它们背面朝上(如图2),从中翻开任意一张是数字2的概率是A.15B.25C.23D.126.正方形网格中,AOB∠如图放置,则tan∠AOB的值为A.55B.255C.12D.27. 已知甲、乙两组数据的平均数都是5,甲组数据的方差2112S=甲,乙组数据的方差2110S=乙,则以下说法正确的是A.甲组数据比乙组数据的波动大B.乙组数据比甲组数据的波动大C.甲组数据与乙组数据的波动一样大D.甲、乙两组数据的波动大小不能比较8.下列说法正确的有(1)如图(a),可以利用刻度尺和三角板测量圆形工件的直径;(2)如图(b),可以利用直角曲尺检查工件是否为半圆形;(3)如图(c),两次使用丁字尺(CD所在直线垂直平分线段AB)可以找到圆形工件的圆心;(4)如图(d),测倾器零刻度线和铅垂线的夹角,就是从P点看A点时仰角的度数.A.1个B.2个C.3个D.4个(a)(b)(c)(d)ABO考 生 须 知 1.第II 卷共8页,共八道大题,17个小题. 2.答题时字迹要工整,画图要清晰,卷面要整洁.3.除画图可以用铅笔外,答题必须用蓝色或黑色钢笔、圆珠笔.题 号 二 三 四 五 六 七 八 九 总 分 得 分 阅卷人 复查人二.填空题(共4个小题,每小题4分,满分16分)把答案直接填写在题中横线上. 9.函数y =61-x 中的自变量x 的取值范围是 . 10. 如图,AB ∥CD,∠A=48°, ∠C=∠E, 则∠C 的度数为 .11.已知,如图,正比例函数与反比例函数的图象相交 于A 、B 两点,A 点坐标为(2,1),分别以A 、B 为圆心的圆与x 轴相切,则图中两个阴影部分面积 的和为 .12.计算机中常用的十六进制是逢16进1的计数制,采用数字0~~十六进制 0 1 2 3 4 5 6 7 8 9 ABCDEF十进制12345678910 11 12 13 14 15例如,用十六进制表示:E + F = 1D ,则 A ×B = . 三、解答题(共4个小题,满分20分) 13.(本小题满分5分) 14.(本小题满分5分)计算:101(12)42-⎛⎫++-- ⎪⎝⎭. 分解因式:y x y x -+-22 .解: 解:15.(本小题满分5分) 16.(本小题满分5分)解方程:341x x=-. 解不等式组: ⎩⎨⎧-≤-->+2334)1(223x x x x四、解答题(共4个小题,满分18分) 17.(本小题满分4分)如图,阴影部分是由5个小正方形组成的一个直角图形,请用二种方法分别在下图方格内...添涂黑二个小正方形,使它们成为轴对称图形.18.(本小题满分4分) 如图,Rt△ABC 的斜边AB =5,cosA =53. (1) 用尺规作图作线段AC 的垂直平分线l (保留作图痕迹,不要求写作法.证明); (2) 若直线l 与AB 、AC 分别相交于D 、E 两点,求DE 的长.方法一 方法二ACB19.(本小题满分5分)已知,如图,12∠=∠, .求证:AB AC =. (1) 写出证明过程. 证明: (2)20.(本题满分5分)如图,已知正方形ABCD 的边长是2,E 是AB 的中点,延长BC 到点F 使CF =AE . (1)若把ADE △绕点D 旋转一定的角度时,能否与CDF △重合?(2)现把DCF △向左平移,使DC 与AB 重合,得ABH △,AH 交ED 于点G . 求证:AH ED ⊥,并求AG 的长. (1)答:(2)证明:五、解答题(本题满分6分)羽毛球 25% 体操40%21.某学校为了学生的身体健康,每天开展体育活动一小时,开设排球、篮球、羽毛球、体操课.学生可根据自己的爱好任选其中一项,老师根据学生报名情况进行了统计,并绘制了下边尚未完成的扇形统计图和频数分布直方图,请你结合图中的信息,解答下列问题:(1)该校学生报名总人数有多少人?(2)选羽毛球的学生有多少人?选排球和篮球的人数分别占报名总人数的百分之几? (3)将两个统计图补充完整. 解: (1)(2)六、解答题(本题满分6分)22. 已知:二次函数c bx ax y ++=2的图象的一部分如图所示.(1) 试确定c b a 、、的符号; (2) 试求c b a ++的取值范围.七、解答题(本题满分7分)23.如图,点A ,B ,C ,D 是直径为AB 的⊙O 上四个点,C 是劣弧BD 的中点,AC 交BD 于点E , AE =2, EC =1.(1)求证:DEC △∽ADC △;(2)连结DO ,试探究四边形OBCD 是否是菱形?若是,请你给予证明并求出它的面积;若不是,请说明理由.(3)延长AB 到H ,使BH =OB ,求证:CH 是∽O 的切线. (1)证明:(2)解:(3)证明:八、解答题(本题满分7分)24. 如图,已知平面直角坐标系xoy 中,有一矩形纸片OABC ,O 为坐标原点,AB x ∥轴,B (3,3),现将纸片按如图折叠,AD ,DE 为折痕,30OAD ∠=︒.折叠后,点O 落在点1O ,点C 落在点1C ,并且1DO 与1DC 在同一直线上.(1)求折痕AD 所在直线的解析式; (2)求经过三点O ,1C ,C 的抛物线的解析式;(3)若∽P 的半径为r ,圆心P 在直线AD 上,当⊙P 与两坐标轴都相切时,求半径r 的值. 解: (1)(2)(3)九.解答题(本题满分8分)25.已知:如图,ABC是边长为6的等边三角形,点D、E分别在AB、AC上,且==.若点F从点B开始以每秒1个单位长度的速度沿射线BC方向移动,当点F运AD AE2x x秒时,射线FD与过点A且平行于BC的直线交于点G,连结GE交AD于点O,并动(0)延长交BC延长线于点H.(1)求EGA的面积S与点F运动时间x的函数关系;⊥;(2)当时间x为多少秒时,GH AB(3)证明GFH的面积为定值.解:2008年初三年级毕业考试数学试题参考答案及评分标准说明:1. 如果考生的解法和本解法不同,可根据试题的主要内容,参照评分标准相应的评分. 2. 解答题右端所注的分数,表示考生正确做到这一步应得的累加分数. 题 号 1 2 3 4 5 6 7 8 答 案CDABBDBD二、 填空题(本题共4小题,每小题4分,共16分).9.x ≠6 10.240 11.π 12.6E 三、(本题共4小题,满分20分). 13.(本小题满分5分)解:原式124=+- ··················································· 3分(一处计算正确给1分) 1=-.------------------------------------------------------------------------------------------5分 14.(本小题满分5分)解: 原式)()(22y x y x -+-= -----------------------------------------------------------------1分 )())((y x y x y x ++-+=----------------------------------------------------------------3分 )1)((++-=y x y x . --------------------------------------------------------------------5分 15.(本小题满分5分)解:去分母,得344x x =-. ········································································ 2分解得,4x =. ······················································································ 3分 经检验,4x =是原方程的根.-----------------------------------------------------------------4分 ∴ 原方程的根是4x =. ··········································································· 5分 16.(本小题满分5分)解:解不等式① 得x >-4.-------------------------------------------------------------------------2分 解不等式② 得x ≤1.----------------------------------------------------------------------------4分 ∴ 不等式组的解集为:-4<x ≤1.---------------------------------------------------------------5分 四、解答题(共4个小题,满分18分) 17.(本小题满分4分)(此题答案不唯一,只要在方格内添的二个正方形使整个图形是对称图形就给分,每答对一个给2分)18.(本小题满分4分)解:(1)作图正确给 --------------------------------------1分(2)在Rt△ABC 中,cos ACA AB =. AB =5,cosA =53.∴ 355AC =, ∴ 3.AC =∴ 由勾股定理 得 4BC =.--------------------------------------------------------------2分 ∵ DE 垂直平分AC ,∴ DE ∥BC ,AE =CE .∴ AD =BD .----------------------------------------------------------------------------------3分∴114222DE BC ==⨯=.----------------------------------------------------------------4分 19.(本小题满分5分)(1)(BD=DC)B C BAD CAD ∠=∠∠=∠或或. ········································· 2分 仅就“B C ∠=∠”证明,其他条件的证明参照给分) (2)证明:∵12∠=∠,∴18011802-∠=-∠.即 ADB ADC ∠=∠.-----------------------------------------------------------3分 在ACD ABD 和中,,,.B C ADB ADC AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ ACD ABD ≅.-------------------------------------------------------------------4分 ∴AB AC =.----------------------------------------------------------------------------5分 20.(本题满分5分)解:(1)答:把ADE △ADE ∆绕点D 旋转一定的角度时能与CDF △重合.--------------------------------1分 (2)由(1)可知12∠=∠ ,∵2390∠+∠=︒,∴1390∠+∠=︒,即90EDF ∠=︒. ········································· 2分由已知得AH DF ∥,∴90EGH EDF ∠=∠=︒, ∴AH ED ⊥. ··········································· 3分 由已知AE =1,AD =2, ∵2222125ED AE AD =+=+=, ··························································· 4分∴1122AE AD ED AG =,即1112522AG ⨯⨯=⨯⨯,∴255AG =. ················· 5分 (注:本题由三角形相似或解直角三角形同样可求AG .)五、解答题(本题满分6分) 21. 解:(1)设该校报名总人数为x 人,则由两个统计图可得 40%160x =.∴x =16016040040%0.4==(人). ························································ 1分 (2)设选羽毛球的人数为y ,则由两个统计图可得 y =40025%100⨯=(人). ······························ 2分因为选排球的人数是100人,所以10025%400=, ································· 3分 因为选篮球的人数是40人,所以4010%400=, ····································· 4分 即选排球.篮球的人数占报名的总人数分别是25%和10%. (3)如图 ··························································································· 6分六、解答题(本题满分6分) 22. 解:(1)∵ 抛物线的开口方向向上,∴ a >0;----------------------------------------------------1分∵ 抛物线与y 轴的交点在x 轴的下方,∴ c <0; ----------------------------------2分观察图象,可见对称轴在y 轴的右侧,∴ 2ba->0,∴b <0.---------------------3分 (2)∵ 抛物线过点(-1,0)和点(0,-1), ∴ 0,1.a b c c -+=⎧⎨=-⎩--------------------------------------------------------------------------4分∴ 1a b -=.∴ 1a b =+ ①,或 1b a =- ②. 又 由(1)知 a >0; b <0. ∴ 有 1b +>0 ,1a - <0.∴ -1<b <0, 0<a <1.---------------------------------------------------------------------5分∴ -1<a b +<1.又 1c =-, ∴ -2<a b c ++<0.-------------------------------------------------------6分七、解答题(本题满分7分)23.(1)证明:∵C 是劣弧BD 的中点,∴ DAC CDB ∠=∠. 而ACD ∠公共,∴ DEC △∽ADC △. ·························· 1分 (2)证明:由⑴得DC ECAC DC=, ∵ 1.213CE AC AE EC ==+=+=, ∴2313DC AC EC ==⨯= . ∴3DC = .由 已知3BC DC ==,∵AB 是⊙O 的直径,∴90ACB ∠=︒. ∴ ()222223312AB AC CB =+=+=. ∴23AB =.∴ 3OD OB BC DC ====. ∴ 四边形OBCD 是菱形. ········································································· 3分 过C 作CF 垂直AB 于F ,连结OC ,则3OB BC OC ===. ∴ 60OBC ∠=︒. ∴ sin 60CFBC︒=,33sin 6032CF BC =︒=⨯=, ∴ 333322BCD S OB CF =⨯=⨯=菱形O . ··················································· 5分 (3)证明:连结OC 交BD 于G ,∵ 四边形OBCD 是菱形, ∴OC BD ⊥且OG GC =.又 已知OB =BH ,∴ BG CH ∥. ∴90OCH OGB ∠=∠=︒,∴CH 是⊙O 的切线. ···································································· 7分八、解答题(本题满分7分)24. 解: (1)由已知得3,30OA OAD =∠=︒. ∴3tan 30313OD OA =︒=⨯=. ∴()()0310A D ,,,. 设直线AD 的解析式为y kx b =+.则有 3,0.b k b ⎧=⎪⎨+=⎪⎩ 解得:3,3.k b ⎧=-⎪⎨=⎪⎩∴ 折痕AD 所在的直线的解析式是 33y x =-+ . ····································· 2分 (2)过1C 作1C F OC ⊥于点F ,由已知得160ADO ADO ∠=∠=︒, ∴160C DC ∠=︒. 又DC =3-1=2, ∴12DC DC ==.∴在1Rt C DF △中, 111sin 2sin603C F DC C DF =∠=⨯︒=.1112DF DC ==, ∴()12,3C ,而已知()3,0C .设 经过三点O ,C 1,C 的抛物线的解析式是2,(0)y ax bx c a =++≠. 把O ,C 1,C 的坐标代入上式得: 0,423,930.c a b c a b c =⎧⎪++=⎨⎪++=⎩解得 3,33,0.a b c ⎧=-⎪⎪=⎨⎪=⎪⎩∴经过三点O ,C 1,C 的抛物线的解析式是:2333y x x =-+. ························ 5分 (3)设圆心(),P x y ,则依题意知 点P 即为两坐标轴的角平分线与直线AD 的交点.∴有,y=-x,3 3.y=-3 3.y x y x x =⎧⎧⎪⎪⎨⎨=-++⎪⎪⎩⎩或 解得 33333((311x -+=+-3或)或x=或)3. ∴所求⊙P 的半径33333r ((311-+=+-3或)或r=或)3. ···················· 7分九.解答题(本题满分8分)。