高考数学复习题库 (33)

合集下载

2023届新高考数学复习:专项(分段函数零点问题 )经典题提分练习(附答案)

2023届新高考数学复习:专项(分段函数零点问题 )经典题提分练习(附答案)

2023届新高考数学复习:专项(分段函数零点问题)经典题提分练习一、单选题1.(2023ꞏ天津南开ꞏ高三南开中学校考期末)已知函数()22,0log ,0x x f x x x ⎧≤=⎨>⎩,若函数()()g x f x m =+有两个零点,则m 的取值范围是( ) A .[)1,0-B .[)1,-+∞C .(),0∞-D .(],1-∞2.(2023ꞏ全国ꞏ高三专题练习)已知0m >,函数(2)ln(1),1,()πcos 3,π,4x x x m f x x m x -+-<≤⎧⎪=⎨⎛⎫+<≤ ⎪⎪⎝⎭⎩恰有3个零点,则m 的取值范围是( )A .π5π3π,2,12124⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭B .π5π3π,2,12124⎡⎫⎡⎤⎪⎢⎢⎥⎣⎭⎣⎦C .5π3π0,2,124⎛⎫⎡⎫⎪⎪⎢⎝⎭⎣⎭ D .5π3π0,2,124⎛⎫⎡⎤ ⎪⎢⎥⎝⎭⎣⎦3.(2023ꞏ陕西西安ꞏ高三统考期末)已知函数()e ,03,0x x f x x x ⎧≥=⎨-<⎩, 若函数()()()g x f x f x =--,则函数()g x 的零点个数为( )A .1B .3C .4D .54.(2023ꞏ全国ꞏ高三专题练习)已知函数()f x = ()22122,2212,sin x a x ax a x a x a π⎧⎡⎤⎛⎫-+<⎪ ⎪⎢⎥⎝⎭⎨⎣⎦⎪-+++≥⎩,若函数()f x 在[0,)+∞内恰有5个零点,则a 的取值范围是( )A .75,42⎛⎫ ⎪⎝⎭B .7,24⎛⎫ ⎪⎝⎭C .5711,2,424⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭D .75,22,42⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭5.(2023ꞏ全国ꞏ高三专题练习)已知定义在R 上的函数()11,0,1,0,1x x x f x x x ⎧--≥⎪=⎨<⎪-⎩若函数()()11g x f x ax =--+恰有2个零点,则实数a 的取值范围是( ) A .(){}1,10,4⎛⎫-∞-+∞ ⎪⎝⎭B .(){}1,10,14⎛⎫-∞- ⎪⎝⎭C .()1,10,4⎡⎫-∞-⎪⎢⎣⎭D .(){}14,10,14⎡⎫--⎪⎢⎣⎭6.(2023ꞏ全国ꞏ高三专题练习)已知函数()1,0ln ,0x x f x x x x ⎧+<⎪=⎨⎪>⎩,则函数()()22g x f f x ⎡+⎤⎣⎦=+的零点个数为( )A .3B .4C .5D .67.(2023ꞏ四川绵阳ꞏ四川省绵阳南山中学校考一模)已知0a >,函数()=f x 22,43,x x a x ax x a -+≤⎧⎨-+>⎩,若()f x 恰有2个零点,则a 的取值范围是( ) A.[)2,⎫⋃+∞⎪⎪⎝⎭B .()[)0,12,+∞C.[)7,2,28⎫⋃+∞⎪⎪⎝⎭D.7,228⎛⎫⎡⎤⋃ ⎪⎢⎥ ⎪⎣⎦⎝⎭ 8.(2023ꞏ全国ꞏ高三专题练习)已知函数()2ln ,0,1,0x x x f x x x >⎧=⎨-≤⎩若函数()()=-g x f x k 有三个零点,则( ) A .e 1k -<≤ B .11e k -<< C .e 0k -<< D .10e k -<<9.(2023ꞏ广东广州ꞏ高三广州市真光中学校考期末)定义在R 上的奇函数()f x ,当0x ≥时,()[)[)12log (1),0,113,1,x x f x x x ⎧+∈⎪=⎨⎪--∈+∞⎩,则关于x 的函数()()(01)F x f x a a =-<<的所有零点之和为( )A .21a -B .12a -C .21a --D .12a --10.(2023ꞏ全国ꞏ高三专题练习)已知函数()222,12()=log 1,1x x f x x x ⎧+≤⎪⎨⎪->⎩,则函数()()3()22F x f f x f x =--⎡⎤⎣⎦的零点个数是 ( )A .4B .5C .6D .7二、多选题11.(2023ꞏ河南郑州ꞏ高三郑州市第七中学校考期末)已知函数()21,0log ,0kx x f x x x +≤⎧=⎨>⎩,下列是关于函数()1y f f x =+⎡⎤⎣⎦的零点个数的判断,其中正确的是( )A .当0k >时,有3个零点B .当0k <时,有2个零点C .当0k >时,有4个零点D .当0k <时,有1个零点12.(2023ꞏ河南濮阳ꞏ高三濮阳一高校考期中)已知函数()()22,22,2x x f x x x ⎧-≤⎪=⎨->⎪⎩,函数()()2g x b f x =--,其中b ∈R ,若函数()()y f x g x =-恰有2个零点,则b 的值可以是( )A .1B .74C .2D .313.(2023ꞏ江西ꞏ高三校联考阶段练习)已知函数()221,0,2,0,x x f x x x x ⎧->=⎨--≤⎩则以下判断正确的是( )A .若函数()()g x f x m =-有3个零点,则实数m 的取值范围是()0,1B .函数()f x 在(),0∞-上单调递增C .直线1y =与函数()y f x =的图象有两个公共点D .函数()f x 的图象与直线2y x =+有且只有一个公共点14.(2023ꞏ广东佛山ꞏ高三佛山市三水区实验中学校考阶段练习)已知()121,02|log ,0x x f x x x +⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪⎩,令()()g x f x a =-,则下列结论正确的有( )A .若()g x 有1个零点,则0a =B .()0f x >恒成立C .若()g x 有3个零点,则102a <<D .若()g x 有4个零点,则112a ≤< 15.(2023ꞏ黑龙江绥化ꞏ高三校考阶段练习)已知函数()31,0log ,0ax x f x x x +≤⎧=⎨->⎩,若()(())1g x f f x =+,则下说法正确的是( )A .当0a >时,()g x 有4个零点B .当0a >时,()g x 有5个零点C .当a<0时,()g x 有1个零点D .当a<0时,()g x 有2个零点16.(2023ꞏ广东深圳ꞏ高三深圳市南山区华侨城中学校考阶段练习)对于函数sin ,02()1(2),22x x f x f x x π≤≤⎧⎪=⎨->⎪⎩,下列结论中正确的是( )A .任取12,[1,)x x ∈+∞,都有123()()2f x f x -≤ B .11511222222k f f f k +⎛⎫⎛⎫⎛⎫++++=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其中N k ∈;C .()2(2)()k f x f x k k N *=+∈对一切[0,)x ∈+∞恒成立;D .函数()ln(1)y f x x =--有3个零点;17.(2023ꞏ全国ꞏ模拟预测)已知函数lg ,0()1,0x x f x x x ⎧>=⎨+≤⎩,若函数()[2()]g x f f x a =+有7个零点,则实数a 的可能取值是( )A .0B .14-C .13-D .15-18.(2023ꞏ全国ꞏ高三专题练习)若函数f (x )=4,22021()(3),2x m x x m x m x ⎧-<⎨--⎩…恰有两个零点,则正整数m 的取值可能为( )A .1B .2C .15D .16三、填空题19.(2023ꞏ全国ꞏ高三专题练习)知函数()3223,015,1x x m x f x mx x ⎧++≤≤=⎨+>⎩,若函数()f x 有两个不同的零点,则实数m 的取值范围为_____________.20.(2023ꞏ全国ꞏ高三专题练习)已知函数24,()1,x x x af x e x a ⎧-≤=⎨->⎩,若函数()[()]g x f f x =在R 上有三个不同的零点,则实数a 的取值范围是______________.21.(2023ꞏ上海黄浦ꞏ高三上海市向明中学校考开学考试)已知函数()f x 满足,1(1)ln(1),1ax a x f x x x +≤-⎧+=⎨+>-⎩,函数()()()g x f x f x =--恰有5个零点,则实数a 的取值范围为____________.22.(2023ꞏ黑龙江哈尔滨ꞏ高三黑龙江实验中学校考阶段练习)已知函数()f x 定义城为(]0,12,恒有()()44f x f x +=,(]0,4x ∈时()222x f x -=-;若函数()()()2g x f x t f x =+⋅有4个零点,则t 的取值范围为______.23.(2023ꞏ全国ꞏ高三专题练习)已知函数()f x 2e 1,0,0x x ax x a x ⎧-≥=⎨++<⎩,恰有2个零点,则=a __________.24.(2023ꞏ北京ꞏ高三专题练习)已知函数ln ,0()e 1,0x x x f x x >⎧=⎨+≤⎩,且函数()()g x f x m =-恰有两个不同的零点,则实数m 的取值范围是___________.25.(2023ꞏ全国ꞏ高三专题练习)设函数()()3221014680x x f x x x g x x x x x ⎧+>⎪=-+=⎨⎪---≤⎩,,,,,则函数()()()1h x f g x =-的零点为________.26.(2023春ꞏ上海浦东新ꞏ高三上海市川沙中学校考期中)已知函数()y f x =的定义域是[0,)+∞,满足2201()4513,?2834x x f x x x x x x ≤<⎧⎪=-+≤<⎨⎪-+≤<⎩且(4)()f x f x a +=+,若存在实数k ,使函数()()g x f x k =+在区间[0,2021]上恰好有2021个零点,则实数a 的取值范围为____27.(2023ꞏ浙江ꞏ高三专题练习)若函数()()()2210,10k x f x x x kx x ⎧-<⎪=⎨⎪-->⎩恰有4个零点,则实数k 的取值范围是______.28.(2023ꞏ全国ꞏ高三专题练习)若348,122()1,222x x f x x f x ⎧--≤≤⎪⎪=⎨⎛⎫⎪> ⎪⎪⎝⎭⎩ 则()()6g x xf x =-在*1,2,n n N ⎡⎤∈⎣⎦内的所有零点之和为:__________.29.(2023ꞏ全国ꞏ高三专题练习)已知函数1,0()42,0xx x x f x x --⎧+>=⎨-≤⎩,若函数(32)y f x a =--恰有三个不同的零点,则实数a 的取值范围是________30.(2023ꞏ全国ꞏ高三专题练习)已知函数32,0()461,0x e x f x x x x ⎧<=⎨-+≥⎩,则函数2()3[()]2()g x f x f x m =--有5个零点时m 的范围_____________.参考答案一、单选题1.(2023ꞏ天津南开ꞏ高三南开中学校考期末)已知函数()22,0log ,0x x f x x x ⎧≤=⎨>⎩,若函数()()g x f x m =+有两个零点,则m 的取值范围是( ) A .[)1,0- B .[)1,-+∞ C .(),0∞- D .(],1-∞【答案】A【答案解析】()()0()g x f x m f x m =+=⇔=-Q()g x ∴存在两个零点,等价于y m =-与()f x 的图象有两个交点,在同一直角坐标系中绘制两个函数的图象:由图可知,保证两函数图象有两个交点,满足01m <-≤,解得:[)1,0m ∈- 故选:A.2.(2023ꞏ全国ꞏ高三专题练习)已知0m >,函数(2)ln(1),1,()πcos 3,π,4x x x m f x x m x -+-<≤⎧⎪=⎨⎛⎫+<≤ ⎪⎪⎝⎭⎩恰有3个零点,则m 的取值范围是( )A .π5π3π,2,12124⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭B .π5π3π,2,12124⎡⎫⎡⎤⎪⎢⎢⎥⎣⎭⎣⎦C .5π3π0,2,124⎛⎫⎡⎫⎪⎪⎢⎝⎭⎣⎭ D .5π3π0,2,124⎛⎫⎡⎤ ⎪⎢⎥⎝⎭⎣⎦【答案】A【答案解析】设()(2)ln(1)g x x x =-+,()cos 34h x x π⎛⎫+ ⎝=⎪⎭,求导()23ln(1)ln(1)111x g x x x x x -'=++=++-++ 由反比例函数及对数函数性质知()g x '在(]1,,0m m ->上单调递增,且102g ⎛⎫'< ⎪⎝⎭,()10g '>,故()g x '在1,12⎛⎫⎪⎝⎭内必有唯一零点0x ,当()01,x x ∈-时,()0g x '<,()g x 单调递减;当(]0,x x m ∈时,()0g x '>,()g x 单调递增;令()0g x =,解得0x =或2,可作出函数()g x 的图像, 令()0h x =,即3,42x k k Z πππ+=+∈,在(]0,π之间解得12x π=或512π或34π, 作出图像如下图数形结合可得:π5π3π,2,12124⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭ ,故选:A3.(2023ꞏ陕西西安ꞏ高三统考期末)已知函数()e ,03,0x x f x x x ⎧≥=⎨-<⎩, 若函数()()()g x f x f x =--,则函数()g x 的零点个数为( ) A .1B .3C .4D .5【答案】D【答案解析】当0x >时,0x -<,()3f x x -=当0x <时,0x ->,()e xf x --=()()()3e ,00,0e 3,0x x x x g x f x f x x x x -⎧->⎪∴=--==⎨⎪+<⎩,()()()()g x f x f x g x -=--=-,且定义域为R ,关于原点对称,故()g x 为奇函数,所以我们求出0x >时零点个数即可,(0,)3e x g x x x =->,()3e 0x g x '=->,令()3e 0x g x '=->,解得0ln3x <<,故()g x 在()0,ln 3上单调递增,在(ln3,)+∞单调递减,且(ln 3)3ln 330g =->,而()226e 0g =-<,故()g x 在(ln 3,2)有1零点,1311e 03g ⎛⎫=-< ⎪⎝⎭,故()g x 在1(,ln 3)3上有1零点,图像大致如图所示:故()g x 在()0,∞+上有2个零点,又因为其为奇函数,则其在(),0∞-上也有2个零点,且()00g =,故()g x 共5个零点, 故选:D.4.(2023ꞏ全国ꞏ高三专题练习)已知函数()f x = ()22122,2212,sin x a x a x a x a x a π⎧⎡⎤⎛⎫-+<⎪ ⎪⎢⎥⎝⎭⎨⎣⎦⎪-+++≥⎩,若函数()f x 在[0,)+∞内恰有5个零点,则a 的取值范围是( )A .75,42⎛⎫ ⎪⎝⎭B .7,24⎛⎫ ⎪⎝⎭C .5711,2,424⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭D .75,22,42⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭【答案】D【答案解析】当0a ≤时,对任意的0x ≥,()()22212f x x a x a =-+++在[)0,∞+上至多2个零点,不合乎题意,所以,0a >.函数()22212y x a x a =-+++的对称轴为直线12x a =+,()()22214247a a a ∆=+-+=-. 所以,函数()f x 在1,2a a ⎡⎫+⎪⎢⎣⎭上单调递减,在1,2a ⎛⎫++∞ ⎪⎝⎭上单调递增,且()2f a a =-.①当470a ∆=-<时,即当704a <<时,则函数()f x 在[),a +∞上无零点, 所以,函数()12sin 22f x x a π⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦在[)0,a 上有5个零点,当0x a ≤<时,111222a x a -≤-+<,则()11222a x a πππ⎛⎫-≤-+< ⎪⎝⎭,由题意可得()5124a πππ-<-≤-,解得532a ≤<,此时a 不存在;②当Δ0=时,即当74a =时,函数()f x 在7,4⎡⎫+∞⎪⎢⎣⎭上只有一个零点, 当70,4x ⎡⎫∈⎪⎢⎣⎭时,()2cos 2f x x π=-,则7022x ππ≤<,则函数()f x 在70,4⎡⎫⎪⎢⎣⎭上只有3个零点,此时,函数()f x 在[)0,∞+上的零点个数为4,不合乎题意;③当()20Δ470f a a a ⎧=-≥⎨=->⎩时,即当724a <≤时,函数()f x 在[),a +∞上有2个零点,则函数()12sin 22f x x a π⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦在[)0,a 上有3个零点,则()3122a πππ-<-≤-,解得322a ≤<,此时724a <<; ④当()20Δ470f a a a ⎧=-<⎨=->⎩时,即当2a >时,函数()f x 在[),a +∞上有1个零点,则函数()12sin 22f x x a π⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦在[)0,a 上有4个零点,则()4123a πππ-<-≤-,解得522a ≤<,此时,522a <<.综上所述,实数a 的取值范围是75,22,42⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭.故选:D.5.(2023ꞏ全国ꞏ高三专题练习)已知定义在R 上的函数()11,0,1,0,1x x x f x x x ⎧--≥⎪=⎨<⎪-⎩若函数()()11g x f x ax =--+恰有2个零点,则实数a 的取值范围是( ) A .(){}1,10,4⎛⎫-∞-+∞ ⎪⎝⎭B .(){}1,10,14⎛⎫-∞- ⎪⎝⎭C .()1,10,4⎡⎫-∞-⎪⎢⎣⎭D .(){}14,10,14⎡⎫--⎪⎢⎣⎭【答案】B【答案解析】()()11,111,1x x x f x x x ⎧--≤⎪-=⎨->⎪⎩,故()()1,11111,1x x x f x x x ⎧-≤⎪-+=⎨-+>⎪⎩,则函数()()11g x f x ax =--+恰有2个零点等价于()11f x ax -+=有两个不同的解, 故()11,y f x y ax =-+=的图象有两个不同的交点,设()()()()1,01111,011,1x x x g x f x x x x x x ⎧⎪-≤≤⎪=-+=--<⎨⎪⎪-+>⎩又(),y g x y ax ==的图象如图所示,由图象可得两个函数的图象均过原点,若0a =,此时两个函数的图象有两个不同的交点, 当0a ≠时,考虑直线y ax =与()()201g x x x x =-≤≤的图象相切,则由2ax x x =-可得()2100a ∆=--=即1a =, 考虑直线y ax =与()11(1)g x x x=-+≥的图象相切,由11ax x =-+可得210ax x -+=,则140a ∆=-=即14a =.考虑直线y ax =与()2(0)g x x x x =-≤的图象相切,由2ax x x =-可得()2100a ∆=+-=即1a =-, 结合图象可得当114a <<或1a <-时,两个函数的图象有两个不同的交点, 综上,114a <<或1a <-或0a =, 故选:B.6.(2023ꞏ全国ꞏ高三专题练习)已知函数()1,0ln ,0x x f x x x x ⎧+<⎪=⎨⎪>⎩,则函数()()22g x f f x ⎡+⎤⎣⎦=+的零点个数为( ) A .3B .4C .5D .6【答案】B【答案解析】令()2t f x =+,当1x <-时,1()(,2)f x x x =+∈-∞-且递增,此时(,0)t ∈-∞,当10x -<<时,1()(,2)f x x x=+∈-∞-且递减,此时(,0)t ∈-∞,当210e <<x 时,()ln (,2)f x x =∈-∞-且递增,此时(,0)t ∈-∞, 当21e x >时,()ln (2,)f x x =∈-+∞且递增,此时(0,)t ∈+∞, 所以,()g x 的零点等价于()f t 与=2y -交点横坐标t 对应的x 值,如下图示:由图知:()f t 与=2y -有两个交点,横坐标11t =-、201t <<: 当11t =-,即()3f x =-时,在(),1x ∈-∞-、(1,0)-、21(0,)e上各有一个解;当201t <<,即2()1f x -<<-时,在21,e x ∞⎛⎫∈+ ⎪⎝⎭有一个解.综上,()g x 的零点共有4个. 故选:B7.(2023ꞏ四川绵阳ꞏ四川省绵阳南山中学校考一模)已知0a >,函数()=f x 22,43,x x ax ax x a -+≤⎧⎨-+>⎩,若()f x 恰有2个零点,则a 的取值范围是( )A.[)2,⎫⋃+∞⎪⎪⎝⎭B .()[)0,12,+∞C.[)72,8⎫⋃+∞⎪⎪⎝⎭D.7,28⎫⎡⎤⋃⎪⎢⎥⎪⎣⎦⎝⎭ 【答案】A【答案解析】①若2x =是一个零点,则需要2()43()f x x ax x a =-+> 只有一个零点, 即有2a ≥,且此时当x a >时,需要2430()x ax x a -+=>只 有一个实根, 而221612162120a ∆=-≥⨯-> ,解方程根得2x a =±,易得2a 2a <<<2a 即当2a ≥ 时, ()f x 恰有 2个零点,122,2x x a ==. ②若2x =不是函数的零点,则2x a =为函数的 2 个零点,于是22Δ161202a a a a ⎧<⎪=->⎨⎪<⎩ ,解得:1.2a << 综上:[)2,2a ∞⎛⎫∈⋃+ ⎪ ⎪⎝⎭.故选:A.8.(2023ꞏ全国ꞏ高三专题练习)已知函数()2ln ,0,1,0x x x f x x x >⎧=⎨-≤⎩若函数()()=-g x f x k 有三个零点,则( ) A .e 1k -<≤ B .11e k -<< C .e 0k -<< D .10e k -<<【答案】D【答案解析】要使函数()f x k =有三个解,则()y f x =与y k =有三个交点,当0x >时,()ln f x x x =,则()ln 1f x x '=+,可得()f x 在10,e ⎛⎫ ⎪⎝⎭上递减,在1,e ⎛⎫+∞ ⎪⎝⎭递增,∴0x >时,()ln f x x x =有最小值11e e f ⎛⎫=- ⎪⎝⎭,且10e x <<时,ln 0x x <;当0x +→时,()0f x →;当x →+∞时,()f x →+∞; 当0x ≤时,2()1f x x =-+单调递增;∴()f x 图象如下,要使函数()g x 有三个零点,则10ek -<<,故选:D .9.(2023ꞏ广东广州ꞏ高三广州市真光中学校考期末)定义在R 上的奇函数()f x ,当0x ≥时,()[)[)12log (1),0,113,1,x x f x x x ⎧+∈⎪=⎨⎪--∈+∞⎩,则关于x 的函数()()(01)F x f x a a =-<<的所有零点之和为( )A .21a -B .12a -C .21a --D .12a --【答案】B【答案解析】由题设,画出[0,)+∞上()f x 的大致图象,又()f x 为奇函数,可得()f x 的图象如下:()F x 的零点,即为方程()0f x a -=的根,即()f x 图像与直线y a =的交点.由图象知:()f x 与y a =有5个交点:若从左到右交点横坐标分别为12344,,,,x x x x x , 1、12,x x 关于3x =-对称,126x x +=-;2、30x <且满足方程()()()333f x a f x a f x a =⇒-=-⇒-=-即()132log 1x a -+=,解得:312a x =-;3、45,x x 关于3x =轴对称,则456x x +=;1234512∴++++=-a x x x x x 故选:B10.(2023ꞏ全国ꞏ高三专题练习)已知函数()222,12()=log 1,1x x f x x x ⎧+≤⎪⎨⎪->⎩,则函数()()3()22F x f f x f x =--⎡⎤⎣⎦的零点个数是 ( ) A .4B .5C .6D .7【答案】A【答案解析】令(),()0t f x F x ==,则3()202f t t --=, 作出()y f x =的图象和直线32+2y x =,由图象可得有两个交点,设横坐标为12,t t ,∴120,(1,2)t t =∈.当1()f x t =时,有2x =,即有一解;当2()f x t =时,有三个解, ∴综上,()0F x =共有4个解,即有4个零点. 故选:A 二、多选题11.(2023ꞏ河南郑州ꞏ高三郑州市第七中学校考期末)已知函数()21,0log ,0kx x f x x x +≤⎧=⎨>⎩,下列是关于函数()1y f f x =+⎡⎤⎣⎦的零点个数的判断,其中正确的是( )A .当0k >时,有3个零点B .当0k <时,有2个零点C .当0k >时,有4个零点D .当0k <时,有1个零点【答案】CD【答案解析】令()10y f f x =+=⎡⎤⎣⎦,得()1f f x =-⎡⎤⎣⎦,设f (x )=t ,则方程()1f f x =-⎡⎤⎣⎦等价为f (t )=﹣1,①若k >0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有两个根其中t 2<0,0<t 1<1,由f (x )=t 2<0,此时x 有两解, 由f (x )=t 1∈(0,1)知此时x 有两解,此时共有4个解, 即函数y =f [f (x )]+1有4个零点.②若k <0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有一个根t 1,其中0<t 1<1,由f (x )=t 1∈(0,1),此时x 只有1个解,即函数y =f [f (x )]+1有1个零点. 故选:CD .12.(2023ꞏ河南濮阳ꞏ高三濮阳一高校考期中)已知函数()()22,22,2x x f x x x ⎧-≤⎪=⎨->⎪⎩,函数()()2g x b f x =--,其中b ∈R ,若函数()()y f x g x =-恰有2个零点,则b 的值可以是( ) A .1B .74C .2D .3【答案】BD【答案解析】∵()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩,∴()222,02,0x x f x x x ⎧--≥-=⎨<⎩ , ∵函数()()y f x g x =-恰好有两个零点,∴方程()()0f x g x -=有两个解,即()(2)0f x f x b +--=有两个解, 即函数()(2)y f x f x =+-与y b =的图象有两个交点,()()222,022,0258,2x x x y f x f x x x x x ⎧++<⎪=+-=≤≤⎨⎪-+>⎩ ,作函数()(2)y f x f x =+-与y b =的图象如下, 当12x =-和52x =,即115572222224f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-++=+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ,结合图象可知,当724b <≤时,有不止两个交点, 当2b >或74b =时,满足函数()(2)y f x f x =+-与y b =的图象有两个交点, 当74b <时,无交点, 综上,2b >或74b =时满足题意,故选:BD.13.(2023ꞏ江西ꞏ高三校联考阶段练习)已知函数()221,0,2,0,x x f x x x x ⎧->=⎨--≤⎩则以下判断正确的是( )A .若函数()()g x f x m =-有3个零点,则实数m 的取值范围是()0,1B .函数()f x 在(),0∞-上单调递增C .直线1y =与函数()y f x =的图象有两个公共点D .函数()f x 的图象与直线2y x =+有且只有一个公共点【答案解析】当0,x ≤()22211y x x x =--=++-,故()221,02,0x x f x x x x ⎧->=⎨--≤⎩的图像如图所示,对AC ,函数()()g x f x m =-有3个零点,相当于()y f x =与y m =有3个交点,故m 的取值范围是()0,1,直线1y =与函数()y f x =的图象有两个公共点,AC 对; 对B ,函数()f x 在(),0∞-上先增后减,B 错;对D ,如图所示,联立222y x y x x =+⎧⎨=--⎩可得解得20x y =-⎧⎨=⎩或11x y =-⎧⎨=⎩,由图右侧一定有一个交点,故函数()f x 的图象与直线2y x =+不止一个公共点,D 错.14.(2023ꞏ广东佛山ꞏ高三佛山市三水区实验中学校考阶段练习)已知()121,02|log ,0x x f x x x +⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪⎩,令()()g x f x a =-,则下列结论正确的有( )A .若()g x 有1个零点,则0a =B .()0f x >恒成立C .若()g x 有3个零点,则102a <<D .若()g x 有4个零点,则112a ≤< 【答案】AD【答案解析】()121,02|log ,0x x f x x x +⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪⎩,作出()f x 的图象,如图所示:因为()()g x f x a =-,所以()g x 的零点个数即为函数()y f x =与y a =的图象的交点的个数,对于A :若()g x 有1个零点,则函数()y f x =与y a =的图象仅有一个公共点,由图象得0a =,故A 正确;对于B :由图象得()0f x ≥恒成立,故B 错误;对于C :若()g x 有3个零点,则函数()y f x =与y a =的图象有三个公共点,由图象得1a =或者102a <<,故C 错误;对于D :若()g x 有4个零点,则函数()y f x =与y a =的图象有四个公共点,由图象得112a ≤<,故D 正确. 故选:AD .15.(2023ꞏ黑龙江绥化ꞏ高三校考阶段练习)已知函数()31,0log ,0ax x f x x x +≤⎧=⎨->⎩,若()(())1g x f f x =+,则下说法正确的是( )A .当0a >时,()g x 有4个零点B .当0a >时,()g x 有5个零点C .当a<0时,()g x 有1个零点D .当a<0时,()g x 有2个零点【答案】AC【答案解析】当0a >时,令()f x t =,由()10f t +=,解得13t =或3t =或2t a=-. 作出函数()f x 的图象,如图1所示,易得()f x t =有4个不同的实数解, 即当0a >时,()g x 有4个零点.故A 正确,B 错误; 当a<0时,令()f x t =,所以()10f t +=,解得13t =或3t =或2t a=-(舍) 作出函数()f x 的图象,如图2所示,易得()f x t =有1个实数解, 即当a<0时,()g x 有1个零点.故C 正确,D 错误. 故选:AC.16.(2023ꞏ广东深圳ꞏ高三深圳市南山区华侨城中学校考阶段练习)对于函数sin ,02()1(2),22x x f x f x x π≤≤⎧⎪=⎨->⎪⎩,下列结论中正确的是( )A .任取12,[1,)x x ∈+∞,都有123()()2f x f x -≤B .11511222222k f f f k +⎛⎫⎛⎫⎛⎫++++=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其中N k ∈;C .()2(2)()k f x f x k k N *=+∈对一切[0,)x ∈+∞恒成立;D .函数()ln(1)y f x x =--有3个零点;【答案】ACD【答案解析】作出函数sin ,02()1(2),22x x f x f x x π≤≤⎧⎪=⎨->⎪⎩的图象如图所示.所以max min ()1,()1f x f x ==-.对于A :任取12,[1,)x x ∈+∞,都有()12max min 13()()()()122f x f x f x f x -≤-=--=.故A 正确; 对于B :因为151111,,222222kf f f k ⎛⎫⎛⎫⎛⎫⎛⎫==+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以111?121511*********k k f f f k +⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎛⎫⎛⎫⎛⎫⎝⎭++++==- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭- .故B 错误; 对于C :由1()(2)2f x f x =-,得到1(2)()2kf x k f x ⎛⎫+= ⎪⎝⎭,即()2(2)k f x f x k =+.故C 正确;对于D :函数()ln(1)y f x x =--的定义域为()1,+∞.作出()y f x =和ln(1)y x =-的图象如图所示:当2x =时,sin2ln10y π=-=;当12x <<时,函数()y f x =与函数()ln 1y x =-的图象有一个交点;当2x >时,因为2111s 49422in 41f f π⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,971ln 1ln 1224⎪->⎛⎫ ⎝>=⎭,所以函数()y f x =与函数()ln 1y x =-的图象有一个交点,所以函数()ln(1)y f x x =--有3个零点.故D 正确.故选:ACD17.(2023ꞏ全国ꞏ模拟预测)已知函数lg ,0()1,0x x f x x x ⎧>=⎨+≤⎩,若函数()[2()]g x f f x a =+有7个零点,则实数a 的可能取值是( ) A .0B .14-C .13-D .15-【答案】BD【答案解析】在0x ≤上()f x 单调递增且值域为(,1]-∞; 在01x <≤上()f x 单调递减且值域为[0,)+∞; 在1x >上()f x 单调递增且值域为(0,)+∞; 故()f x 的图象如下:由题设,()[2()]g x f f x a =+有7个零点,即[2()]f f x a =-有7个不同解,当0a -<时有2()1f x <-,即1()2f x <-,此时()g x 有1个零点;当0a -=时有2()1f x =±,即1()2f x =±,∴1()2f x =-有1个零点,1()2f x =有3个零点,此时()g x 共有4个零点;当0lg 2a <-≤时有12()lg 21f x -<≤-或12()12f x ≤<或12()2f x <≤, ∴1lg 21()022f x --<≤<有1个零点,11()42f x ≤<有3个零点,1(1)2f x <≤有3个零点,此时()g x 共有7个零点;当lg 21a <-≤时有lg 212()0f x -<≤或102()2f x <<或22()10f x <≤, ∴lg 21()02f x -<≤有1个零点,10()4f x <<有3个零点,1()5f x <≤有2个零点,此时()g x 共有6个零点;当1a ->时有102()10f x <<或2()10f x >, ∴10()20f x <<有3个零点,()5f x >有2个零点,此时()g x 共有5个零点; 综上,要使()g x 有7个零点时,则lg 20a -≤<,(lg 20.30103≈) 故选:BD18.(2023ꞏ全国ꞏ高三专题练习)若函数f (x )=4,22021()(3),2x m x x m x m x ⎧-<⎨--⎩…恰有两个零点,则正整数m 的取值可能为( )A .1B .2C .15D .16【答案】AD【答案解析】函数f (x )的零点即为方程f (x )=0的解.当m =1时,解方程f (x )=0,当x <2时,4x ﹣1=0,解得:x =0; 当x ≥2时,2021(x ﹣1)(x ﹣3)=0,解得:x =1或3,只取x =3. ∴函数有两个零点0或3.∴A 对;当m =2时,解方程f (x )=0,当x <2时,4x ﹣2=0,解得:x =12; 当x ≥2时,2021(x ﹣2)(x ﹣6)=0,解得:x =2或6. ∴函数有三个零点12或2或6.∴B 错;当m =15时,解方程f (x )=0,当x <2时,4x ﹣15=0,解得:x =log 415<2; 当x ≥2时,2021(x ﹣15)(x ﹣45)=0,解得:x =15或45. ∴函数有三个零点log 415或15或45.∴C 错;当m =16时,解方程f (x )=0,当x <2时,4x ﹣16=0,解得:x =2不成立; 当x ≥2时,2021(x ﹣16)(x ﹣48)=0,解得:x =16或48. ∴函数有两个零点16或48.∴D 对; 故选:AD .三、填空题19.(2023ꞏ全国ꞏ高三专题练习)知函数()3223,015,1x x m x f x mx x ⎧++≤≤=⎨+>⎩,若函数()f x 有两个不同的零点,则实数m 的取值范围为_____________. 【答案】50m -<<【答案解析】由答案解析式知:在[0,1]上()f x 为增函数且()[,5]f x m m ∈+, 在(1,)+∞上,0m ≠时()f x 为单调函数,0m =时()5f x =无零点, 故要使()f x 有两个不同的零点,即1x =两侧各有一个零点,所以在(1,)+∞上()f x 必递减且()(,5)f x m ∈-∞+,则050m m <⎧⎨+>⎩,可得50m -<<.故答案为:50m -<<20.(2023ꞏ全国ꞏ高三专题练习)已知函数24,()1,x x x af x e x a ⎧-≤=⎨->⎩,若函数()[()]g x f f x =在R 上有三个不同的零点,则实数a 的取值范围是______________.【答案】)⎡⎡⎣⎣【答案解析】令()t f x =,则()()g x f t =,由于函数()[()]g x f f x =在R 上有三个不同的零点,所以()()0g x f t ==必有两解,所以20a -≤<或2a ≥.当20a -≤<时,()f x 的图像如下图所示,由图可知,()y f t =必有两个零点122,0t t =-=,由于()2f x t =有两个解,所以()1f x t =有一个解,即242a -≤-,解得0a ≤<.当2a ≥时,()f x 的大致图像如下图所示,()y f t =必有两个零点342,2t t =-=,由于()3f x t =有两个解,所以()4f x t =有一个解,所以242a -<,解得2a ≤<综上所述,实数a 的取值范围是)⎡⎡⎣⎣ .故答案为:)⎡⎡⎣⎣21.(2023ꞏ上海黄浦ꞏ高三上海市向明中学校考开学考试)已知函数()f x 满足,1(1)ln(1),1ax a x f x x x +≤-⎧+=⎨+>-⎩,函数()()()g x f x f x =--恰有5个零点,则实数a 的取值范围为____________.【答案】1,0e ⎛⎫- ⎪⎝⎭【答案解析】因为函数()f x 满足,1(1)ln(1),1ax a x f x x x +≤-⎧+=⎨+>-⎩,所以,0()ln ,0ax x f x x x ≤⎧=⎨>⎩,-,0()ln(-),0ax x f x x x ≥⎧-=⎨<⎩, 因为函数()()()g x f x f x =--恰有5个零点, 所以函数()y f x =与()y f x =-恰有5个交点,如图,因为y ax =-与y ax =交于原点,要恰有5个交点,,0y ax x =->与ln y x =必有2个交点, 设,0y ax x =->与ln y x =相切,切点为(,)m n , 此时切线斜率为1100n y x m m -'===-,解得1,ln 1n m ==, 解得e m =,所以切点为(e,1),所以e 1a -=,解得1a e =-,所以要使函数()()()g x f x f x =--恰有5个零点,则1(,0)ea ∈-.故答案为:1,0e ⎛⎫- ⎪⎝⎭.22.(2023ꞏ黑龙江哈尔滨ꞏ高三黑龙江实验中学校考阶段练习)已知函数()f x 定义城为(]0,12,恒有()()44f x f x +=,(]0,4x ∈时()222x f x -=-;若函数()()()2g x f x t f x =+⋅有4个零点,则t 的取值范围为______. 【答案】[]32,28--【答案解析】设(]4,8x ∈,则(]40,4x -∈,则[]6()(4)44(4)422x f x f x f x -=-+=-=-,设(]8,12x ∈,则(]80,4x -∈,则[][]()(4)44(4)4(8)4f x f x f x f x =-+=-=-+1016(8)1622x f x -=-=-,则(](](]2610220,4()4224,816228,12x x x x f x x x ---⎧-∈⎪⎪=-∈⎨⎪-∈⎪⎩,,,,则(3)(7)(11)0f f f ===,函数()f x 图象如下:由2()()()0g x f x t f x =+⋅=,可得()0f x =,或()f x t =-, 由()0f x =,可得3x =,或7x =,或11x =,则()f x t =-仅有一根,又(8)f =810162228--=,(12)f =1210162232--=, 则2832t ≤-≤,解之得3228t -≤≤-, 故答案为:3228t -≤≤-.23.(2023ꞏ全国ꞏ高三专题练习)已知函数()f x 2e 1,0,0x x ax x a x ⎧-≥=⎨++<⎩,恰有2个零点,则=a __________.【答案】12【答案解析】当0x ≥时,令()e 10xf x =-=,解得0x =,故()f x 在[)0+∞,上恰有1个零点,即方程20ax x a ++=有1个负根.当0a =时,解得0x =,显然不满足题意;当0a ≠时,因为方程20ax x a ++=有1个负根,所以2Δ140.a =-≥ 当2Δ140a =-=,即12a =±时,其中当12a =时,211022x x ++=,解得=1x -,符合题意;当12a =-时,211022x x -+-=,解得1x =,不符合题意; 当2140a ∆=->时,设方程20ax x a ++=有2个根1x ,2x ,因为1210x x =>,所以1x ,2x 同号, 即方程20ax x a ++=有2个负根或2个正根,不符合题意.综上,12a =.故答案为:0.5.24.(2023ꞏ北京ꞏ高三专题练习)已知函数ln ,0()e 1,0xx x f x x >⎧=⎨+≤⎩,且函数()()g x f x m =-恰有两个不同的零点,则实数m 的取值范围是___________. 【答案】12m <≤【答案解析】由()0g x =得()f x m =,即函数()g x 的零点是直线y m =与函数()y f x =图象交点横坐标, 当0x ≤时,()e 1x f x =+是增函数,函数值从1递增到2(1不能取),当0x >时,()ln f x x =是增函数,函数值为一切实数,在坐标平面内作出函数()y f x =的图象,如图,观察图象知,当12m <≤时,直线y m =与函数()y f x =图象有2个交点,即函数()g x 有2个零点, 所以实数m 的取值范围是:12m <≤. 故答案为:12m <≤25.(2023ꞏ全国ꞏ高三专题练习)设函数()()3221014680x x f x x x g x x x x x ⎧+>⎪=-+=⎨⎪---≤⎩,,,,,则函数()()()1h x f g x =-的零点为________.【答案】14322---,,, 【答案解析】函数()h x 的零点即为方程()0h x =的解,也即()()1f g x =的解. 令()t g x =,则原方程的解变为方程组()()1t g x f t ⎧=⎪⎨=⎪⎩,①②的解.由方程②可得320t t -=, 解得0t =或1t =,将0t =代入方程①,而方程104x x+=无解, 由方程2680x x ---=解得4x =-或2x =-;将1t =代入方程①,而方程114x x +=,解得12x =, 由方程2681x x ---=,解得3x =-.综上,函数()h x 的零点为14322---,,,,共四个零点. 故答案为:14322---,,,. 26.(2023春ꞏ上海浦东新ꞏ高三上海市川沙中学校考期中)已知函数()y f x =的定义域是[0,)+∞,满足2201()4513,?2834x x f x x x x x x ≤<⎧⎪=-+≤<⎨⎪-+≤<⎩且(4)()f x f x a +=+,若存在实数k ,使函数()()g x f x k =+在区间[0,2021]上恰好有2021个零点,则实数a 的取值范围为____ 【答案】11(,)505504-【答案解析】由函数在[0,4)x ∈上的答案解析式作出如图所示图像,由(4)()f x f x a +=+知,函数()f x 是以4为周期,且每个周期上下平移|a |个单位的一个函数,若使[0,2021]x ∈时,存在R k ∈,方程()()g x f x k =+在[0,2021]x ∈上恰有2021个零点,等价于()f x k =-在[0,2021]x ∈上恰有2021个交点,如图所示,知在每个周期都有4个交点,即(1,2)k -∈时满足条件,且必须每个周期内均应使k -处在极大值和极小值之间,才能保证恰有2021个交点, 则当0a ≥时,需使最后一个完整周期[2016,2020)中的极小值(2018)2f <, 即(2018)(2)50415042f f a a =+=+<,解得1504a <,即1[0,504a ∈ 当a<0时,需使最后一个极大值(2021)1f >, 即(2021)(1)50525051f f a a =+=+>,解得1505a >-,即1(,0)505a ∈-, 综上所述,11(,505504a ∈-故答案为:11,505504⎛⎫- ⎪⎝⎭27.(2023ꞏ浙江ꞏ高三专题练习)若函数()()()2210,10k x f x x x kx x ⎧-<⎪=⎨⎪-->⎩恰有4个零点,则实数k 的取值范围是______.【答案】10,4⎛⎫⎪⎝⎭【答案解析】当0x <时,令()0f x =可得:21k x =, 当0x >时,令()0f x =可得:21x k x-=,令()()()221010x x g x x x x ⎧<⎪⎪=⎨-⎪>⎪⎩, 若01x <<,()21x g x x -+=, ()320x g x x -'=<,()g x 为减函数, 若1x ≥,()21x g x x -=, ()320x g x x -+'==,2x =, 若[)1,2x ∈,()0g x '<,()g x 为减函数, 若()2,x ∈+∞,()0g x '>,()g x 为增函数,()124g = 画出()g x 的图像,如下图:如要()f x 有4个零点,则104k <<, 故答案为:10,4⎛⎫ ⎪⎝⎭. 28.(2023ꞏ全国ꞏ高三专题练习)若348,122()1,222x x f x x f x ⎧--≤≤⎪⎪=⎨⎛⎫⎪> ⎪⎪⎝⎭⎩则()()6g x xf x =-在*1,2,n n N ⎡⎤∈⎣⎦内的所有零点之和为:__________. 【答案】3(21)2n - 【答案解析】当312x ≤≤时,f (x )=8x ﹣8, 所以()218()82g x x =--,此时当32x =时,g (x )max =0; 当322x ≤<时,f (x )=16﹣8x ,所以g (x )=﹣8(x ﹣1)2+2<0; 由此可得1≤x ≤2时,g (x )max =0.下面考虑2n ﹣1≤x ≤2n 且n ≥2时,g (x )的最大值的情况. 当2n ﹣1≤x ≤3•2n ﹣2时,由函数f (x )的定义知()11112222n n x x f x f f --⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 因为13122n x-≤≤, 所以()22251(2)82n n g x x --=--, 此时当x =3•2n ﹣2时,g (x )max =0;当3•2n ﹣2≤x ≤2n 时,同理可知,()12251(2)802n n g x x --=--+<.由此可得2n ﹣1≤x ≤2n 且n ≥2时,g (x )max =0. 综上可得:对于一切的n ∈N *,函数g (x )在区间[2n ﹣1,2n ]上有1个零点, 从而g (x )在区间[1,2n ]上有n 个零点,且这些零点为232n n x -=⋅,因此,所有这些零点的和为()3212n -. 故答案为()3212n -. 29.(2023ꞏ全国ꞏ高三专题练习)已知函数1,0()42,0x x x x f x x --⎧+>=⎨-≤⎩,若函数(32)y f x a =--恰有三个不同的零点,则实数a 的取值范围是________【答案】23a <≤.【答案解析】函数()f x 当0x >时是对勾函数,因为112x x x x -+=+≥=,当且仅当10x x x ⎧=⎪⎨⎪>⎩即1x =时,取最小值.所以函数最小值为2,且在(0,1)上为减函数,在(1,)+∞上为增函数.当0x ≤时,2x y -= 是减函数,且21x -≥,所以2x y -=-为增函数,且21x --≤-,所以函数()42x f x -=-为增函数,且()3f x ≤,函数图像如图所示.令32t x =-,函数(32)y f x a =--恰有三个不同的零点,可以看成函数()y f t a =-恰有三个不同的零点,函数()f t 的图像与直线y a =有三个交点.由图像可知23a <≤.30.(2023ꞏ全国ꞏ高三专题练习)已知函数32,0()461,0x e x f x x x x ⎧<=⎨-+≥⎩,则函数2()3[()]2()g x f x f x m =--有5个零点时m 的范围_____________.【答案】01m ≤<【答案解析】当0x ≥时,2'()121212(1)f x x x x x =-=-,在区间()0,1上,()()'0,f x f x <单调递减,在区间()1,+∞上,()()'0,f x f x >单调递增,故函数在1x =处取得极小值()11f =-,据此绘制函数()f x 的图像如图所示,结合函数图像和题意可知原问题等价于函数232y x x =-与函数y m =有两个交点,且交点的横坐标的范围分别位于区间(]1,0-和区间()0,1内,观察二次函数的图像可得m 的范围是01m ≤<.。

2023届新高考数学复习:专项(唯一零点求值问题)经典题提分练习(附答案)

2023届新高考数学复习:专项(唯一零点求值问题)经典题提分练习(附答案)

2023届新高考数学复习:专项(唯一零点求值问题)经典题提分练习一、单选题1.(2023ꞏ全国ꞏ高三专题练习)已知函数()222e ex xf x x a +--=++++有唯一零点,则实数=a ( ) A .1 B .1- C .2D .2-2.(2023ꞏ全国ꞏ高三专题练习)已知函数()()π4π4sin cos x x f x e ea x x --=+-+有唯一零点,则=a ( )A .πeB .4πeC D .13.(2023ꞏ全国ꞏ高三专题练习)已知函数()g x ,()h x 分别是定义在R 上的偶函数和奇函数,且()()sin x g x h e x x x ++=-,若函数()()20202320202x f g x x λλ-=---有唯一零点,则实数λ的值为 A .1-或12B .1或12-C .1-或2D .2-或14.(2023ꞏ全国ꞏ高三专题练习)已知函数()()222212e 222x x x f x a a ---=-+-有唯一零点,则负实数=a A .2-B .12-C .1-D .12-或1-5.(2023ꞏ全国ꞏ高三专题练习)已知函数()()11123e 22x x x f x a a ---=-+-有唯一零点,则负实数=a ( )A .13-B .12-C .-3D .-26.(2023ꞏ全国ꞏ高三阶段练习)已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则=a A .12-B .13C .12D .17.(2023春ꞏ云南曲靖ꞏ高三曲靖一中校考阶段练习)已知函数()1122222x x f x m x x --+⎛⎫=++- ⎪⎝⎭有唯一零点,则m 的值为( ) A .12-B .13C .12 D .188.(2023春ꞏ山西ꞏ高三统考)已知数列{}n a 的首项11a =,函数()()41cos 221n n f x x a x a +=+-+有唯一零点,则通项n a =( )A .13n -B .12n -C .21n -D .32n -9.(2023ꞏ全国ꞏ高三专题练习)已知函数()g x ,()h x 分别是定义在R 上的偶函数和奇函数,且()()e +=+x g x h x x ,若函数()()12e 12λλ-=+--x f x g x 有唯一零点,则正实数λ的值为( )A .13B .12C .1D .210.(2023春ꞏ辽宁ꞏ高三校联考期末)已知函数()g x ,()h x 分别是定义在R 上的奇函数和偶函数,且()()3x g x h x e x x +=+-,若函数()()2022220226x f x h x λλ-=---有唯一零点,则实数λ的值为( )A .1-或12B .1或12-C .12-或13D .2-或111.(2023春ꞏ福建泉州ꞏ高三福建省德化第一中学校考开学考试)已知函数()()11sin 2x x f x x a e e π--+⎛⎫=++⎪⎝⎭有唯一零点,则=a ( )A .1-B .12-C .12D .112.(2023ꞏ全国ꞏ高三专题练习)已知函数()()()2ln 1ln f x x x a x =-+--有唯一零点,则=a ( )A .0B .12-C .1D .213.(2023春ꞏ重庆九龙坡ꞏ高三重庆市育才中学校考阶段练习)已知函数()(),g x h x 分别是定义在R 上的偶函数和奇函数,且()()x g x h x e x +=+,若函数()()12216x f x g x λλ-=+--有唯一零点,则正实数λ的值为( )A .12B .13C .2D .314.(2023ꞏ全国ꞏ高三专题练习)已知函数2112()cos(1)1()x x x x a e e x f x --+=-+++--有唯一零点,则=a ( ) A .1B .13-C .13D .1215.(2023ꞏ全国ꞏ高三专题练习)若函数33()|3|x x f x x e e m --=-+++有唯一零点,则实数m 的值为( ) A .0B .-2C .2D .-116.(2023春ꞏ广西ꞏ高三校联考阶段练习)已知关于x 的函数()22214f x bx bx x b b =-+-++-有唯一零点x a =,则a b +=( )A .1-B .3C .1-或3D .417.(2023春ꞏ广东广州ꞏ高三广州六中校考)已知函数()(),g x h x 分别是定义在R 上的偶函数和奇函数,且()()sin x g x h e x x x ++=-,若函数()()20212320212x f x g x λλ-=---有唯一零点,则实数λ的值为( )A .1-或12 B .1或12-C .1-或2D .2-或1二、填空题18.(2023ꞏ上海ꞏ高三专题练习)若函数()()232xf x m x m x R =-+-∈有唯一零点,则实数m 的值为_________.19.(2023ꞏ上海ꞏ高三专题练习)若函数||2()2||2()x f x a x a x R =-+-∈有唯一零点,则实数a 的值为__________.20.(2023ꞏ全国ꞏ高三专题练习)若函数2()28ln 14f x x x x m =---有唯一零点,则实数m 的值_______. 21.(2023ꞏ全国ꞏ高三假期作业)已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则=a ________ 三、双空题22.(2023ꞏ浙江ꞏ高三专题练习)已知函数()f x ,()g x 分别是定义在R 上的偶函数和奇函数,且满足()()2x f x g x x +=-,则(0)f 的值为________:若函数2022()2(2021)2x h x f x λλ-|=---∣有唯一零点,则实数λ的值为________.23.(2023春ꞏ江苏苏州ꞏ高三校考期末)已知函数g (x ),h (x )分别是定义在R 的偶函数和奇函数,且满足()()sin ,x g x h x e x x +=+-则函数g (x )的解析式为_________;若函数|2021|2()3(2021)2x f x g x λλ-=---有唯一零点,则实数λ的值为_________.参考答案一、单选题1.(2023ꞏ全国ꞏ高三专题练习)已知函数()222e ex xf x x a +--=++++有唯一零点,则实数=a ( ) A .1 B .1- C .2 D .2-【答案】D【答案解析】设()(2)e e x xg x f x x a -=-=+++,定义域为R,∴()e e e e ()x x x xg x x a x a g x ---=-+++=+++=,故函数()g x 为偶函数,则函数(2)f x -的图象关于y 轴对称, 故函数()f x 的图象关于直线2x =-对称, ∵()f x 有唯一零点, ∴(2)0f -=,即2a =-. 故选:D .2.(2023ꞏ全国ꞏ高三专题练习)已知函数()()π4π4sin cos x x f x e ea x x --=+-+有唯一零点,则=a ( )A .πeB .4πeC D .1【答案】C【答案解析】令()()ππ44sin cos 0x x f x e ea x x --=+-+=,则π44ππs in 4x x eex --⎛++=⎫ ⎪⎝⎭,记π4x t -=,则πsin cos 2t t e e t t -⎛⎫++= ⎪⎝⎭=,令(),t t e t g e -=+则()(),()t t g t t e e t g g -=-∴=-+,所以()g t 是偶函数,图象关于y 轴对称,因为()f x 只有唯一的零点,所以零点只能是0,t =2,a =∴=故选:C3.(2023ꞏ全国ꞏ高三专题练习)已知函数()g x ,()h x 分别是定义在R 上的偶函数和奇函数,且()()sin x g x h e x x x ++=-,若函数()()20202320202x f g x x λλ-=---有唯一零点,则实数λ的值为 A .1-或12 B .1或12-C .1-或2D .2-或1【答案】A【答案解析】已知()()sin xg x h e x x x ++=-,①且()g x ,()h x 分别是R 上的偶函数和奇函数,则()()()sin xx g x e x x h -+---=++,得:()()sin xe x x g x h x --=-+,②①+②得:()2x xe e g x -+=,由于2020x -关于2020x =对称, 则20203x -关于2020x =对称,()g x 为偶函数,关于y 轴对称,则()2020g x -关于2020x =对称, 由于()()20202320202x f g x x λλ-=---有唯一零点,则必有()20200f =,()01g =,即:()()0223021202020f g λλλλ=--=--=,解得:1λ=-或12. 故选:A.4.(2023ꞏ全国ꞏ高三专题练习)已知函数()()222212e 222x x x f x a a ---=-+-有唯一零点,则负实数=a A .2- B .12-C .1-D .12-或1-【答案】A【答案解析】函数()()222212e222x x x f x a a ---=-+-有唯一零点, 设2x t -=,则函数()212e 222t tt y a a -=-+-有唯一零点,则()212e 222t tt a a --+=设()()()()()112e 222e 2222t t t tt t g t a g t a g t ---=-+-=-+= ,,∴()g t 为偶函数,∵函数()f t 有唯一零点, ∴()y g t =与2y a =有唯一的交点,∴此交点的横坐标为0,22a a ,∴-= 解得2a =- 或1a =(舍去),故选A .5.(2023ꞏ全国ꞏ高三专题练习)已知函数()()11123e 22x x x f x a a ---=-+-有唯一零点,则负实数=a ( )A .13-B .12-C .-3D .-2【答案】C【答案解析】注意到直线1x =是13e x y -=和1122x x y --=+的对称轴,故1x =是函数()f x 的对称轴,若函数有唯一零点,零点必在1x =处取得,所以 ()21320f a a =--=,又0a <,解得3a =-.选C.6.(2023ꞏ全国ꞏ高三阶段练习)已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则=a A .12-B .13C .12D .1【答案】C【答案解析】因为()221111()2()1()1x x x x f x x x a e e x a e e --+--+=-++=-++-,设1t x =-,则()()()21t t f x g t t a e e -==++-,因为()()g t g t =-,所以函数()g t 为偶函数,若函数()f x 有唯一零点,则函数()g t 有唯一零点,根据偶函数的性质可知,只有当0=t 时,()0g t =才满足题意,即1x =是函数()f x 的唯一零点,所以210a -=,解得12a =.故选:C. 7.(2023春ꞏ云南曲靖ꞏ高三曲靖一中校考阶段练习)已知函数()1122222x x f x m x x --+⎛⎫=++- ⎪⎝⎭有唯一零点,则m 的值为( ) A .12-B .13C .12 D .18【答案】D【答案解析】()f x 有零点,则211222112224x x m x x x --+⎛⎫⎛⎫+=-+=--+ ⎪ ⎪⎝⎭⎝⎭,令12t x =-,则上式可化为()21224t t m t -+=-+, 因为220t t -+>恒成立,所以24122t tt m --+=+,令()21422tt t h t --+=+,则()()()2211222244t t t tt t h t h t ----+-+-===++, 故()h t 为偶函数,因为()f x 有唯一零点,所以函数()h t 的图象与=y m 有唯一交点, 结合()h t 为偶函数,可得此交点的横坐标为0,故()001102842m h -===+. 故选:D8.(2023春ꞏ山西ꞏ高三统考)已知数列{}n a 的首项11a =,函数()()41cos 221n n f x x a x a +=+-+有唯一零点,则通项n a =( )A .13n -B .12n -C .21n -D .32n -【答案】C【答案解析】()()()()()()4411cos 221cos 221n n n n f x x a x a x a x a f x ++-=-+--+=+-+= , ()f x \为偶函数,图象关于y 轴对称,()f x \的零点关于y 轴对称,又()f x 有唯一零点,()f x \的零点为0x =,即()()10210n n f a a +=-+=,121n n a a +∴=+,即()1121n n a a ++=+, 又112a +=,∴数列{}1n a +是以2为首项,2为公比的等比数列, 12n n a ∴+=,则21n n a =-.故选:C.9.(2023ꞏ全国ꞏ高三专题练习)已知函数()g x ,()h x 分别是定义在R 上的偶函数和奇函数,且()()e +=+x g x h x x ,若函数()()12e 12λλ-=+--x f x g x 有唯一零点,则正实数λ的值为( )A .13B .12C .1D .2【答案】C【答案解析】由题设,()()()()()()e e xxg x h x x g x h x x g x h x -⎧+=+⎪⎨-+-=-=-⎪⎩,可得:()e e 2x xg x -+=,由()()12e12λλ-=+--x f x g x ,易知:()f x 关于1x =对称.当1x ≥时,1112()e (e e )22x x x f x λλ---=++-,则111()e (e e )02x x x f x λ---'=+->,所以()f x 单调递增,故1x <时()f x 单调递减,且当x 趋向于正负无穷大时()f x 都趋向于正无穷大, 所以()f x 仅有一个极小值点1,则要使函数只有一个零点,即()10f =,解得1λ=. 故选:C10.(2023春ꞏ辽宁ꞏ高三校联考期末)已知函数()g x ,()h x 分别是定义在R 上的奇函数和偶函数,且()()3x g x h x e x x +=+-,若函数()()2022220226x f x h x λλ-=---有唯一零点,则实数λ的值为( )A .1-或12 B .1或12-C .12-或13D .2-或1【答案】C【答案解析】由题意,函数()g x ,()h x 分别是奇函数和偶函数,且()()3x g x h x e x x +=+-,可得()()()()()()33x x g x h x e x x g x h x g x h x e x x -⎧+=+-⎪⎨-+-=-+=-+⎪⎩,解得()2x xe e h x -+=, 则()()2x xe e h x h x -+-==,所以()h x 为偶函数,又由函数()()2022220226x f x h x λλ-=---关于直线2022x =对称,且函数()f x 有唯一零点,可得()20220f =,即00022602e e λλ+⨯-=-, 即2160λλ--=,解得13λ=或12λ=-.故选:C.11.(2023春ꞏ福建泉州ꞏ高三福建省德化第一中学校考开学考试)已知函数()()11sin 2x x f x x a e e π--+⎛⎫=++⎪⎝⎭有唯一零点,则=a ( )A .1-B .12-C .12D .1【答案】B【答案解析】因为函数()()11sin 2x x f x x a e e π--+⎛⎫=++⎪⎝⎭, 令1x t -=,则()()()()sin 1cos 22t t t tg t t a e e t a e e ππ--⎛⎫⎛⎫=+++=++ ⎪ ⎪⎝⎭⎝⎭为偶函数,因为函数()()11sin 2x x f x x a e e π--+⎛⎫=++⎪⎝⎭有唯一零点, 所以()()cos 2t tg t t a e e π-⎛⎫=++ ⎪⎝⎭有唯一零点,根据偶函数的对称性,则()0120g a =+=, 解得12a =-,故选:B12.(2023ꞏ全国ꞏ高三专题练习)已知函数()()()2ln 1ln f x x x a x =-+--有唯一零点,则=a ( )A .0B .12-C .1D .2【答案】C【答案解析】函数()f x 的定义域为()1,a -,则1a >-,()1121f x x x x a'=--+-, 则()()()2211201f x x x a ''=++>+-,所以,函数()f x '在()1,a -上为增函数,当1x +→-时,()f x '→-∞,当x a -→时,()f x '→+∞, 则存在()01,x a ∈-,使得()000011201f x x x x a '=--=+-,则0001121x a x x =--+, 当01x x -<<时,()0f x '<,此时函数()f x 单调递减, 当0x x a <<时,()0f x ¢>,此时函数()f x 单调递增,()()()()20000min ln 1ln f x f x x x a x ∴==-+--,由于函数()()()2ln 1ln f x x x a x =-+--有唯一零点,则()()()()20000min ln 1ln 0f x f x x x a x ==-+--=,由0000112011x a x x x ⎧=->⎪-+⎨⎪>-⎩,解得01x -<<所以,()()()2220000000200002111ln 1ln ln 1ln 2ln 0111x x x x x x x a x x x x ⎡⎤⎛⎫-++=-++-=+-=⎢⎥ ⎪-+++⎢⎥⎝⎭⎣⎦,令()()2212ln 11x x x x x ϕ⎡⎤=+-⎢⎥++⎢⎥⎣⎦,其中112x --<<, ()()()()()()()()()2432322212222482422122221122111x x x x x x x x x x x x x x x x x x ϕ⎡⎤++++++'=+⋅-=+=⎢⎥--+-++-++⎢⎥⎣⎦()()()()222241222211x x x xx x ++-=+-+,112x -<<,则22210x x +-<,10x +>,220x ->,则()0x ϕ'<,所以,函数()x ϕ在11,2⎛⎫- ⎪ ⎪⎝⎭上单调递减,且()00ϕ=,00x ∴=, 从而可得11a=,解得1a =. 故选:C.13.(2023春ꞏ重庆九龙坡ꞏ高三重庆市育才中学校考阶段练习)已知函数()(),g x h x 分别是定义在R 上的偶函数和奇函数,且()()x g x h x e x +=+,若函数()()12216x f x g x λλ-=+--有唯一零点,则正实数λ的值为( )A .12 B .13C .2D .3【答案】A【答案解析】由已知条件可知()()()()()()xxg x h x e xg x h x e x g x h x -⎧+=+⎪⎨-+-=-=-⎪⎩由函数奇偶性易知()2x x e e g x -+=令()()226xx g x ψλλ=+-,()x ψ为偶函数.当0x ≥时,()'2202x xxe e x ln ψλ--=+>,()x ψ单调递增,当0x <时,()x ψ单调递减,()x ψ仅有一个极小值点()0,f x ()x ψ图象右移一个单位,所以仅在1处有极小值,则函数只有1一个零点,即()10f =, 解得12λ=,故选:A14.(2023ꞏ全国ꞏ高三专题练习)已知函数2112()cos(1)1()x x x x a e e x f x --+=-+++--有唯一零点,则=a ( ) A .1B .13-C .13D .12 【答案】D【答案解析】因为21(1)()(1)(e e )cos(1)2x x f x x a x ---=-+++--,令1x t -= 则2()(e e )cos 2t t g t t a t -=+++-,因为函数()2112(1(s ))co 1x x x x a e e f x x --+=-+++--有唯一零点, 所以()g t 也有唯一零点,且()g t 为偶函数,图象关于y 轴对称,由偶函数对称性得(0)0g =,所以2120a +-=,解得12a =, 故选:D.15.(2023ꞏ全国ꞏ高三专题练习)若函数33()|3|x x f x x e e m --=-+++有唯一零点,则实数m 的值为( ) A .0B .-2C .2D .-1【答案】B【答案解析】设()(3)||x x g x f x x e e m -=+=+++,∴()||||()x x x x g x x e e m x e e m g x ---=-+++=+++=故函数()g x 为偶函数,则函数(3)f x +的图像关于y 轴对称,故函数()f x 的图像关于直线3x =对称, ∵()f x 有唯一零点∴(3)0f =,即2m =-,经检验,33()|3|2x x f x x e e --=-++-仅有1个零点3x =.故选:B.16.(2023春ꞏ广西ꞏ高三校联考阶段练习)已知关于x 的函数()22214f x bx bx x b b =-+-++-有唯一零点x a =,则a b +=( )A .1-B .3C .1-或3D .4【答案】B 【答案解析】22()(1)14f x b x x b =-+-+-,令1t x =-, 则有22()4g t bt t b =++-是偶函数,若只有唯一零点,则必过原点,即(0)0g =,从而2b =±.当2b =-时,有3个零点,舍去.故2b =,此时10t a =-=,则1a =,故3a b +=.故选:B17.(2023春ꞏ广东广州ꞏ高三广州六中校考)已知函数()(),g x h x 分别是定义在R 上的偶函数和奇函数,且()()sin x g x h e x x x ++=-,若函数()()20212320212x f x g x λλ-=---有唯一零点,则实数λ的值为( ) A .1-或12B .1或12-C .1-或2D .2-或1【答案】A【答案解析】已知()()sin x g x h e x x x ++=-,① 且()g x ,()h x 分别是R 上的偶函数和奇函数,则()()()sin x x g x e x x h -+---=++,得:()()sin x e x x g x h x --=-+,②①+②得:()2x xe e g x -+=, 由于2021x -关于2021x =对称, 则20213x -关于2021x =对称,()g x 为偶函数,关于y 轴对称,则()2021g x -关于2021x =对称,由于()()20212320212x f x g x λλ-=---有唯一零点,则必有()20210f =,()01g =,即:()()0223022021120g f λλλλ=--=--=,解得:1λ=-或12.故选:A.二、填空题18.(2023ꞏ上海ꞏ高三专题练习)若函数()()232x f x m x m x R =-+-∈有唯一零点,则实数m 的值为_________.【答案】1±【答案解析】()2,32()x x R f x m x m f x -∈-=--+-=()f x ∴是偶函数 根据偶函数的性质,可得(0)0f =,02320m +-=,解得1m =±当1m =时,此时()31xf x x =--,有唯一零点; 当1m =-时,此时()31xf x x =+-,也有唯一零点; 故1m =±时有唯一零点.故答案为:1±19.(2023ꞏ上海ꞏ高三专题练习)若函数||2()2||2()x f x a x a x R =-+-∈有唯一零点,则实数a 的值为__________.【答案】1-【答案解析】因为x R ∈,又||2()2||2()x f x a x a f x --=--+-=,所以函数为偶函数.因为函数有一个零点,根据偶函数的性质,可得(0)0f =,所以02220a +-=,解得1a =±.当1a =,此时||()2||1x f x x =--,知1(2)02f f ⎛⎫< ⎪⎝⎭,()f x 有零点(1x =),不符合题意: 当1a =-,此时||()2||1x f x x =+-在(0,)+∞上单调递增,()(0)0f x f >=,根据偶函数对称性,符合题意;所以1a =-.故答案为:1-20.(2023ꞏ全国ꞏ高三专题练习)若函数2()28ln 14f x x x x m =---有唯一零点,则实数m 的值_______.【答案】16ln 224--【答案解析】由题意,函数2()28ln 14f x x x x m =---有唯一零点,即方程228ln 14x x x m --=有唯一实数解,令2()28ln 14h x x x x =--,则82(4)(21)()414,0x x h x x x x x-+'=--=>, 当>4x 时,()0h x '>,当04x <<时,()0h x '<,所以()h x 在(4,)+∞上单调递增,在(0,4)上单调递减,则函数()h x 在4x =处取得最小值,最小值为(4)16ln 224h =--,要使得函数2()28ln 14f x x x x m =---有唯一零点,则16ln 224m =--.故答案为:16ln 224--.21.(2023ꞏ全国ꞏ高三假期作业)已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则=a ________ 【答案】12【答案解析】()()()()221111211x x x x f x x x a e e x a e e --+--+=-++=--++ 设1t x =-,则()()21t t f t t a e e -=-++定义域为R ,()()()()21t t f t t a e e f t --=--++= 所以()f t 为偶函数,所以()f x 的图像关于1x =成轴对称要使()f x 有唯一零点,则只能()10f =,即()2001210a e e -⨯++= 解得12a =, 故答案为:12.三、双空题22.(2023ꞏ浙江ꞏ高三专题练习)已知函数()f x ,()g x 分别是定义在R 上的偶函数和奇函数,且满足()()2x f x g x x +=-,则(0)f 的值为________:若函数2022()2(2021)2x h x f x λλ-|=---∣有唯一零点,则实数λ的值为________.【答案】 1 1-或12【答案解析】因为()g x 是定义在R 上的奇函数,所以有(0)0g =,因为()()2x f x g x x +=-,所以(0)(0)1f g +=,所以(0)1f =,令||2()2()2x F x f x λλ=--,因为()f x 是定义在R 上的偶函数,所以||2||2()2()22()2()x x F x f x f x f x λλλλ--=---=--=,所以()F x 是定义在R 上的偶函数,图象关于y 轴对称,所以|2021|2()2(2021)2(2021)x h x f x F x λλ-=---=-,所以()h x 的图象关于2021x =对称,因为()h x 有唯一零点,所以(2021)0h =,即21(0)20f λλ--=,即2120λλ--=,解得1λ=-或12.故答案为:1,1-或12. 23.(2023春ꞏ江苏苏州ꞏ高三校考期末)已知函数g (x ),h (x )分别是定义在R 的偶函数和奇函数,且满足()()sin ,x g x h x e x x +=+-则函数g (x )的答案解析式为_________;若函数|2021|2()3(2021)2x f x g x λλ-=---有唯一零点,则实数λ的值为_________.【答案】 ()12x x e e -+ 12或1-【答案解析】∵()g x ,()h x 分别是定义在R 上的偶函数和奇函数,∴()()g x g x -=,()()h x h x -=-又∵()()sin x g x h x e x x +=+-①,∴()()()()e sin x g x h x g x h x x x --+-=-=-+②①+②:2()e e x x g x -=+,∴()1()e e 2x x g x -=+, 又∵()()2021202112(2022021)21()3202123e 22x x x x f x g x e λλλλ----⎡⎤=---=-⋅+-⎣⎦, 又∵()f x 有唯一零点,等价于()213202x x x e e λλ--⋅+-=有唯一解, 设()21()322x x x t x e e λλ-=-+-, ∵()t x 为偶函数,∴当且仅当0x =时为唯一零点,∴2120λλ--=,解得12λ=或1λ=-. 故答案为:()12x x e e -+;12或1-。

2023届高考数学复习:精选好题专项(不等式与逻辑用语多选题)练习(附答案)

2023届高考数学复习:精选好题专项(不等式与逻辑用语多选题)练习(附答案)

2023届高考数学复习:精选好题专项(不等式与逻辑用语多选题)练习题型一 不等式的性质1、(2022年湖南磁力一中高三月考试卷)下列四个条件中,能成为x y >的充分不必要条件的是( ) A. 22xc yc >B. 22x y >C. x y >D. ln ln x y >2、(2022年江苏镇江市高三月考试卷)已知a ,b ,c ,d ∈R ,下列命题正确的是( ) A. 若a <b <0,则a 2<ab <b 2B. 若a >b ,则ac 2≥bc 2C. 不等式e e 2a a -+≥恒成立D. 若a b >,且c d >,则()()ln ln ac bd >3、(2022ꞏ江苏无锡ꞏ高三期末)已知e e 1b a <<,则下列结论正确的是( ) A .22a b < B .2b aa b+>C .2ab b >D .2lg lg()a ab <4、(2022ꞏ广东汕尾ꞏ高三期末)已知a ,b 都是不等于1的正实数,且a >b ,0<c <1,则下列不等式一定成立的是( ) A .a b c c > B .c c a b >C .log log c c a b >D .11()()4a b a b++>5、(2022ꞏ山东济南ꞏ高三期末)已知实数a ,b ,c 满足0a b c >>>,则下列说法正确的是( ) A .()()11a c abc a <--B .b bc a a c+<+ C .2ab c ac bc +>+D .()11a b a b ⎛⎫++ ⎪⎝⎭的最小值为46、(2022ꞏ山东泰安ꞏ高三期末)若,,0a b R a b ∈<<,则下列不等式中,一定成立的是( ) A .11a b a>- B .11a b > C .2a bb a+>D .a b >7、(华南师范大学附属中学高三期末试题)已知0a b >>,则下列说法正确的是( ) A.33b b a a +>+ B.3223a b aa b b+<+C. <D. lg lg lg 22a b a b++> 题型二 简单不等式1、(2022·江苏苏州期中)已知不等式x 2+2ax +b -1>0的解集是{x |x ≠d },则b 的值可能是A .-1B .3C .2D .02、(2022·江苏常州期中)已知关于x 的不等式a e x +bx +c >0的解集为(-1,2),则A .a >0B .b >0C .c >0D .a +b +c >03、(2022年湖南湘阴县知源高级中学高三月考试卷)已知关于x 的不等式20ax bx c ++>的解集为(,2)(3,)-∞-⋃+∞,则( )A. 0a >B. 不等式0bx c +>的解集是{}|6x x <-C. 0a b c ++>D. 不等式20cx bx a -+<的解集为11(,(,)32-∞-⋃+∞4、(2022年江苏盐城市高三月考试卷)若“2340x x +-<”是“222()330x k x k k -+++≥”的充分不必要条件,则实数k 可以是( )A. 8-B. 5-C. 1D. 45、(2022年重庆市北山中学高三月考试卷). 下列叙述不正确的是( ) A.12x<的解是12x >B. “04m ≤≤”是“210mx mx ++≥”的充要条件C. 已知x ∈R ,则“0x >”是“11x -<”的必要不充分条件D. 函数()2232f x x x =++的最小值是2- 题型三 基本不等式1、(2022年辽宁葫芦岛市中学高三月考试卷)已知0a >,0b >,4165log 2log 16a b +=,则下列结论正确的是( )A. 45a b +=B. 542a b +=C. ab 的最大值为2564D.11a b+的最小值为1852、 (2022年湖南邵阳市高三月考试卷)已知实数a ,b ,c 满足0a b c <<<,则下列说法正确的是( )A.()()11a c abc a >-- B.b bc a a c+>+ C. 2ab c ac bc +>+D. 11()()a b a b++的最小值为43、(2022ꞏ广东ꞏ铁一中学高三期末)若0,0a b >>.且4a b +=,则下列不等式恒成立的是( )A .1104ab <≤ B 2 C .111a b+≥D .22118a b ≤+ 4、(2022ꞏ重庆ꞏ模拟预测)(多选题)已知正数a ,b 满足22a b ab +=,则下列说法一定正确的是( ) A .24a b +≥ B .4a b +≥ C .8ab ≥D .2248a b +≥5、(2022ꞏ湖南常德ꞏ高三期末)若0a >,0b >,111a b+=,则( )A .4ab ≤B .4a b +≥C .228a b +≤D .22log log 2a b +≥6、(2022ꞏ湖北襄阳ꞏ高三期末)已知()lg f x x =,当a b <时,()()f a f b =,则( ) A .01a <<,1b >B .10ab =C .2114b a -<D .224a b +>7、(2022ꞏ山东德州ꞏ高三期末)已知0a >,0b >,2a b ab +=,则下列结论正确的是( )A .a b +的最小值为3+B .22a b +的最小值为16CD .lg lg a b +的最小值为3lg 28、(2022ꞏ山东烟台ꞏ高三期末)已知0a >,0b >,则下列命题成立的有( ) A .若1ab =,则222a b +≥ B .若1ab =,则112a b +≥C .若1a b +=,则2212a b +≤D .若1a b +=,则114a b+≥9、(2022ꞏ湖北ꞏ蕲春县第一高级中学模拟预测)(多选题)若0,0a b >>,且4a b +=,则下列不等式恒成立的是( )A .1104ab <≤ B .111a b+≥C .22log log 2a b +<D .22118a b ≤+10、(2022ꞏ辽宁辽阳ꞏ二模)(多选题)已知0a >,0b >,且24a b +=,则( ) A .124a b ->B .22log log 1a b +≤C ≥D .412528a b +≥11、(2022ꞏ福建莆田ꞏ模拟预测)(多选题)已知直线l :()100,0ax by a b ++=>>与圆C :221x y +=相切,则下列说法正确的是( )A .12ab ≥B .22114a b+≥C .2122a b +⎛⎫≤ ⎪⎝⎭D .11a b+≤12、(2022ꞏ江苏ꞏ扬中市第二高级中学模拟预测)(多选题)已知0a >,0b >,且2a b ab +=,则( )A .8ab ≥B .3a b +≤+C .24b >D .()()221log 1log 24a b -⋅-≤13、(2022ꞏ湖南衡阳ꞏ三模)(多选题)已知实数0a >,0b >,1a b +=.则下列不等式正确的是( )A .22a b +≥ BC .112216a b ⎛⎫⎛⎫++≤ ⎪⎪⎝⎭⎝⎭D .222a b a b b a +≤++14、(2022ꞏ辽宁葫芦岛ꞏ二模)(多选题)已知0a b >>,115a b a b+++=,则下列不等式成立的是( )A .14a b <+<B .114b a a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭C .2211b a a b ⎛⎫⎛⎫+>+ ⎪ ⎪⎝⎭⎝⎭D .2211a b a b ⎛⎫⎛⎫+>+ ⎪ ⎪⎝⎭⎝⎭15、(2022ꞏ河北ꞏ模拟预测)(多选题)已知220,0,2a b a b >>+=,则以下不等式成立的是( ) A .2a b +>B .332a b +≥C .114a b b a ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭ D .112a b +≥参考答案题型一 不等式的性质1、(2022年湖南磁力一中高三月考试卷)下列四个条件中,能成为x y >的充分不必要条件的是( ) A. 22xc yc > B. 22x y >C. x y >D. ln ln x y >【答案】AD 【答案解析】【要点分析】由充分必要条件的概念与不等式性质对选项逐一判断, 【过程详解】对于A ,若22xc yc >,则20c >,x y >,而当0c =,x y >时,22xc yc =,故22xc yc >是x y >的充分不必要条件,故A 正确, 对于B ,若22x y >,则x y >,若x y >,则22x y >, 故22x y >是x y >的充要条件,故B 错误,对于C ,当2,1x y =-=时,x y >,而x y <,故C 错误,对于D ,若ln ln x y >,则0x y >>,当x y >,0y <时,ln y 无意义, 故ln ln x y >是x y >的充分不必要条件,故D 正确, 故选:AD2、(2022年江苏镇江市高三月考试卷)已知a ,b ,c ,d ∈R ,下列命题正确的是( ) A. 若a <b <0,则a 2<ab <b 2B. 若a >b ,则ac 2≥bc 2C. 不等式e e 2a a -+≥恒成立D. 若a b >,且c d >,则()()ln ln ac bd >【答案】BC 【答案解析】【要点分析】对于AD ,举反例即可排除; 对于B ,利用不等式的性质即可判断; 对于C ,利用基本不等式即可判断.【过程详解】对于A ,令2,1a b =-=-,则0a b <<,但2222(2)(1)a b =->-=,故A 错误; 对于B ,因为a b >,2c ≥0,所以22ac bc ≥,当0c =时取“"=,故B 正确;对于C ,因为e e 2a a -+≥=,当且仅当e e a a -=,即0a =时,等号成立,所以e e 2a a -+≥恒成立,故C 正确;对于D ,令1,2,3,4a b c d =-=-=-=-,则a b >,c d >,且3,8ac bd ==,所以由ln y x =的单调性可知()()ln ln ac bd <,故D 错误. 故选:BC.3、(2022ꞏ江苏无锡ꞏ高三期末)已知e e 1b a <<,则下列结论正确的是( ) A .22a b < B .2b aa b+>C .2ab b >D .2lg lg()a ab <【答案】ABD 【要点分析】先根据函数单调性,得到0b a <<,AC 选项用作差法比较大小;B 选项用基本不等式求取值范围;D 选项,先用作差法,再结合函数单调性比大小. 【过程详解】e e 1b a <<,则0b a <<,因为22()()0a b a b a b -=-+<,所以22a b <,A 选项正确;因为0b a <<,所以0,0b a a b >>,由基本不等式得:2a b b a +>=,B 选项正确;2()0ab b b a b -=-<,2ab b ∴<,C 选项错误;2()0a ab a a b -=-<,2a ab ∴<,2lg lg a ab ∴<,D 选项正确,故选:ABD4、(2022ꞏ广东汕尾ꞏ高三期末)已知a ,b 都是不等于1的正实数,且a >b ,0<c <1,则下列不等式一定成立的是( )A .a b c c >B .c c a b >C .log log c c a b >D .11()()4a b ab++>【答案】BD 【要点分析】根据指数函数,对数函数,幂函数的单调性,结合题意,可判断A 、B 、C 的正误,根据基本不等式,可判断D 的正误,即可得答案.【过程详解】函数x y c =,因为01c <<,所以x y c =是减函数, 因为a >b ,所以a b c c <,故A 错.函数c y x =,因为01c <<,所以c y x =在(0,)+∞是增函数, 因为a >b ,所以c c a b >,故B 正确.函数log c y x =,因为01c <<,所以log c y x =在(0,)+∞是减函数, 因为a >b ,所以log log c c a b <,故C 错.11()1124a b a b a b b a ⎛⎫++=+++≥+= ⎪⎝⎭,当且仅当a b =时取等号, 又a b >,所以11()4a b a b ⎛⎫++> ⎪⎝⎭,故D 正确.故选:BD5、(2022ꞏ山东济南ꞏ高三期末)已知实数a ,b ,c 满足0a b c >>>,则下列说法正确的是( )A .()()11a c abc a <--B .b bc a a c+<+ C .2ab c ac bc +>+ D .()11a b a b ⎛⎫++ ⎪⎝⎭的最小值为4【答案】BC 【要点分析】对于A ,利用不等式的性质判断,对于BC ,作差判断即可,对于D ,利用基本不等式判断 【过程详解】对于A ,因为0a b c >>>,所以11a b <,10c a<-,所以()()11a c a b c a >--,所以A 错误, 对于B ,因为0a b c >>>,所以()0,()0c a b a a c ->+>, 所以()()()0()()()b c b a b c b a c ab ac ab bc c a b a c a a a c a a c a a c ++-++----===>++++,所以b b ca a c+<+,所以B 正确, 对于C ,因为0a b c >>>,所以0,0a c b c ->->,所以2()()()()()0ab c ac bc a b c c b c a c b c +-+=---=-->,所以2ab c ac bc +>+,所以C 正确,对于D ,因为0,0a b >>,所以()11224b a a b a b a b ⎛⎫++=++≥+= ⎪⎝⎭,当且仅当b a a b =即a b =时取等号,因为a b >,所以取不到等号,所以()11a b a b ⎛⎫++ ⎪⎝⎭的最小值不为4,所以D 错误,故选:BC6、(2022ꞏ山东泰安ꞏ高三期末)若,,0a b R a b ∈<<,则下列不等式中,一定成立的是( )A .11a b a>- B .11a b > C .2a bb a+>D .a b >【答案】BCD 【要点分析】以求差法判断选项AB ;以均值定理判断选项C ;以绝对值的几何意义判断选项D. 【过程详解】 选项A :()()11()a a b b a b a a b a a b a---==---,由0a b <<,可知0a <,0b <,0a b -<, 则()0ba b a <-,即11a b a<-.选项A 判断错误;选项B :11b aa b ab --=,由0a b <<,可知0a <,0b <,0b a ->,则0b a ab ->,即11a b>.选项B 判断正确; 选项C :当0a b <<时,2a b b a +>=.选项C 判断正确; 选项D :当0a b <<时,a b >.选项D 判断正确. 故选:BCD7、(华南师范大学附属中学高三期末试题)已知0a b >>,则下列说法正确的是( ) A.33b b a a +>+ B.3223a b aa b b+<+C. <D. lg lg lg 22a b a b++> 【答案】BD 【答案解析】【过程详解】对于A ,因为()()330,033b a b b a b a a a a -+>>-=<++,所以33b b a a +<+,故A 错误; 对于B ,因为0a b >>,所以22a b >,所以()()()()()2223223320232323b aa b b a a b a b a a b b a b b a b b-+-++-==<+++,即3223a b a a b b +<+,故B 正确; 对于C ,因为0a b >>>>,所以>,故C 错误;对于D ,因为0a b >>,所以lg lg lg 22a b a b++>=,故D 正确. 故选:BD.题型二 简单不等式1、(2022·江苏苏州期中)已知不等式x 2+2ax +b -1>0的解集是{x |x ≠d },则b 的值可能是A .-1B .3C .2D .0 【答案】BC【答案解析】由题意可知,方程x 2+2ax +b -1=0的根为d ,则∆=4a 2-4(b -1)=0,则b -1=a 2≥0,所以b ≥1,则选项B 、C 正确;选项A 、D 错误;综上,答案选BC .2、(2022·江苏常州期中)已知关于x 的不等式a e x +bx +c >0的解集为(-1,2),则A .a >0B .b >0C .c >0D .a +b +c >0 【答案】BCD【答案解析】由题意可知,当a =0时,不等式不成立;当a ≠0时,-1,2是方程a e x +bx +c =0的两个根,则有⎩⎪⎨⎪⎧a e -1-b +c =0a e 2+2b +c =0,所以⎩⎨⎧b =-a3()e 2-e -1>0c =-a 3()e 2+2e -1>0,故选项B 正确;选项C 正确;对于选项D ,a +b +c =a -a 3(e 2-e -1)-a 3(e 2-2e -1)=a [1-13(e 2-e -1)-13(e 2-2e -1)]=a (1-e 23+13e -e 23-23e )=a (1-2e 23-13e )>0,故选项D 正确;综上,答案选BCD .3、(2022年湖南湘阴县知源高级中学高三月考试卷)已知关于x 的不等式20ax bx c ++>的解集为(,2)(3,)-∞-⋃+∞,则( )A. 0a >B. 不等式0bx c +>的解集是{}|6x x <-C. 0a b c ++>D. 不等式20cx bx a -+<的解集为11(,(,)32-∞-⋃+∞ 【答案】ABD 【答案解析】【过程详解】关于x 的不等式20ax bx c ++>的解集为()(),23,,0,A a ∞∞--⋃+∴>选项正确;且-2和3是关于x 的方程20ax bx c ++=的两根,由韦达定理得2323b a c a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,则,6b a c a =-=-,则60a b c a ++=-<,C 选项错误;不等式0bx c +>即为60ax a -->,解得6,B x <-选项正确;不等式20cx bx a -+<即为260ax ax a -++<,即2610x x -->,解得13x <-或1,D 2x >选项正确.故选:ABD .4、(2022年江苏盐城市高三月考试卷)若“2340x x +-<”是“222()330x k x k k -+++≥”的充分不必要条件,则实数k 可以是( )A. 8-B. 5-C. 1D. 4【答案】ACD 【答案解析】【过程详解】2340x x +-<,解得41x -<<,222()330x k x k k -+++≥即[]()(3)0x k x k --+≥,解得x k ≤或3x k ≥+,由题意知(4,1)-是(][),3,k k -∞⋃++∞的真子集, 所以1k ≥或34k +≤-, 所以1k ≥或7k ≤-,即(,7][1,)k ∈-∞-⋃+∞. 故选:ACD5、(2022年重庆市北山中学高三月考试卷). 下列叙述不正确的是( ) A.12x<的解是12x >B. “04m ≤≤”是“210mx mx ++≥”的充要条件C. 已知x ∈R ,则“0x >”是“11x -<”的必要不充分条件D. 函数()2232f x x x =++的最小值是2- 【答案】AD 【答案解析】 【过程详解】选项A :12x<的解是12x >或0x <,故A 不正确;选项B :由21y mx mx =++得24m m ∆=-,210mx mx ++≥恒成立则240m m m >⎧⎨-≤⎩或0m =,解得 04m ≤≤,所以“04m ≤≤”是“210mx mx ++≥”的充要条件,故B 正确;选项C :由11x -<得111x -<-<,解得02x <<,所以“0x >”是“11x -<”的必要不充分条件,故C 正确;选项D :由均值不等式得22322x x ++≥=+,当且仅当22322x x +=+时等号成立,此时x 无实数解,所以()2232f x x x =++的最小值大于2-,故D 不正确; 故选:AD题型三 基本不等式1、(2022年辽宁葫芦岛市中学高三月考试卷)已知0a >,0b >,4165log 2log 16a b +=,则下列结论正确的是( )A. 45a b +=B. 542a b +=C. ab 的最大值为2564D.11a b+的最小值为185【答案】BCD【答案解析】【过程详解】由4165log 2log 16a b +=可得,52816a b +=,即542a b +=.所以A 错误,B 正确;因为5254264a b ab =+≥⇒≤,当且仅当55,164a b ==时取等号,所以ab 的最大值为2564,C 正确;因为()11211244555b a a b a b a b a b ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭(218555≥+=,当且仅当55,126a b ==时取等号,所以11a b+的最小值为185,D 正确.故选:BCD .2、 (2022年湖南邵阳市高三月考试卷)已知实数a ,b ,c 满足0a b c <<<,则下列说法正确的是( )A.()()11a c abc a >--B.b bc a a c+>+ C. 2ab c ac bc +>+ D. 11()()a b a b++的最小值为4 【答案】ABC 【答案解析】【过程详解】由题0a b c <<<,所以有()()1111b a ac a b c a a b>⇒>⇒>--,故A 正确;()()b b c b a c a b c bc ac b a a a c+>⇒+>+⇒>⇒>+,故B 正确; ()()()()200ab c ac bc c c b a c b c a c b +>+⇒--->⇒-->,故C 正确;11()(224b a a b a b a b ++=++≥+=,当且仅当a b b a =即a b =时取等,又因为0a b <<,所以11()(4a b a b++>,即11()(a b a b++无最小值,故D 错误. 故选:ABC.3、(2022ꞏ广东ꞏ铁一中学高三期末)若0,0a b >>.且4a b +=,则下列不等式恒成立的是( )A .1104ab <≤ B 2C .111a b+≥D .22118a b ≤+ 【答案】CD 【要点分析】结合基本不等式对选项进行要点分析,由此确定正确选项. 【过程详解】22222a b a b ab ++⎛⎫≤≤⎪⎝⎭,当且仅当2a b ==时等号成立, 则2442ab ⎛⎫≤= ⎪⎝⎭或222422a b +⎛⎫≤ ⎪⎝⎭,则222211112,8,48a b ab a b ≥≤+≥≤+, 即AB 错误,D 正确.对于C 选项,1141414a b a ab ab b ++==≥⨯=,C 选项正确. 故选:CD4、(2022ꞏ重庆ꞏ模拟预测)(多选题)已知正数a ,b 满足22a b ab +=,则下列说法一定正确的是( ) A .24a b +≥ B .4a b +≥ C .8ab ≥ D .2248a b +≥【答案】AD 【要点分析】由基本不等式判断AD ,取1,2b a ==判断BC. 【过程详解】 由题意可知1112b a +=,1122(2)2422a b a b a b b a b a ⎛⎫+=++=++ ⎪⎝⎭…(当且仅当22a b ==时取等号),故A 正确;取1,2b a ==,则3,2a b ab +==,故BC 错误;因为22a b ab +=≥所以2ab …(当且仅当22a b ==时取等号),则22448a b ab +厖(当且仅当22a b ==时取等号),故D 正确; 故选:AD5、(2022ꞏ湖南常德ꞏ高三期末)若0a >,0b >,111a b+=,则( )A .4ab ≤B .4a b +≥C .228a b +≤D .22log log 2a b +≥【答案】BD 【要点分析】利用基本不等式及指对数函数的性质逐项要点分析即得. 【过程详解】∵0a >,0b >,111a b +=≥ ∴4ab ≥,当且仅当2a b ==时取等号,故A 错误;由()1124b a a b a b a b a b ⎛⎫+=++=++≥ ⎪⎝⎭,当且仅当b a a b =,即2a b ==时取等号,故B 正确;因为228a b ≥≥=+,当且仅当2a b ==时取等号,故C 错误; 因为()2222log log log log 42a b ab +=≥=,当且仅当2a b ==时取等号,故D 正确.故选:BD.6、(2022ꞏ湖北襄阳ꞏ高三期末)已知()lg f x x =,当a b <时,()()f a f b =,则( ) A .01a <<,1b >B .10ab =C .2114b a -<D .224a b +>【答案】ACD 【要点分析】利用()()f a f b =,可得lg lg a b -=,从而得到1ab =,再对每一个选项进行要点分析即可. 【过程详解】因为()()f a f b =,且a b <,可得lg lg lg lg 0a b a b -=⇒+=,从而得到1ab =, 因为0a b <<,所以01a b <<<,所以2221111()244b b b b a -=-+=--+<,而12a b b b +=+>=,(1b >,等号不成立)所以422ab>==>=+.从而可知选项ACD 正确. 故选:ACD7、(2022ꞏ山东德州ꞏ高三期末)已知0a >,0b >,2a b ab +=,则下列结论正确的是( )A .a b +的最小值为3+B .22a b +的最小值为16CD .lg lg a b +的最小值为3lg 2【答案】ACD 【要点分析】利用“1”的代换结合基本不等式判断AD +C ,由对数的运算结合基本不等式判断B. 【过程详解】由2a b ab +=可得,211b a +=,212()33a b a b a b b a b a ⎛⎫+=++=+++ ⎪⎝⎭…2b ==等号),故A 正确;214(2)448a b ab a b b a b a ⎛⎫=++=+++= ⎪⎝⎭…(当且仅当24b a ==时,取等号),即lg lg lg lg83lg 2a b ab +=≥=,故D 正确;222a b ab +≥(当且仅当3b a ==时,取等号),8ab …(当且仅当24b a ==时,取等号),即2216a b +>,故B 错误;212112a b =+++=≤(当且仅当1212a b ==时,取等号),故C 正确; 故选:ACD8、(2022ꞏ山东烟台ꞏ高三期末)已知0a >,0b >,则下列命题成立的有( ) A .若1ab =,则222a b +≥ B .若1ab =,则112a b +≥C .若1a b +=,则2212a b +≤ D .若1a b +=,则114a b+≥【答案】ABD 【要点分析】利用基本不等式逐项判断. 【过程详解】A.若1ab =,则2222a b ab +≥=,当且仅当1a b ==时,等号成立,故正确;B.若1ab =,则112a b +≥=当且仅当1a b ==时,等号成立,故正确;C.若1a b +=,则()2221122=+≥+a b a b ,当且仅当1a b ==时,等号成立,故错误; D.若1a b +=,则2111421a b ab a b ab a b +==≥++⎛⎫ ⎪⎝⎭=,当且仅当1a b ==时,等号成立,故正确;故选:ABD9、(2022ꞏ湖北ꞏ蕲春县第一高级中学模拟预测)(多选题)若0,0a b >>,且4a b +=,则下列不等式恒成立的是( )A .1104ab <≤ B .111a b +≥C .22log log 2a b +<D .22118a b ≤+【答案】BD 【要点分析】由基本不等式对选项逐一判断【过程详解】因为0,0a b >>,22222a b a b ab ++⎛⎫≤≤⎪⎝⎭,当且仅当2a b ==时等号成立, 则2442ab ⎛⎫≤= ⎪⎝⎭或222422a b +⎛⎫≤ ⎪⎝⎭,当且仅当2a b ==时等号成立,则222211112,8,48a b ab a b ≥≤+≥≤+, 当且仅当2a b ==时等号成立,则22222log log log log 22a b ab +=≤≤,当且仅当2a b ==时等号成立,故AC 错误,D 正确. 对于B 选项,1141414a b a ab ab b ++==≥⨯=, 当且仅当2a b ==时等号成立,故B 正确. 故选:BD10、(2022ꞏ辽宁辽阳ꞏ二模)(多选题)已知0a >,0b >,且24a b +=,则( ) A .124a b ->B .22log log 1a b +≤C ≥D .412528a b +≥ 【答案】BD【要点分析】由不等式的性质与基本不等式对选项逐一判断 【过程详解】对于A ,02a <<,()()42344,2a b a a a -=--=-∈-,所以12416a b -<<,故A 错误,对于B ,420a b =+≥>,即0<≤02ab <?,()222log log log 1a b ab +=≤,故B 正确,对于C ,228a b =++≤≤C 错误,对于D ,4122171725288488a b a b b a a b a b a b ++⎛⎫+=+=++≥+= ⎪⎝⎭,当且仅当825a b ==时,等号成立,故D 正确. 故选:BD11、(2022ꞏ福建莆田ꞏ模拟预测)(多选题)已知直线l :()100,0ax by a b ++=>>与圆C :221x y +=相切,则下列说法正确的是( )A .12ab ≥B .22114a b+≥C .2122a b +⎛⎫≤ ⎪⎝⎭D .11a b+≤【答案】BC 【要点分析】先根据直线和圆相切得到221a b +=,再利用基本不等式判定选项A 错误、选项B 、C 正确,利用反例得到选项D 错误. 【过程详解】因为直线l :10ax by ++=与圆C :221x y +=相切, 所以圆心(0,0)C 到直线l 的距离等于1,1=,即221a b +=,且0a >,0b >;对于A :因为222a b ab +≥且221a b +=,所以22122a b ab +=≤,即选项A 错误;对于B :因为221a b +=,所以222222222222112a b a b b a a b a b a b+++=+=++24≥+=(当且仅当2222b a a b =,即a b =时取等号), 即选项B 正确;对于C :因为222a b ab +≥且221a b +=, 所以222222224412()a b ab a a b b +++⎛⎫+⎭≤ ⎝=⎪=(当且仅当a b =时取等号), 即选项C 正确;对于D :当219a =且289b =时,1134a b +=+>即选项D 错误. 故选:BC.12、(2022ꞏ江苏ꞏ扬中市第二高级中学模拟预测)(多选题)已知0a >,0b >,且2a b ab +=,则( ) A.8ab ≥B .3a b +≤+C .24b >D .()()221log 1log 24a b -⋅-≤【答案】ACD 【要点分析】利用基本不等式判断AB ,由不等式性质和指数函数性质判断C .由基本不等式结合对数运算法则判断D . 【过程详解】对于A,2a b ab +=≥8ab ≥,当且仅当2a =,4b =时,等号成立.对于B ,2a b ab +=变形得211b a +=,所以()212213ab a b a b b a b a ⎛⎫+=++=+++≥+ ⎪⎝⎭当且仅当2a b b a =,即2b ==时,等号成立,故B 错误. 对于C ,因为211ba+=,所以201b<<,即2b >,则24b >. 对于D ,由2a b ab +=可得()()122a b --=,()()222log [(1)(2)]1log 1log 2a a b b -+---==,()()()()22222log 1log 2log 1log 22a b a b -+-⎡⎤-⋅-≤⎢⎥⎣⎦14=,当且仅当12a b -=-,即1a =,2b =+时等号成立. 故选:ACD .13、(2022ꞏ湖南衡阳ꞏ三模)(多选题)已知实数0a >,0b >,1a b +=.则下列不等式正确的是( ) A.22a b +≥ BC .112216a b ⎛⎫⎛⎫++≤ ⎪⎪⎝⎭⎝⎭D.222a b a b b a+≤++【答案】ABD 【要点分析】对于A 、D 利用1b a =-换元整理,22222abaa +=+,222211313a b a a b b a a a t t++==++-++-,再结合基本不等式;对于B 根据()2222a b a b ++≥,代入整理;对于C 113224a b ab ⎛⎫⎛⎫++=+ ⎪⎪⎝⎭⎝⎭,结合()24a b ab +≤计算处理. 【过程详解】∵1a b +=,则1b a =-∴12222222a b a a a a-+=+≥=+222aa =即12ab ==时等号成立A 正确;()222222211111a b a a a a b b a a a a a a a -++=+=+++--+-+令()11,2t a =+∈,则1a t =-221131333a t a a t t t t +==≤-+-++-3t t=即t 时等号成立 D 正确;∵22a b +≥,即212≥≤,当且仅当12a b ==时等号成立,B 正确; ∵()2144a b ab +≤=,当且仅当12a b ==时等号成立 ()421112121322416ab a b a b a b a b ab ab +++++⎛⎫⎛⎫++=⨯==+≥ ⎪⎪⎝⎭⎝⎭,C 不正确; 故选:ABD .14、(2022ꞏ辽宁葫芦岛ꞏ二模)(多选题)已知0a b >>,115a b a b+++=,则下列不等式成立的是( ) A .14a b <+<B .114b a a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭C .2211b a a b ⎛⎫⎛⎫+>+ ⎪ ⎪⎝⎭⎝⎭D .2211a b a b ⎛⎫⎛⎫+>+ ⎪ ⎪⎝⎭⎝⎭【答案】AB 【要点分析】AB 选项,利用基本不等式进行求解;CD 选项,利用作差法比较大小. 【过程详解】 115a b a b +++=,即5a b a b ab+++=,所以()5a b ab a b +=-+,因为0a b >>,所以由基本不等式得:()24a b ab +<,所以()()254a b a ba b ++<-+,解得:14a b <+<,A 正确;111224b a ab a b ab ⎛⎫⎛⎫++=++≥≥ ⎪⎪⎝⎭⎝⎭,当且仅当1ab ab =时等号成立,故B 正确; ()221111111111b a b a b a b a b a a b a b a b a b ab ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+-+=++++--=++++- ⎪ ⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,因为0a b >>,所以()11110b a b a a b ab ⎛⎫⎛⎫++++-< ⎪⎪⎝⎭⎝⎭,所以2211b a a b ⎛⎫⎛⎫+<+ ⎪ ⎪⎝⎭⎝⎭,C 错误;()221111111111a b a b a b a b b a a b a b a b a b ab ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+-+=++++--=+++-- ⎪ ⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,因为0a b >>,而1ab 可能比1大,可能比1小,所以()1111a b b a a b ab ⎛⎫⎛⎫+++-- ⎪⎪⎝⎭⎝⎭符号不确定,所以D 错误, 故选:AB15、(2022ꞏ河北ꞏ模拟预测)(多选题)已知220,0,2a b a b >>+=,则以下不等式成立的是( ) A .2a b +> B .332a b +≥C .114a b b a ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭ D .112a b +≥【答案】BCD 【要点分析】直接利用基本不等式即可判断ACD ,由2a b +≤,可得()()()33332a b a b a b +≥++,整理即可判断B.【过程详解】解:对于A ,因为220,0,2a b a b >>+=,所以()()22224a b a b +≤+=,所以2a b +≤,当且仅当1a b ==时取等号,故A 错误;对于B ,()()()33332a b a b a b +≥++4334a ab a b b =+++()()22222222=+-++a b a b ab a b ()()222222a b ab a b ab ab =+++-⋅ ()()222222a b ab a b ab =+++- ()()22224a b ab a b =++-≥,当且仅当1a b ==时取等号,所以()3324a b +≥,即332a b +≥,故B 正确;对于C ,111224a b ab b a ab ⎛⎫⎛⎫++=++= ⎪⎪⎝⎭⎝⎭≥,当且仅当1abab=,即1ab=时取等号,故C正确;对于D,112a b+≥≥=,当且仅当11a b=且a b=,即1a b==时取等号,故D正确.故选:BCD.。

2023年高考数学一轮复习精讲精练(新高考专用)专题33:空间几何体(练习版)

2023年高考数学一轮复习精讲精练(新高考专用)专题33:空间几何体(练习版)

专题33:空间几何体精讲温故知新一.空间几何体的结构1.多面体一般地,由若干个平面多边形围成的几何体叫做多面体。

围成多面体的各个多边形叫做多面体的面;两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点。

2.旋转体一条平面曲线,包括直线,绕它所在平面内的一条定直线旋转所成的曲面叫做旋转面。

封闭的旋转面围成的几何体叫做旋转体。

这条定直线叫做旋转体的轴。

3.棱柱一般地,有两个面互相平行,其余各面都是四边形,并且相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。

在棱柱中,两个互相平行的面叫做棱柱的底面,它们是全等的多边形,其余各面叫做棱柱的侧面,它们都是平行四边形,相邻两边的公共边叫做棱柱的侧棱,侧面和底面的公共顶点叫做棱柱的顶点。

棱柱的底面可以是三角形、四边形、五边形,我们把这样的棱柱分别叫做三棱柱、四棱柱、五棱柱。

一般地,我们把侧面垂直于底面的棱柱叫做直棱柱,侧面不垂直于底面的棱柱叫做斜棱柱,底面是正多边形的,直棱柱叫做正棱柱,底面是平行四边形的四棱柱,也叫做平行六面体。

4.棱锥一般地,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。

这个多边形面叫做棱锥的底面,有公共顶点的各个三角形面叫做棱锥的侧面,相邻两边的公共边叫做棱锥的侧棱,这侧面的公共顶点叫做棱锥的顶点。

棱锥,用表示顶点和各面各顶点的字母来表示,其中三棱锥又叫四面体,底面是正多边形并且顶点与底面中心的连线垂直于底面的棱锥叫做正棱锥。

5.棱台用一个平行于圆锥底面的平面去截棱锥,我们把底面和截面之间那部分多面体叫做棱台。

在棱台中,原棱锥的底面和截面分别叫做棱台的下底面和上底面面,类似于棱柱、棱锥,棱台也有侧面、侧棱和顶点。

6.圆柱与矩形的一边所在直线为旋转轴,其余三边旋转一周形成的面所围成的旋转体叫做圆柱。

旋转轴叫做圆柱的轴,垂直于轴的边旋转而成的圆面,叫做圆柱的底面,平行的边旋转而成的曲面叫做圆柱的侧面,无论旋转到什么位置,平行于轴的边叫做圆柱侧面的母线。

高考数学复习考点知识与结论专题讲解33 数列的概念和性质

高考数学复习考点知识与结论专题讲解33 数列的概念和性质

高考数学复习考点知识与结论专题讲解第33讲 数列的概念和性质通关一、数列的概念一般地,按一定次序排列的一列数叫作数列,数列中的每一个数叫作这个数列的项.数列的一般形式可以写成:123,,,,,n a a a a ,简记为{}n a ,其中数列的第1项1a ,也称首项;数列的第n 项n a ,也叫数列的通项. 要点诠释:(1){}n a 与n a 的含义完全不同:{}n a 表示一个数列,n a 表示数列的第n 项;(2)数列的项与项数是两个不同的概念:数列的项是指数列中的某一个确定的数,而项数是指这个数在数列中的位置序号;(3)数列中的数是按一定次序排列的,因此,如果组成两个数列的数相同序排列次序不同,那么它们就是不同的数列;(4)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出.通关二、数列的分类1,2,3,4,,100 ,,n3,4,5,,n1,,20156,6,6,6,2,3,4,-1,1,1,-1,3,4,4,通关三、数列的通项公式如果数列{}n a 的第n 项n a 与n 之间的函数关系可以用一个公式表示成n a ()f n =,那么这个公式就叫作这个数列的通项公式,数列的通项公式就是相应函数的解析式. 要点诠释:(1)并不是所有数列都能写出其通项公式.(2)一个数列的通项公式有时是不唯一的.如数列:1,0,1,0,1,0,通项公式可以是11(1)2n n a ++-=,也可以是sin 2n n a π=.(3)数列通项公式的作用: ①求数列中任意一项;②检验某数是否是该数列中的一项.(4)数列的通项公式具有双重身份,它表示了数列的第n 项,又是这个数列中所有各项的一般表示.通关四、数列{}n a 的前n 项和数列{}n a 的前n 项和:指数列{}n a 的前n 项逐个相加之和,通常用n S 表示,即12n n S a a a =+++,1*1(1)2(n n n S n a S S n n -=⎧⎪=⎨-∈⎪⎩N )且….结论一、数列通项公式给出数列的前几项求通项时,需要注意观察数列中各项与其序号之间的关系,在所给数列的前几项中,先看看哪些部分是变化的,哪些是不变的,再探索各项中变化部分与序号间的关系,主要从以下几个方面来考虑:(1)分式形式的数列,分子、分母分别求通项,较复杂的还要考虑分子、分母的关系; (2)若第n 项和第1n +项正负交错,那么符号用(1)n-或1(1)n +-或1(1)n --来调控;(3)熟悉一些常见数列的通项公式;(4)对于较复杂数列的通项公式,其项与序号之间的关系不容易发现,这就需要将数列各项的结构形式进行变形,将数列的各项分解成若干个常见数列对应项的“和”“差”“积”“商”后再进行归纳.【例1】根据数列的前几项,写出下列各数列的一个通项公式.(1)4142,,,,52117;(2)1925,2,,8,,222;(3)7,77,777,; (4)0,3,8,15,24,.【答案】(1)432n a n =+(2)22n n a =(3)()71019n n a =-(4)21n a n =-【解析】(1)注意前四项中有两项的分子为4,不妨把分子统一为4,即为4444,,,581114,,它们的分母相差3,因而有432n a n =+. (2)把分母统一为2,则有1491625,,,,,22222,因而有22n n a =.(3)把各项除以7,得到1,11,111,,再乘以9,得到9,99,999,,因而有()71019n n a =-. (4)观察数列递增速度较快,用平方数列对照看一看,即222221,2,3,4,5,,则有21n a n =-.【变式】根据数列的前几项,写出下列各数列的一个通项公式(1)23451,,,,,3579;(2)3143984,,,,251017;(3)392565,,,,24816;(4)5791,,,,81524--.【答案】(1)21n n -(2)221n n n ++(3)12n n +(4)1221(1)2n n n n ++-+【解析】(1)先将数列23451,,,,,3579,第1项也化为分数,数列变为12345,,,,13579,此时可以看出分子是按正整数顺序排列,分母是按奇数排列,因此此数列的通项公式为21n na n =-. (2)将数列各项化为带分数,即149161,2,3,4,251017,可以发线正整数部分是按正整数顺序排列的,分数部分各分子均为2n ,分母都比分子大1,所以分数部分的通项公式为221n n +.两部分合成为221n n a n n =++.(3)将数列各项化为带分数,即11111,2,3,4,24816,可以发现整数部分是按正整数顺序排列的,分数部分各分子均为1,分母是2n,所以两部分合成为12nn +. (4)先将数列各项取为正数,即为5791,,,,81524,再将第1项也化为分数(注意第1项化为分子符合各项分子变化规律的分数)即为3579,,,,381524,可以观察出各项分子是3开始的奇数,通项公式可以写为21n +,分母排成的数列后项与前项的差呈现出等差数列规律,求出分母的通项公式是22n n +,合起来为2212n n n ++,再考虑正负号变化规律,即可得出通项公式为1221(1)2n n n n++-+. 结论二、数列的周期性对于数列{}n a ,如果存在一个常数()*T T ∈N,使得对任意的正整数0n n >,恒有n Tn aa +=成立,则称数列{}n a 是从第0n 项起的周期为T 的周期数列.若01n =,则称数列{}n a 为纯周期数列,若02n …,则称数列{}n a 为混周期数列,T 的最小值称为最小正周期,简称周期. 【例2】设数列{}n a 满足1112,1n na a a +==-,记数列{}n a 前n 项之积为n T ,则2020T 的值为(). A.2 B 1 C.1-D.2-【答案】D 【解析】因为12a =,111n n a a +=-,所以211112a a =-=,32111a a =-=-,43112a a =-=,即数列{}n a 是周期为3的周期数列,且1231a a a ⋅⋅=-,故673202067331(1)22T T ⨯+==-⨯=-.故选D.【变式】数列{}n a 满足112,02121,12n n n n n a a a a a +⎧<⎪⎪=⎨⎪-<⎪⎩……,若167a =,则20a 的值为().A.67B57C.37D.17【答案】B【解析】因为数列{}n a 满足112,02121,12n n n n n a a a a a +⎧<⎪⎪=⎨⎪-<⎪⎩……,167a =,所以215217a a =-=,323217a a =-=,43627a a ==,所以数列{}n a 是周期为3的循环数列,所以20257a a ==.故选B.结论三、已知n S 求n a 的一般步骤任意数列{}n a 的前n 项和1121(1);(2)n n n nn S n S a a a a S S n -=⎧=+++=⎨-⎩….要点诠释:由前n 项和n S 求数列通项时,要分三步进行: (1)先利用11a S =求出1a ;(2)用1n -替换n S 中的n 得到一个新的关系,利用1,2n n n a S S n -=-…便求出当2n …时n a 的表达式;(3)对1n =时的结果进行检验,看是否符合2n …时n a 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分1n =与2n …两段来写. 【例3】已知数列{}n a 的前n 项和为21n S n =-,则其通项公式na =__________.【答案】0,121,2n n n =⎧⎨-⎩…【解析】因为已知数列{}n a 的前n 项和21n S n =-,所以当1n =时,110a S ==,当2n …时,1n n n a S S -=-22221(1)1(1)21n n n n n ⎡⎤=----=--=-⎣⎦,经检验,1n =时,1a 不满足上述式子,故数列{}n a 的通项公式0,1.21,2n n a n n =⎧=⎨-⎩…【变式】已知数列{}n a 的前n 项和31nn S =+,则其通项公式na =__________.【答案】14,123,2n n n -=⎧⎨⋅⎩… 【解析】当1n =时,11314a S ==+=;当2n …时,()()111131312323nnnnn n na S S ----=-=+-+=⋅=⋅.当1n =时,111232a -⨯=≠,所以14,1.23,2n n na n -=⎧=⎨⋅⎩…结论四、n a 与n S 混合在一起的处理方法数列{}n a 的前n 项和n S 与通项n a 的关系为11,1,2n nn S n a S S n -=⎧=⎨-⎩…,通过纽带:1(2)n n n a S S n -=-…,根据题目已知条件,消掉n a 或n S ,再通过构造成等差数列或者等比数列进行求解. 要点诠释:(1)若消掉n S ,应利.用已知递推式,把n 换成1n -得到另一个式子,两式相减即可求得通项. (2)若消掉n a ,只需把1n n n a S S -=-代入递推式得到n S ,1n S -的关系,求出n S 后再利用n a 与n S 的关系求通项.【例4】若数列{}n a 的前n 项和为2133n n S a =+,则1a =数列{}n a 的通项公式n a =__________.【答案】11(2)n --【解析】由已知条件得,当1n =时,112133a a =+,故11a =.当2n …时,2133n n S a =+,112133n n S a --=+,所以12233n n n a a a -=-,即12n n a a -=-.所以{}n a 是以1为首项,2-为公比的等比数列,所以1(2)n n a -=-.【变式】已知数列{}n a 的前n 项和n S ,若1111,3n n a S a +==,则7a =().A.74B. 534⨯C. 634⨯D. 641+【答案】B【解析】由113n n S a +=,可得11,23n n S a n -=…,两式相减可得:111,233n n n a a a n +=-…,即14,2n n a a n +=….数列{}n a 是从第二项起的等比数列,公比为4, 因为113n n S a +=,11a =.所以23a =.所以72572434a a -==⨯.故选B.结论五、数列单调性的判断方法①作差法:10n n a a +->⇔数列{}n a 是递增数列; 10n n a a +-<⇔数列{}n a 是递减数列; 10n n a a +-=⇔数列{}n a 是常数列.②作商法:当0n a >时,11n n a a +>⇔数列{}n a 是递增数列; 11n na a +<⇔数列{}n a 是递减数列; 11n na a +=⇔数列{}n a 是常数列. 当0n a <时,11n na a +>⇔数列{}n a 是递减数列; 11n na a +<⇔数列{}n a 是递增数列; 11n na a +=⇔数列{}n a 是常数列. 【例5】已知{}n a 是递增数列,且对于任意的*2,n n a n n λ∈=+N 恒成立,则实数λ的取值范围是__________. 【答案】3λ>-【解析】解法一(定义法)因为{}n a 是递增数列,所以对任意的*n ∈N ,都有1n a +>n a ,即22(1)(1)n n n n λλ+++>+,整理得210n λ++>,即(21)(*)n λ>-+. 因为1n …,所以(21)3n -+-…,要使不等式(*)恒成立,只需3λ>-.解法二(函数法)设2()n f n a n n λ==+,其图像的对称轴为直线2n λ=-,要使数列{}n a 为递增数列,只需使定义在正整数上的函数()f n 为增函数,故只需满足(1)(2)f f <,即3λ>-. 【变式】已知数列{}n a 的通项公式为(37)0.9n n a n =+⨯,则数列{}n a 的最大项是().A.5aB. 6aC. 7aD. 8a 【答案】C 【解析】由1310913710n n a n a n ++=⨯>+,解得203n <,又*n ∈N ,所以6n ….于是12a a <<7a <,当7n …时,11n na a +<, 故78a a >>, 因此最大项为7a .故选C .。

浙江省2021届理科数学复习试题选编32抛物线(学生版)

浙江省2021届理科数学复习试题选编32抛物线(学生版)

浙江省2021届理科数学复习试题选编32:抛物线〔学生版〕一、选择题1 .〔浙江省永康市2021年高考适应性考试数学理试题 〕抛物线1C :y x 22=的焦点为F ,以F 为圆心的圆2C 交1C 于,A B ,交1C 的准线于,C D ,假设四边形ABCD 是矩形,那么圆2C 的方程为 〔 〕 A .221()32x y +-= B . 221()42x y +-= C .22(1)12x y +-=D .22(1)16x y +-=2 .〔浙江省五校联盟2021届高三下学期第一次联考数学〔理〕试题〕P 为抛物线x y 42=上一个动点,Q 为圆1)4(22=-+y x 上一个动点,那么点P 到点Q 的距离与点P 到y 轴距离之和最小值是 〔 〕 A .171+ B .172- C .25+ D .171-3 .〔浙江省宁波市金兰合作组织2021届高三上学期期中联考数学〔理〕试题〕过抛物线24y x =的焦点F 的直线交抛物线于,A B 两点,点O 是原点,假设3AF =,那么AOB ∆的面积为〔 〕A .22B .2C .322D .224 .〔浙江省诸暨中学2021届高三上学期期中考试数学〔理〕试题〕抛物线24y x =的焦点为F ,准线l 与x轴相交于点E ,过F 且倾斜角等于60°的直线与抛物线在x 轴上方的局部相交于点A ,AB l ⊥,垂足为B ,那么四边形ABEF 的面积等于 〔 〕 A .33B .43C .63D .835 .〔浙江省湖州市2021年高三第二次教学质量检测数学(理)试题(word 版) 〕直线3440x y -+=与抛物线24x y =和圆()2211x y +-=从左到右的交点依次为A B C D ,,,,那么ABCD的值为 〔 〕A .16 B .116C .4D .14 6 .〔浙江省杭州四中2021届高三第九次教学质检数学〔理〕试题〕抛物线y 2=2px(p>0)的焦点F 恰好是双曲线12222=-b y a x 的右焦点,且两条曲线的交点的连线过F,那么该双曲线的离心率为〔 〕A .2B .2C .12+ D .12-7 .〔浙江省温州市2021届高三第二次模拟考试数学〔理〕试题〕抛物线y 2=2px(p>0)的准线交x 轴了点C,焦点为F. 〔 〕 A .B是抛物线的两点.己知〔 〕 A .B,C三点共线,且|AF|,|BF|成等差数列,直线AB的斜率为k,那么有 〔 〕A .412=k B .432=k C .212=k D .232=k 非选择题局部(共100分)8 .〔浙江省温州八校2021届高三9月期初联考数学〔理〕试题〕设动圆M 与y 轴相切且与圆C :0222=-+x y x 相外切, 那么动圆圆心M 的轨迹方程为〔 〕 A .24y x = B .24y x =-C .24y x =或0(0)y x =<D .24y x=或0y =9 .〔浙江省温岭中学2021届高三冲刺模拟考试数学〔理〕试题〕如图,点P 是双曲线C :)0,0(12222>>=-b a b y a x 左支上一点,F 1,F 2是双曲线的左、右两个焦点,且PF 1⊥PF 2,PF 2与两条渐近线相交于M ,N两点,点N 恰好平分线段PF 2,那么双曲线的离心率是 〔 〕A .5B .2C .3D .2二、填空题10.〔浙江省嘉兴市第一中学2021届高三一模数学〔理〕试题〕己知抛物线y 2=4x 的焦点为F,假设点A, B 是该抛物线上的点,2π=∠AFB ,线段AB 的中点M 在抛物线的准线上的射影为N,那么||||AB MN 的最大值为____. 11.〔浙江省温岭中学2021届高三高考提优冲刺考试〔三〕数学〔理〕试题 〕F 为抛物线)0(2>=a ay x 的焦点,O 为坐标原点.点M 为抛物线上的任一点,过点M 作抛物线的切线交x 轴于点N ,设21,k k 分别为直线MO 与直线NF 的斜率,那么=21k k ________.12.〔浙江省2021年高考模拟冲刺〔提优〕测试一数学〔理〕试题〕抛物线C :)0(22>=p px y 的焦点为F ,准线与x 轴交于M 点,过M 点斜率为k 的直线l 与抛物线C 交于A 、B 两点,假设||45||AF AM =,那么k 的值_______.13.〔浙江省一级重点中学〔六校〕2021届高三第一次联考数学〔理〕试题〕直线()y k x m =-与抛物线22(0)y px p =>交于B A ,两点,且OA OB ⊥,又OD AB ⊥于D , 假设动点D 的坐标满足方程2240x y x +-=,那么m =_______.14.〔浙江省宁波市2021届高三第二次模拟考试数学〔理〕试题〕曲线12221,22:4:l x y C x y C 直线和-=+=与C 1、C 2分别相切于A 、B,直线2l ,(不同于1l )与C 1、C 2分别相切于点C 、D,那么AB 与CD 交点的横坐标是__________.15.〔浙江省黄岩中学2021年高三5月适应性考试数学(理)试卷 〕抛物线)0(2:2>=p px y M焦点为F ,直线2pmy x +=与抛物线M 交于B A ,两点,与y 轴交于点C ,且||||BF BC =,O 为坐标原点,那么BOC ∆与AOC ∆面积的比值为________.16.〔浙江省温州市2021届高三第三次适应性测试数学(理)试题〔word 版〕 〕点),(a a A ,)1,1(++a a B ,动点P 到点)0,1(M 的距离比到2-=x 的距离小1的轨迹为曲线C ,且线段AB 与曲线C 有且仅有一个焦点,那么a 的取值范围是______.17.〔浙江省温州十校联合体2021届高三期中考试数学〔理〕试题〕在平面直角坐标系xOy 中,焦点为F 的抛物线y 2=2x 上的点P 到坐标原点O 的距离为15,那么线段PF 的长为_____.18.〔浙江省温岭中学2021届高三冲刺模拟考试数学〔理〕试题〕P 为抛物线C :x y 42=上一点,假设P 点到抛物线C 准线的距离与到顶点距离相等,那么P 点到x 轴的距离为_____________.19.〔2021年普通高等学校招生统一考试浙江数学〔理〕试题〔纯WORD 版〕〕设F 为抛物线x y C 4:2=的焦点,过点)0,1(-P 的直线l 交抛物线C 于两点B A ,,点Q 为线段AB 的中点,假设2||=FQ ,那么直线的斜率等于________.20.〔浙江省六校联盟2021届高三回头联考理科数学试题〕过抛物线24y x =的焦点作一条倾斜角为a,长度不超过8的弦,弦所在的直线与圆2234x y +=有公共点,那么a 的取值范围是_______________ 21.〔浙江省海宁市2021届高三2月期初测试数学〔理〕试题〕抛物线26y x =,准线l 与x 轴交于点M ,过M作直线交抛物线于,A B 两点(A 在,M B 之间),点A 到l 的距离为2,那么||||AB MA =____. 三、解答题22.〔浙江省杭州二中2021届高三6月适应性考试数学〔理〕试题〕抛物线2:4C y x =,直线:l y x b =-+与抛物线交于,A B 两点.(Ⅰ)假设以AB 为直径的圆与x 轴相切,求该圆的方程; (Ⅱ)假设直线l 与y 轴负半轴相交,求AOB ∆面积的最大值.23.〔浙江省嘉兴市2021届高三第二次模拟考试理科数学试卷〕如图,抛物线py x C 2:21=的焦点在抛物线121:22+=x y C 上,点P 是抛物线1C 上的动点. (Ⅰ)求抛物线1C 的方程及其准线方程;(Ⅱ)过点P 作抛物线2C 的两条切线,M 、N 分别为两个切点,设点P 到直线MN 的距离为d ,求d 的最小值.24.〔温州市2021年高三第一次适应性测试理科数学试题〕点11(,)A x y ,22(,)B x y 是抛物线24y x =上相异两点,且满足122x x +=.(Ⅰ)假设AB 的中垂线经过点(0,2)P ,求直线AB 的方程;(Ⅱ)假设AB 的中垂线交x 轴于点M ,求AMB ∆的面积的最大值及此时直线AB 的方程.25.〔浙江省宁波市2021届高三第一学期期末考试理科数学试卷〕如图,设点2213(,):(1)4P m n C x y ++=是圆上的动点,过点P 作抛物线22:(0)C x ty t =>的两条切线,切点分别是A 、B.圆C 1的圆心M 在抛物线C 2的准线上. (I)求t 的值;(Ⅱ)求PA PB ⋅的最小值,以及取得最小值时点P 的坐标.OxyPMN 1C 2C 〔第21题〕26.〔浙江省建人高复2021届高三第五次月考数学〔理〕试题〕抛物线22212:,: 1.4y C y x C x =+=椭圆 (1)设12,l l 是C 1的任意两条互相垂直的切线,并设12l l M =,证明:点M 的纵坐标为定值;(2)在C 1上是否存在点P ,使得C 1在点P 处切线与C 2相交于两点A 、B ,且AB 的中垂线恰为C 1的切线?假设存在,求出点P 的坐标;假设不存在,说明理由.27.〔浙江省温州中学2021届高三第三次模拟考试数学〔理〕试题〕如图,抛物线C :2ax y =)0(>a 与射线1l :12-=x y )0(≥x 、2l :)0(12≤--=x x y 均只有一个公共点,过定点)1,0(-M 和)41,0(N 的动圆分别与1l 、2l 交于点A 、B ,直线AB 与x 轴交于点P . (Ⅰ)求实数a 及NP AB ⋅的值;(Ⅱ)试判断:||||MB MA +是否为定值?假设是,求出该定值;假设不是,说明理由.28.〔浙江省2021年高考模拟冲刺〔提优〕测试二数学〔理〕试题〕圆C 的圆心在y 轴上,且与两直线l 1:0105=+-+y x ;l 2:0105=--+y x 均相切. (I)求圆C 的方程;(II)过抛物线2ax y =上一点M ,作圆C 的一条切线ME,切点为E,且MC ME ⋅的最小值为4,求此抛物线准线的方程.29.〔浙江省乐清市普通高中2021届高三上学期期末教学质量检测数学〔理〕试题〕点F 是抛物线yx C 4:21=与椭圆)0(1:22222>>=+b a b x a y C 的公共焦点,且椭圆的离心率为21. (1)求椭圆C 的方程;(2)设P 是在x 轴上方的椭圆上任意一点,F 是上焦点,过P 的直线PQ 与圆222b y x =+相切于Q 点,问:||||PQ PF +是否为定值,假设是,求出该定值;假设不是,请说明理由.30.〔浙江省温岭中学2021届高三冲刺模拟考试数学〔理〕试题〕以抛物线my x 22=(0>m )的顶点O 为圆心的圆,截该抛物线的准线所得的弦长为m 3 (Ⅰ)求圆C 的方程;(Ⅱ)过圆C 上任一点M 作该圆的切线l ,它与椭圆1222=+y a x (R a ∈,且2>a )相交于A 、B 两点,当OB OA ⊥时,求m 的可能取值范围.31.〔浙江省绍兴一中2021届高三下学期回头考理科数学试卷〕抛物线)0(2:2>=p py xC 的焦点为F ,抛物线上一点A 的横坐标为1x )0(1>x ,过点A 作抛物线C 的切线1l 交x 轴于点D ,交y 轴于点Q ,交直线:2pl y =于点M ,当2||=FD 时, 60=∠AFD . (1)求证:AFQ ∆为等腰三角形,并求抛物线C 的方程;(2)假设B 位于y 轴左侧的抛物线C 上,过点B 作抛物线C 的切线2l 交直线1l 于点P ,交直线于点N ,求PMN ∆面积的最小值,并求取到最小值时的1x 值.32.〔浙江省温州十校联合体2021届高三期中考试数学〔理〕试题〕假设椭圆2212:1(02)4x y C b b +=<<的离心率等于32,抛物线22:2(0)C x py p =>的焦点在椭圆的顶点上. (1)求抛物线2C 的方程;(2)过(1,0)M -的直线l 与抛物线2C 交P , Q 两点,又过P , Q 作抛物线2C 的切线12,l l ,当12l l ⊥时,求直线l 的方程.33.〔浙江省嘉兴市2021届高三上学期根底测试数学〔理〕试题〕如图,11(,)A x y ,22(,)B x y 是抛物线2:2C x py =(p 为正常数,p>0)上的两个动点,直线AB 与x 轴交于点P,与y 轴交于点Q,且2124p y y = (Ⅰ)求证:直线AB 过抛物线C 的焦点; (Ⅱ)是否存在直线AB,使得113?PA PB PQ+=假设存在,求出直线AB 的方程;假设不存在,请说明理由.34.〔浙江省杭州市2021届高三第二次教学质检检测数学〔理〕试题〕直线y=2x-2与抛物线x 2=2py(p>0)交于M 1,M 2两点,直线y=2p与y 轴交于点F.且直线y =2p恰好平分∠M 1FM 2. (I)求P 的值; (Ⅱ)设A 是直线y=2p 上一点,直线AM 2交抛物线于另点M 3,直线M 1M 3交直线y=2p于点B,求OA ·OB 的值.35.〔浙江省宁波市金兰合作组织2021届高三上学期期中联考数学〔理〕试题〕在平面直角坐标系xOy 中,F是抛物线2:2(0)C x py p =>的焦点,M 是抛物线C 上位于第一象限内的任意一点,过,,M F O 三点的圆的圆心为Q ,点Q 到抛物线C 的准线的距离为34. (Ⅰ)求抛物线C 的方程;(Ⅱ)是否存在点M ,使得直线MQ 与抛物线C 相切于点M ?假设存在,求出点M 的坐标;假设不存在,说明理由;(Ⅲ)假设点M 的横坐标为2,直线1:4l y kx =+与抛物线C 有两个不同的交点,A B ,l 与圆Q 有两个不同的交点,D E ,求当122k ≤≤时,22AB DE +的最小值. 36.〔浙江省金华十校2021届高三4月模拟考试数学〔理〕试题〕抛物线2:2(0),C y px p M =>点的坐标为(12,8),N 点在抛物线C 上,且满足3,4ON OM =O 为坐标原点.(II)以点M 为起点的任意两条射线12,l l 关于直线l :y=x —4,并且1l 与抛物线C 交于A 、B 两点,2l 与抛物线C 交于D 、E 两点,线段AB 、DE 的中点分别为G 、H 两点.求证:直线GH 过定点,并求出定点坐标.浙江省2021届理科数学复习试题选编32:抛物线〔学生版〕参考答案一、选择题 1. B 2. B 3. C 4. C 5. B 6. C 7. D 8. C9. A.⎪⎩⎪⎨⎧=+=-22222221c y x by a x 得,c b y P 2=,∴c b y N 22=,得c ab x N 2=,从而c c ab x P 2-=. ∵P 是双曲线上,∴1)(2242222=--c b b c a c ab ,化简得,b a =2,得5=e .二、填空题10.211. 21-解析:设),(200a x x M ,那么过点M 的抛物线的切线方程为:ax x x a x y 2000)(2+-=,令0=y 得:021x x N =,故)0,2(0x N ,)4,0(aF ,即:022x a k k NF -==,又axx a x k k MO 0021===,故2121-=k k12. 34±13. 414.12 15. 4116. [1,0][3,4]-⋃ 17.7218. 2;得P 点到焦点距离与到顶点距离相等,∴214==p x P ,得2||=P y . 19. 1±20.21. 2 三、解答题22.解:(Ⅰ)联立24y x b y x=-+⎧⎨=⎩,消x 并化简整理得2440y y b +-=. 依题意应有16160b ∆=+>,解得1b >-.设1122(,),(,)A x y B x y ,那么12124,4y y y y b +=-=-,设圆心00(,)Q x y ,那么应有121200,222x x y y x y ++===-. 因为以AB 为直径的圆与x 轴相切,得到圆半径为0||2r y ==, 又222121212||()()(11)()2(1616)AB x x y y y y b =-+-=+-=+ .所以||22(1616)4AB r b ==+=,解得12b =-. 所以121203222x x y b y b x +-+-+===,所以圆心为3(,2)2-.故所求圆的方程为223()(2)42x y -++=.(Ⅱ)因为直线l 与y 轴负半轴相交,所以0b <,又直线l 与抛物线交于两点,由(Ⅰ)知1b >-,所以10b -<<,点O 到直线l 的距离||2b d =, 所以211||||2(1616)2(1)222AOB b S AB d b b b ∆==+=+. 令223()(1)g b b b b b =+=+,10b -<<22'()323()3g b b b b b =+=+,()g b ∴在2(1,)3--增函数,在2(,0)3-是减函数()g b ∴的最大值为24()327g -=. 所以当23b =-时,AOB ∆的面积取得最大值43923.解:(Ⅰ)1C 的焦点为)2,0(pF , 所以102+=p,2=p 故1C 的方程为y x 42=,其准线方程为1-=y(Ⅱ)设),2(2t t P ,)121,(211+x x M ,)121,(222+x x N ,那么PM 的方程:)()121(1121x x x x y -=+-,所以12122112+-=x tx t ,即02242121=-+-t tx x . 同理,PN :121222+-=x x x y ,02242222=-+-t tx x MN 的方程:)()121(121)121(121222121x x x x x x x y --+-+=+-, 即))((21)121(12121x x x x x y -+=+-. 由⎪⎩⎪⎨⎧=-+-=-+-0224022422222121t tx x t tx x ,得t x x 421=+,21211221t tx x -=- 所以直线MN 的方程为222t tx y -+=于是222222241)1(241|24|t t t t t t d ++=+-+-=. 令)1(412≥+=s t s ,那么366216921=+≥++=s s d (当3=s 时取等号). 所以,d 的最小值为324.方法一:解:(I)当AB 垂直于x 轴时,显然不符合题意,所以可设直线AB 的方程为y kx b =+,代入方程24y x =得: ∴122422kbx x k-+== 得:2b k k=- ∴直线AB 的方程为2(1)y k x k=-+∵AB 中点的横坐标为1,∴AB 中点的坐标为2(1,)k∴AB 的中垂线方程为1213(1)y x x k k k k=--+=-+∵AB 的中垂线经过点(0,2)P ,故32k =,得32k =∴直线AB 的方程为3126y x =-(Ⅱ)由(I)可知AB 的中垂线方程为13y x k k=-+,∴M 点的坐标为(3,0)因为直线AB 的方程为2220k x ky k -+-=∴M 到直线AB的距离d ==由222204k x ky k y x⎧-+-=⎨=⎩得222204k y ky k -+-=,∴214(1AMB S k ∆=+,t =,那么01t <<, 234(2)48S t t t t =-=-+,2'128S t =-+,由'0S =,得t =即k =时max S =此时直线AB的方程为30x -= (此题假设运用根本不等式解决,也同样给分) 法二:(1)根据题意设AB 的中点为(1,)Q t ,那么2121222121244AB y y y y k y y x x t--===--由P 、Q 两点得AB 中垂线的斜率为2k t =-,由2(2)1t t -⋅=-,得43t = ∴直线AB 的方程为3126y x =-(2)由(1)知直线AB 的方程为2(1)y t x t-=- AB 中垂线方程为(1)2ty t x -=--,中垂线交x 轴于点(3,0)M点M 到直线AB的距离为d ==由22(1)4y t x ty x⎧-=-⎪⎨⎪=⎩得:22248(2)0x x t -+-= 当243t =时,S,此时直线AB方程为310x ±-=25. 26.即27.解:(I)联立221y ax y x ⎧=⎨=-⎩得:2210ax x -+=设动圆()222235:88Q x t y t ⎛⎫⎛⎫-++=+ ⎪ ⎪⎝⎭⎝⎭(5544t -<<,圆与1l ,2l 相切时取到等号)联立()2222135:88:21Q x t y t l y x ⎧⎛⎫⎛⎫-++=+⎪ ⎪ ⎪⎨⎝⎭⎝⎭⎪=-⎩得:214,525t t A ⎛⎫+ ⎪⎝⎭ 同理得:214,525t t B ⎛⎫--⎪⎝⎭4821:5552AB t t t l y x ⎛⎫⎛⎫∴-=-+ ⎪ ⎪⎝⎭⎝⎭,令0y =得2,05t P ⎛⎫ ⎪⎝⎭(Ⅱ)||||MB MA +=5544t t ⎫++-=⎪⎭是定值. (动圆()222235:88Q x t y t ⎛⎫⎛⎫-++=+ ⎪ ⎪⎝⎭⎝⎭,5544t -<<,圆与1l ,2l 相切时取到等号)(或由A B y y =,及几何法得||||MB MA+=28.29. 解:(1)∵1=c ,21=a c ∴2=a ,即椭圆方程为13422=+x y(2)设),(y x P ,那么∴2||||=+PQ PF =定值30.解(Ⅰ):抛物线的准线方程是2my -=(0>m ),由于圆C 截抛物线的准线所得的弦长为m 3,所以圆C 的半径m m m r =⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=22232,故所求圆的方程是222m y x =+ 31.解:(1)设⎪⎪⎭⎫ ⎝⎛p x x A 2,211,那么A 处的切线方程为p x x p x y l 2:2111-=,所以⎪⎭⎫ ⎝⎛0,21x D ,⎪⎪⎭⎫ ⎝⎛-p x Q 2,021 所以AF px p FQ =+=2221;即AFQ ∆为等腰三角形又D 为线段AQ 的中点,所以4=AF ,得:⎪⎩⎪⎨⎧=+=+1642222121p x p x p 所以2=p ,.4:2y x C =(2)设)0(),(222<x y x B ,那么B 处的切线方程为42222xx x y -=由)4,2(42422121222211x x x x P x x x y xx x y +⇒⎪⎪⎩⎪⎪⎨⎧-=-=,由)1,22(14211211x x M y x x x y +⇒⎪⎩⎪⎨⎧=-=,同理)1,22(22x x N +, 所以面积212211221221116)4)(()41)(2222(21x x x x x x x x x x x x S --=---+=① 设AB 的方程为b kx y +=,那么0>b 由044422=--⇒⎩⎨⎧=+=b kx x yx b kx y ,得⎩⎨⎧-==+b x x kx x 442121代入①得:bbk b b b b k S ++=++=2222)1(64)44(1616,要使面积最小,那么应0=k ,得到bbb S 2)1(+=② 令t b =,得t t t t t t S 12)1()(322++=+=,222)1)(13()(tt t t S +-=', 所以当)33,0(∈t 时)(t S 单调递减;当),33(+∞∈t )(t S 单调递增, 所以当33=t 时,S 取到最小值为9316,此时312==t b ,0=k , 所以311=y ,即3321=x32.解:(1)由椭圆方程得2a =,c e a ==所以c =1b == 由题意得:抛物线的焦点应为椭圆的上顶点,即(0,1) 所以2p = 抛物线方程为24x y =(2) 可判断直线l 的斜率存在,设直线l 的方程为(1)y k x =+ 设P Q 、坐标为1122(,),(,)x y x y 联立2(1)4y k x x y=+⎧⎨=⎩ 整理得 2440x kx k --=33. (Ⅰ)由题意知,直线AB 的斜率存在,且不为零.设直线AB 的方程为:b kx y += (0≠k ,0>b )由⎩⎨⎧=+=pyx b kx y 22,得0222=--pb pkx x . ∴⎪⎩⎪⎨⎧-==+>+=∆pb x x pk x x pb k p 22084212122, ∴2222121214)2(22b ppb p x p x y y =-=⋅=. ∵4221p y y =,∴422p b =,∵0>b ,∴2p b =.∴直线AB 的方程为:2pkx y +=.抛物线C 的焦点坐标为)2,0(p,∴直线AB 过抛物线C 的焦点 (Ⅱ)假设存在直线AB ,使得||3||1||1PQ PB PA =+, 即3||||||||=+PB PQ PA PQ . 作x AA ⊥/轴,x BB ⊥/轴,垂足为/A 、/B ,∴212121//222||||||||||||||||y y y y p y py p BB OQ AA OQ PB PQ PA PQ +⋅=+=+=+ ∵p pk p x x k y y +=++=+221212)(,4221p y y =∴||||||||PB PQ PA PQ +=42222pp pk p +⋅=242+k 由3242=+k ,得21±=k . 故存在直线AB ,使得||3||1||1PQ PB PA =+.直线AB 方程为221p x y +±= 34.(第21题)(Ⅰ) 由⎩⎨⎧=-=pyx x y 2222 ,整理得0442=+-p px x ,设MR 1R(11,y x ),MR 2R(22,y x ),那么⎪⎩⎪⎨⎧=⋅=+>-=∆p x x p x x p p 440161621212 ,∵ 直线2py =平分21FM M ∠,∴ 021=+F M F M k k ,∴ 0)22(42121=⋅+⋅+-x x x x p ,∴ 4=p ,满足0>∆,∴4=p (Ⅱ) 由(1)知抛物线方程为y x 82=,且⎩⎨⎧==+16162121x x x x ,)8,(2111x x M ,)8,(2222x x M ,设)8,(2333xx M ,A )2,(t ,)2,(a B ,由A 、MR 2R 、MR 3R 三点共线得232AM M M k k =,∴ t x x x x --=+22232288,即:16)(22323222-=+-+x x x t x x x , 整理得:16)(3232-=+-x x t x x , ①由B 、MR 3R 、MR 1R 三点共线,同理可得 16)(3131-=+-x x a x x , ② ②式两边同乘2x 得:2322132116)(x x x x x a x x x -=+-, 即:232316)16(16x x x a x -=+-, ③由①得:16)(3232-+=x x t x x ,代入③得:23231616)(1616x a x x ta a x -=++--, 即:)()(163232x x at x x +=+,∴ 16=at . ∴ 204=+=⋅at OB OA35.225'()828f t t t =--,当554t ≤≤时,5'()'()64f t f ≥=,()f t 在5,54⎡⎤⎢⎥⎣⎦递增,故当54t =,即12k =时,有最小值13236.。

2023年高考数学一轮复习点点练33双曲线含解析理

2023年高考数学一轮复习点点练33双曲线含解析理

点点练33双曲线一基础小题练透篇1.[2022·云南省适应性月考]已知双曲线E :x 23-y 2b 2=1(b >0)的渐近线方程为y =±3x ,则E 的焦距等于( )A . 2B .2C .4 3D .42.双曲线C :x 2a 2-y 2b2=1过点(2,3),且离心率为2,则该双曲线的标准方程为( )A .x 23-y 2=1B .x 2-y 23=1C .x 2-3y 23=1D .3x 23-y 2=13.已知双曲线的左、右焦点分别为F 1、F 2,在左支上过F 1的弦AB 的长为5,若2a =8,那么△ABF 2的周长是( )A .26B .21C .16D.54.[2022·陕西省榆林市模拟]已知F 是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左焦点,A ,B 分别是C 的左,右顶点,若|FA |=|AB |,则双曲线C 的离心率为( )A .3B .2C .22D .35.[2022·广西玉林市月考]已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点为F 1,F 2,在双曲线上存在点P 满足2|PF 1+PF 2|≤|F 1F 2|,则此双曲线的离心率e 的取值范围是( )A .1<e ≤2B.e ≥2 C .1<e ≤2D .e ≥ 26.[2022·江苏省质量评估]已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1作圆x 2+y 2=a 2的切线,交双曲线右支于点M ,若∠F 1MF 2=60°,则双曲线的渐近线方程为( )A .y =±(3+3)xB .y =±2xC .y =±3+33x D .y =±(1+3)x7.[2022·广东省深圳市质量检测]已知焦点在x 轴上的双曲线x 2m -y 22-m 2=1的两条渐近线互相垂直,则m =________.8.[2022·重庆市模拟]已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1作直线l 垂直于双曲线的一条渐近线,直线l 与双曲线的两条渐近线分别交于A ,B 两点,若AF 1=λF 1B ,且λ>2,则双曲线C 的离心率e 的取值范围为________.二能力小题提升篇1.[2022·广西联考]已知F 1,F 2是双曲线C 的两个焦点,P 为双曲线上的一点,且|PF 1|=2|PF 2|=|F 1F 2|;则C 的离心率为( )A .1B .2C .3D .42.[2022·重庆模拟]如图,O 是坐标原点,P 是双曲线E :x 2a 2-y 2b2=1(a >0,b >0)右支上的一点,F 是E 的右焦点,延长PO ,PF 分别交E 于Q ,R 两点,已知QF ⊥FR ,且|QF |=2|FR |,则E 的离心率为( )A .174B .173C .214D .2133.[2022·安徽省合肥市考试]已知双曲线x 2a 2-y 2b2=1的左右焦点为F 1,F 2,过F 2的直线交双曲线于M ,N 两点(M 在第一象限),若△MF 1F 2与△NF 1F 2的内切圆半径之比为3∶2,则直线MN 的斜率为( )A .6B .26C .3D .2 34.[2021·吉林省白山市期末考试]已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)与直线y =kx交于A ,B 两点,点P 为C 上一动点,记直线PA ,PB 的斜率分别为k PA ,k PB ,C 的左、右焦点分别为F 1,F 2,若k PA ·k PB =14,且C 的焦点到渐近线的距离为1,则( )A .a =4B .C 的离心率为62C .若PF 1⊥PF 2,则△PF 1F 2的面积为2D .若△PF 1F 2的面积为25,则△PF 1F 2为钝角三角形5.[2022·湖南湘潭模拟]已知P 为双曲线C :x 2-y 24=1右支上一点,F 1,F 2分别为C的左、右焦点,且线段A 1A 2,B 1B 2分别为C 的实轴与虚轴.若|A 1A 2|,|B 1B 2|,|PF 1|成等比数列,则|PF 2|=________.6.[2022·云南昆明一中检测]已知P 是双曲线x 2-y 215=1右支上的一点,M ,N 分别是圆(x +4)2+y 2=9和(x -4)2+y 2=1上的点,则|PM |-|PN |的最大值是________.三高考小题重现篇1.[2019·全国卷Ⅰ]双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线的倾斜角为130°,则C 的离心率为( )A .2sin40°B.2cos40° C .1sin50°D .1cos50°2.[2020·全国卷Ⅱ]设O 为坐标原点,直线x =a 与双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别交于D ,E 两点.若△ODE 的面积为8,则C 的焦距的最小值为( )A .4B .8C .16D .323.[2020·全国卷Ⅰ]设F 1,F 2是双曲线C :x 2-y 23=1的两个焦点,O 为坐标原点,点P在C 上且|OP |=2,则△PF 1F 2的面积为( )A .72B .3C .52D .2 4.[2019·全国卷Ⅱ]设F 为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为( )A .2B .3C .2D . 55.[2021·新高考Ⅱ卷]已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)离心率e =2,则双曲线C的渐近线方程为________________.6.[2021·全国乙卷]已知双曲线C :x 2m-y 2=1(m >0)的一条渐近线为3x +my =0,则C的焦距为__________.四经典大题强化篇1.过双曲线x 23-y 26=1的右焦点F 2,倾斜角为30°的直线交双曲线于A ,B 两点,O 为坐标原点,F 1为左焦点.(1)求|AB |; (2)求△AOB 的面积.2.已知F 1(-c ,0),F 2(c ,0)为双曲线C :x 2-y 2b2=1(b >0)的左、右焦点,过点F 2作垂直于x 轴的直线,并在x 轴上方交双曲线于点M ,且∠MF 1F 2=30°.(1)求双曲线C 的方程;(2)过双曲线C 上一点P 作两条渐近线的垂线,垂足分别是P 1和P 2,试求|PP 1|·|PP 2|的值.点点练33 双曲线一 基础小题练透篇1.答案:C解析:由双曲线E :x 23-y 2b 2=1(b >0)可得其渐近线方程为y =±b3x ,故b =3,故半焦距c =9+3=23,故焦距为4 3.2.答案:B解析:∵e =c a =2,则c =2a ,b =c 2-a 2=3a ,则双曲线的方程为x 2a 2-y 23a2=1,将点(2,3)的坐标代入双曲线的方程可得2a 2-33a 2=1a2=1,解得a =1,故b =3,因此,双曲线的方程为x 2-y 23=1.3.答案:A解析:|AF 2|-|AF 1|=2a =8,|BF 2|-|BF 1|=2a =8,∴|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=16,∴|AF 2|+|BF 2|=16+5=21,∴△ABF 2的周长为|AF 2|+|BF 2|+|AB |=21+5=26.4.答案:D解析:因为A ,B 分别是C 的左,右顶点,故|AB |=2a ,|FA |=c -a ,|FA |=|AB |,所以2a =c -a ,得e =c a=3.5.答案:B解析:由OP 为△F 1PF 2的中线,可得PF 1+PF 2=2OP →.由2|PF 1+PF 2|≤|F 1F 2|可得4|OP →|≤|F 1F 2|,由|OP →|≥a ,|F 1F 2|=2c ,可得4a ≤2c ,可得:e =c a≥2.6.答案:C解析:如图,作OA ⊥F 1M 于点A ,F 2B ⊥F 1M 于点B ,因为F 1M 与圆x 2+y 2=a 2相切, 所以|OA |=a ,|F 2B |=2|OA |=2a ,|F 1B |=2b ,在Rt△BMF 2中,∠F 1MF 2=60°,所以|BM |=|F 2B |tan60°=2a 3=23a 3,|F 2M |=43a3.又点M 在双曲线上,由双曲线的定义可得:所以|F 1M |-|F 2M |=|F 1B |+|BM |-|F 2M |=2b +23a 3-43a3=2a ,整理得:b =3+33a ,所以b a =3+33,所以双曲线的渐近线方程为y =±3+33x .7.答案:1解析:∵双曲线x 2m -y 22-m 2=1的焦点在x 轴上,∴⎩⎪⎨⎪⎧m >02-m 2>0,即0<m < 2. ∵双曲线的两条渐近线互相垂直,∴-2-m2m×2-m2m=-1,即(m -1)(m +2)=0,解得m =1.8.答案:(233,2)解析:由题意,双曲线C 的渐近线为y =±ba x ,若过F 1作直线l 垂直y =b ax 于B ,交y =-b ax 于A ,F 1(-c ,0).∵AF 1=λF 1B 且λ>2,∴F 1在A 、B 之间,如图所示,令l :y =-a b(x +c ),∴B (-a 2c ,-ab c ),A (a 2c b 2-a 2,abc a 2-b 2),则AF 1=(a 2c a 2-b 2-c ,abc b 2-a 2),F 1B =(b 2c ,-abc), ∴⎩⎪⎨⎪⎧λb 2c =a 2ca 2-b 2-c -λab c =abcb 2-a2,即λ=c 2a 2-b 2=c22a 2-c 2>2,∴e 22-e 2>2,故(3e 2-4)(e 2-2)<0,得43<e 2<2,又e >1, ∴233<e < 2. 二 能力小题提升篇1.答案:B解析:e =2c 2a =|F 1F 2||PF 1|-|PF 2|=|F 1F 2||PF 2|=2.2.答案:B解析:如图,令双曲线E 的左焦点为F ′,连接PF ′,QF ′,RF ′,由对称性可知,点O 是线段PQ 中点,则四边形PFQF ′是平行四边形,而QF ⊥FR ,于是有△PFQF ′是矩形,设|FR |=m ,则|PF ′|=|FQ |=2m ,|PF |=2m -2a ,|RF ′|=m +2a ,|PR |=3m -2a , 在Rt△F ′PR 中,(2m )2+(3m -2a )2=(m +2a )2,解得m =4a 3或m =0(舍去),从而有|PF ′|=8a 3,|PF |=2a 3,Rt△F ′PF 中,(8a 3)2+(2a 3)2=4c 2,整理得c 2a 2=179,e =c a =173, 所以双曲线E 的离心率为173. 3.答案:B解析:设圆O 1与△MF 1F 2的三边的切点分别为A ,B ,C ,如图, 令MA =MC =m ,AF 1=BF 1=n ,BF 2=CF 2=t ,根据双曲线的定义可得⎩⎪⎨⎪⎧(m +n )-(m +t )=2a n +t =2c ,化简得n =a +c ,由此可知,在△F 1F 2M 中,O 1B ⊥x 轴于B ,同理O 2B ⊥x 轴于B ,∴O 1O 2⊥x 轴过圆心O 2作CO 1的垂线,垂足为D ,易知直线l 的倾斜角θ与∠O 2O 1D 大小相等,不妨设圆O 1的半径R 1=3,设圆O 2的半径R 2=2,则O 2O 1=5,O 1D =1,所以根据勾股定理,O 2D =26,所以,tan θ=2 6.4.答案:D解析:设点A (x 1,y 1),B (-x 1,-y 1),P (x 0,y 0)则x 21 a 2-y 21 b 2=1,且x 20 a 2-y 20 b 2=1,两式相减得x 21 -x 20 a 2=y 20 -y 21 b 2, 所以y 20 -y 21 x 21 -x 20 =b 2a2,因为k PA ·k PB =(y 0-y 1)(x 0-x 1)·(y 0+y 1)(x 0+x 1)=14,所以b 2a 2=14,b a =12 故双曲线C 的渐近线方程为y =±12x ,因为焦点(c ,0)到渐近线y =12x 的距离为1,所以c5=1,c =5,所以a =2,b =1,离心率为52,故A ,B 错误. 对于C ,不妨设P 在右支上,记|PF 2|=t ,则|PF 1|=4+t , 因为PF 1⊥PF 2,所以(t +4)2+t 2=20,解得t =6-2或t =-6-2(舍去),所以△PF 1F 2的面积为12|PF 1||PF 2|=12(6-2)×(6+2)=1,故C 不正确;对于D ,设P (x 0,y 0),因为S △PF 1F 2=12·2c |y 0|=5|y 0|=25,所以|y 0|=2,将|y 0|=2带入C :x 24-y 2=1,得x 20 =20,即|x 0|=25,由于对称性,不妨取P 的坐标为(25,2),则|PF 2|=(25-5)2+22=3, |PF 1|=(25+5)2+22=7,因为cos∠PF 2F 1=|PF 2|2+|F 1F 2|2-|PF 1|22|PF 2||F 1F 2|=9+20-492×3×25<0,所以∠PF 2F 1为钝角,所以△PF 1F 2为钝角三角形,故D 正确. 5.答案:6解析:∵双曲线C :x 2-y 24=1,∴|A 1A 2|=2a =2,|B 1B 2|=2b =4.又∵|A 1A 2|,|B 1B 2|,|PF 1|成等比数列,∴|A 1A 2|·|PF 1|=|B 1B 2|2,∴|PF 1|=8,∴|PF 2|=8-2a =6.6.答案:6解析:已知P 是双曲线x 2-y 215=1右支上的一点,记双曲线左、右焦点分别为F 1,F 2,所以|PF 1|-|PF 2|=2a =2,双曲线的两个焦点分别为F 1(-4,0),F 2(4,0),这两点刚好是(x +4)2+y 2=9和(x -4)2+y 2=1的圆心.因为两个圆的半径分别为r 1=3,r 2=1,所以由几何性质可知|PM |max =|PF 1|+r 1=|PF 1|+3.同理|PN |min =|PF 2|-r 2=|PF 2|-1,所以|PM |-|PN |的最大值为|PM |max -|PN |min =(|PF 1|+3)-(|PF 2|-1)=|PF 1|-|PF 2|+4=2+4=6,所以|PM |-|PN |的最大值为6.三 高考小题重现篇1.答案:D解析:由双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)可知渐近线方程为y =±bax ,由题意知-ba=tan130°,又tan130°=-tan50°, ∴b a=tan50°,∴双曲线的离心率e =ca=1+b 2a2=1+tan 250°=1+sin 250°cos 250°=1cos 250°=1cos50°.2.答案:B解析:直线x =a 与双曲线C 的两条渐近线y =±bax 分别交于D 、E 两点,则|DE |=|y D-y E |=2b ,所以S △ODE =12·a ·2b =ab ,即ab =8.所以c 2=a 2+b 2≥2ab =16(当且仅当a =b时取等号),即c min =4,所以双曲线的焦距2c 的最小值为8.3.答案:B解析:方法一 由题易知a =1,b =3,∴c =2, 又∵|OP |=2,∴△PF 1F 2为直角三角形,易知||PF 1|-|PF 2||=2,∴|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=4, 又|PF 1|2+|PF 2|2=|F 1F 2|2=4c 2=16,∴|PF 1|·|PF 2|=16-42=6,∴S △PF 1F 2=12|PF 1|·|PF 2|=3.方法二 不妨设P (x 0,y 0)(x 0>0,y 0>0),则⎩⎪⎨⎪⎧x 20 +y 20 =4,x 20 -y 203=1,解得y 0=32,又|F 1F 2|=4, ∴S △PF 1F 2=12×4×32=3.4.答案:A解析:如图,连接OP ,∵|PQ |=|OF |=c ,∴PQ 过圆心⎝ ⎛⎭⎪⎫c2,0. 易得P ⎝ ⎛⎭⎪⎫c 2,c2. 又∵|OP |=a ,∴a 2=⎝ ⎛⎭⎪⎫c 22+⎝ ⎛⎭⎪⎫c 22=c22,∴⎝ ⎛⎭⎪⎫c a 2=2,∴e =c a = 2. 5.答案:y =±3x解析:因为双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为2,所以e =c 2a 2=a 2+b 2a 2=2,所以b 2a2=3, 所以该双曲线的渐近线方程为y =±bax =±3x . 6.答案:4解析:双曲线x 2m -y 2=1(m >0)的渐近线为y =±1mx ,即x ±my =0,又双曲线的一条渐近线为3x +my =0,即x +m3y =0,对比两式可得,m =3.设双曲线的实半轴长为a ,虚半轴长为b ,半焦距为c ,则有a 2=m =3,b 2=1,所以双曲线的焦距2c =2a 2+b 2=4.四 经典大题强化篇1.解析:(1)由双曲线的方程得a =3,b =6, ∴c =a 2+b 2=3,F 1(-3,0),F 2(3,0). 直线AB 的方程为y =33(x -3).11 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =33(x -3)x 23-y 26=1消去y 得 5x 2+6x -27=0.∴x 1+x 2=-65,x 1·x 2=-275. ∴||AB =⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫332[(x 1+x 2)2-4x 1x 2] =43⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-652-4⎝ ⎛⎭⎪⎫-275=1635. (2)直线AB 的方程变形为3x -3y -33=0.∴原点O 到直线AB 的距离为d =|-33|(3)2+(-3)2=32. ∴S △AOB =12|AB |·d =12×1635×32=1235. 2.解析:(1)根据已知条件得a =1,c =a 2+b 2=1+b 2, ∴焦点坐标为F 1(-1+b 2,0),F 2(1+b 2,0). ∵MF 2⊥x 轴,∴M (1+b 2,b 2).在Rt△MF 1F 2中,tan30°=|MF 1||F 1F 2|=b 22c =b 221+b 2=33,解得b 2=2. ∴双曲线C 的方程为x 2-y 22=1. (2)根据(1)易得双曲线两条渐近线方程分别为l 1:2x -y =0,l 2:2x +y =0.设点P (x 0,y 0),则|PP 1|=d 1=|2x 0-y 0|3,|PP 2|=d 2=|2x 0+y 0|3. 又∵P (x 0,y 0)在双曲线上,∴2x 20 -y 20 =2.∴|PP 1|·|PP 2|=d 1d 2=13()2x 20 -y 20 =23.。

专题3-3 压轴小题导数技巧:构造函数-2023年高考数学一轮复习热点题型(全国通用)(解析版)

专题3-3 压轴小题导数技巧:构造函数-2023年高考数学一轮复习热点题型(全国通用)(解析版)

f f
1 4
1 e3
,即
f 1
1
f 4 的范围为 e6
,
1 e3
.
故选:B.
【提分秘籍】
基本规律 1. 对于f (x)+f (x) 0 ( 0),构造g(x)=ex f(x), 2. 对于f (x)+kf (x) 0 ( 0),构造g(x)=ekx f(x)
3. 对于f (x)-f (x) 0
f (2) e2
f
(1) e1
,得出答案即可.
【详解】构造函数 g(x)
f (x) ex
,因为当
x
1
时,
f x
f
x ,所以 g (x)
f (x) ex
f (x)
0
可得在 x 1 时, g(x)
是单调递增的;因为
f
2 x
f
x e22x ,化简得
f
(2 x) e2x
f (x) ex
即 g(2 x) g(x)
【典例分析】
(2021·吉林·高三阶段练习(文))已知定义在 (0, ) 上的函数 f (x) 的导函数为 f (x) ,满足 f (x) 0 .当 x 0 时,f (x) 2 f (x) .当 x 2 时,f (x) f (x) ,且 f (3 x) f (1 x)e22x ,其中 e 是自然对数的底数.则 f (1)
g 4 ,对其变形可得
f f
1 4
1 e3
,同理分析 h x 的单调
性可得
f f
1 4
1 e6
,综合即可得答案.
【详解】根据题意,设 g x
f
x
ex
,(
x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。



考 点
提示 若a=0,则当b=0时,有无数多个λ,使b=
提 升
突 破
λa;当b≠0时,不存在λ∈R,使b=λa.
·




菜单
高考总复习·数学(理科)
第四章 平面向量、数系的扩充与复数的引入

小题热身



1.下列命题正确的是
·

A.不平行的向量一定不相等

落 实
B.平面内的单位向量有且仅有一个
合 训
于C,其条件以否定形式给出,所以可从其逆否命题
练 ·

入手来考虑,假设a与b不都是非零向量,即a与b中至 力
考 点

少有一个是零向量,而由零向量与任一向量都共线, 升


可知a与b共线,符合已知条件,所以有向量a与b不共
·
规 律
线,则a与b都是非零向量,故选C.
总 结
【答案】 C
菜单
高考总复习·数学(理科)
提 升
突 破
5.掌握向量数乘的运算及其几何意义,理解两个向量
· 规
共线的含义.

总 结
6.了解向量线性运算的性质及其几何意义.
菜单
高考总复习·数学(理科)
第四章 平面向量、数系的扩充与复数的引入
要 点
知识扫描


·

名称

定义
落 实

既有大小 又有方向 的量叫做向量,向量的大
合 训
向量

小叫做向量的 长度 (或称_模__).

·




菜单
高考总复习·数学(理科)
第四章 平面向量、数系的扩充与复数的引入




· 基
解析 (1)证明 ∵A→B=a+b,B→C=2a+8b,

落 实
C→D=3(a-b),∴B→D=B→C+C→D=2a+8b+3(a-b)
综 合

=2a+8b+3a-3b=5(a+b)=5A→B.
练 ·

∴A→B、B→D共线,又∵它们有公共点 B,
·
基 础
=________.
落 实
综 合
解析 因为 a∥b,所以 2λ-(-3)=0,解得 λ=-32.
训 练 ·

考 点
答案 -32
力 提 升


·




菜单
高考总复习·数学(理科)
第四章 平面向量、数系的扩充与复数的引入
要 点
4.如图,在平行四边形 ABCD 中,对角线 AC 与

理 ·
BD 交于点 O,A→B+A→D=λA→O,则λ=________.


落 实
综 合


·


考 点
解析 A→B+A→D=A→C=2A→O,所以 λ=2,故填 2.
提 升

破 ·
答案 2




菜单
高考总复习·数学(理科)
第四章 平面向量、数系的扩充与复数的引入

点 梳
5.在平行四边形 ABCD 中,A→B=a,A→D=b,A→N

· 基 础
=3N→C,M 为 BC 的中点,则M→N=________(用 a,b
练 ·

考 点
解析 A→D=A→B+B→C+C→D=a+2b+(-4a-b)+
力 提

突 破
(-5a-3b)=-8a-2b=2(-4a-b)=2B→C.
·
规 律
答案 B


菜单
高考总复习·数学(理科)
第四章 平面向量、数系的扩充与复数的引入




3.已知向量a=(2,-3),b=(1,λ),若a∥b,则λ
提 升


·




菜单
高考总复习·数学(理科)
第四章 平面向量、数系的扩充与复数的引入
要 考点二 共线向量定理及其应用

梳 理
例2 (1)(2014·韶关模拟)已知向量a=(1,3),b=(m,
·
基 础
2m-1).若向量a与b共线,则实数m=________.
落 实
综 合
【解析】
因为向量 a 与 b 共线,所以 λa=b,即
第四章 平面向量、数系的扩充与复数的引入




·


落 实
第四章

平面向量、数系的扩充
合 训

与复数的引入
· 能

考 点
提 升


·




菜单
高考总复习·数学(理科)
第四章 平面向量、数系的扩充与复数的引入




·


落 实
综 合
第一节 平面向量的概念及其线性运算
训 练
·


考 点
提 升



落 实
运算叫做a 三角形 法则
与b的差
综 合 训

(1)|λa|=|λ||a|;
· 能
考 点 突 破
· 规 律 总
求实数λ与 数乘 向量a的积
的运算
(2)当λ>0时,λa的方向 与a的方向相__同___;
当λ<0时,λa的方向与a 的方向__相__反__;
λ(μa)=(λμ)a;
(λ+μ)a=
__λ_a_+__μ__a__;
合 训

形 ABCD 为平行四边形的充要条件;
·


③若 a 与 b 同向,且|a|>|b|,则 a>b;

力 提 升
突 破
④λ,μ 为实数,若 λa=μb,则 a 与 b 共线.
·

其中假命题的个数为

总 结
A.1
B.2
C.3
D.4
菜单
高考总复习·数学(理科)
第四章 平面向量、数系的扩充与复数的引入
λ(a+b)=
___λa__+__λ_b___.
力 提 升

当λ=0时,λa=0.
菜单
高考总复习·数学(理科)
第四章 平面向量、数系的扩充与复数的引入



三、共线向量定理

· 基
向量a(a≠0)与b共线,当且仅当有唯一一个实数λ,

落 实
使得 b=λa .
综 合
[辨析]
训 练
·
2.共线向量定理中,若a=0,结论如何?
ห้องสมุดไป่ตู้

落 实
向量 叫共线 向量.规定:_0_与任一向量_平__行_.
综 合


相等
·

向量

长度相__等___且方向相同 的向量.
能 力 提 升

相反

· 规
向量
长度 相等 且方向相反 的向量.



菜单
高考总复习·数学(理科)
第四章 平面向量、数系的扩充与复数的引入




· 基
[辨析]
础 落 实
1.向量与有向线段是一样的,因此可以用有向线段 综
综 合
C.a与b是共线向量,b与c是平行向量,则a与c是方
训 练
向相同的向量
· 能
考 点 突
D.若a与b平行,则b与a方向相同或相反
力 提

解析 对于B,单位向量不是仅有一个,故B错;对
破 ·
于C,a与c的方向也可能相反,故C错;对于D,若b=
规 律
0,则b的方向是任意的,故D错,综上可知选A.


·
基 础
(1)可以利用共线向量定理证明向量共线,也可以由

实 向量共线求参数的值.
综 合

(2)向量b与非零向量a共线的充要条件是存在唯一实 练 ·
数λ,使b=λa.要注意通常只有非零向量才能表示与之
能 力
考 点

共线的其他向量,要注意待定系数法和方程思想的运 升

破 ·
用.




菜单
高考总复习·数学(理科)

来表示,这种说法正确吗?


提示
不正确.向量是既有大小,又有方向的量,
· 能


有向线段是向量其中的一种表示方法.

提 升


·




菜单
高考总复习·数学(理科)
第四章 平面向量、数系的扩充与复数的引入
要 点
二、向量的线性运算

理 · 基
向量 运算
定义
法则(或几何意义)
运算律

落 实
综 合



实 表示).
综 合

解析 由A→N=3N→C得A→N=34A→C=34(a+b),A→M=a+12b,练能·

考 点 突
所以M→N=A→N-A→M=34(a+b)-a+12b=-14a+14b.
提 升

· 规 律
相关文档
最新文档