材料力学第二章-10 拉伸、压缩超静定问题
材料力学(机械类)第二章 轴向拉伸与压缩

二
章
拉伸压缩与剪切
1
பைடு நூலகம்
§2-1
轴向拉伸与压缩的概念和实例
轴向拉伸——轴力作用下,杆件伸长 (简称拉伸) 轴向压缩——轴力作用下,杆件缩短 (简称压缩)
2
拉、压的特点:
1.两端受力——沿轴线,大小相等,方向相反 2. 变形—— 沿轴线
3
§2-2 轴向拉伸或压缩时横截面上的内力和应力
1 、横截面上的内力
A3
2
l1 l2 y AA3 A3 A4 sin 30 tan 30 2 1.039 3.039mm
A
A A4
AA x2 y2 0.6 2 3.039 2 3.1mm
40
目录
例 2—5 截面积为 76.36mm² 的钢索绕过无摩擦的定滑轮 F=20kN,求刚索的应力和 C点的垂直位移。 (刚索的 E =177GPa,设横梁ABCD为刚梁)
16
§2-4
材料在拉伸时的力学性能
材料的力学性能是指材料在外力的作用下表现出的变 形和破坏等方面的特性。
现在要研究材料的整个力学性能(应力 —— 应变):
从受力很小
破坏
理论上——用简单描述复杂
工程上——为(材料组成的)构件当好医生
17
一、 低碳钢拉伸时的力学性能 (含碳量<0.3%的碳素钢)
力均匀分布于横截面上,σ等于常量。于是有:
N d A d A A
A A
得应力:
N A
F
FN
σ
10
例题2-2
A 1
45°
C
2
材料力学教案 第2章 拉伸、压缩与剪切

第2章拉伸压缩与剪切教学目的:了解材料的力学性质;掌握轴向拉伸、压缩、剪切和挤压的概念;掌握轴向拉压时构件的内力、应力、变形的计算;熟练掌握剪切应力及挤压应力的计算方法并进行强度校核;掌握拉压杆的超静定问题。
教学重点:建立弹性杆件横截面上内力、内力分量的概念;运用截面法画轴力图;掌握低碳钢的力学性质;掌握轴向拉伸和压缩时横截面上正应力计算公式及其适用条件;掌握拉压杆的强度计算;熟练掌握剪切和挤压的实用计算。
教学难点:低碳钢类塑性材料在拉伸过程中反映出的性质;许用应力的确定和使用安全系数的原因;强度计算问题;剪切面和挤压面的确定;剪切和挤压的实用计算;拉压杆超的静定计算。
教具:多媒体。
教学方法:采用启发式教学,通过提问,引导学生思考,让学生回答问题。
举例掌握轴向拉伸、压缩和剪切变形概念,通过例题、作业,加强辅导熟练运用截面法,掌握轴力图的画法;建立变形、弹性变形、应变、胡克定律和抗拉压刚度的概念;教学内容:轴向拉伸和压缩的概念;强度计算;材料的力学性能及应力应变图;许用应力与安全系数;超静定的计算;剪切概念;剪切实用计算;挤压实用计算。
教学学时:8学时。
教学提纲:2.1 轴向拉伸与压缩的概念和实例1.实例(1)液压传动中的活塞杆(2)内燃机的连杆(3)起吊重物用的钢索(4)千斤顶的螺杆(5)桁架的杆件2.概念及简图这些杆件虽然外形各异,受力方式不同,但是它们有共同的特点:(1)受力特点:作用在杆件上的外力合力的作用线与杆件轴线重合,杆件变形是沿轴线方向的伸长或缩短。
(如果两个F 力是一对离开端截面的力,则将使杆发生纵向伸长,这样的力称为轴向拉力; 如果是一对指向端截面的力,则将使杆发生纵向缩短,称为轴向压力)。
(2)变形特点:主要变形是纵向伸长或缩短。
(3)拉(压)杆的受力简图:(4)说明:本章所讲的变形是指受压杆没有被压弯的情况下,不涉及稳定性问题。
2.2 轴向拉伸或压缩时横截面上的内力和应力1.截面法求内力(1)假想沿m-m 横截面将杆切开(2)留下左半段或右半段(3)将弃去部分对留下部分的作用用内力代替(4)对留下部分写平衡方程,求出内力(即轴力)的值。
材料力学第二章 拉伸

跟踪训练
40KN
55KN 25KN
20KN
A 600
B 300 C 500
D
E
400
FN
50
10
+
20
+
x
5
例2.1作图示杆件的轴力图,并指出|FN|max
50kN
FN
I
I 50kN
+
II
150kN
II
100kN
当内力大到一定程 度后,哪段先断裂?
-
100kN
应力的概念:截面上某点的内力集度。 应力必须明确截面及点的位置
+
0.5m
0.5m
_ 4
解: 1)内力分析,作轴力图
P1
B 2)变形分析,求各段 的变形
3)位移分析,根据约束 x 和各段的变形求B点的位
移
2)变形分析,求各段的变形
lDB
N l DB DB EA1
- 4103 0.5 21011 210-4
-0.0510-3m( 缩短)
lCD
N l CD CD EA2
跟踪训练
三种材料的应力-应变曲线分别为如图a,b,c所示, 其中材料 强度最高的是: a 刚度最大的是: b 塑性最好的是: c
五、铸铁拉伸时的力学性能
对于脆性材料(铸铁),拉伸时的应力应 变曲线为微弯的曲线,没有屈服和径缩现象, 试件突然拉断。断后伸长率约为0.5%。为典 型的脆性材料。
铸铁拉断时的应力即为
N1
N2
y Ax
Fy 0 N1 sin - F 0
N1 F / sin 2F N2 N1 cos 3F 2、根据斜杆的强度,求许可载荷
F
刘鸿文版材料力学第二章

A 1
45°
图示结构,试求杆件AB、CB的 应力。已知 F=20kN;斜杆AB为直 径20mm的圆截面杆,水平杆CB为 15×15的方截面杆。
B
C
2
FN 1
FN 2 45°
y
B F
F
解:1、计算各杆件的轴力。 (设斜杆为1杆,水平杆为2杆) 用截面法取节点B为研究对象
x
∑F ∑F
x y
=0
目录
§2.4 材料拉伸时的力学性能
力学性能:在外力作用下材料在变形和破坏方 面所表现出的力学特性。 一 试 件 和 实 验 条 件
常 温 、 静 载
目录
§2.4 材料拉伸时的力学性能
目录
§2.4 材料拉伸时的力学性能
二 低 碳 钢 的 拉 伸
目录
§2.4 材料拉伸时的力学性能
σ
e
b
σb
f
2、屈服阶段bc(失去抵 抗变形的能力)
目录
FRCy
W
§2.2 轴向拉伸或压缩时横截面上的内力和应力
B d
由三角形ABC求出
0.8m
C 1.9m
α
sin α =
A
Fmax
BC 0.8 = = 0.388 AB 0.82 + 1.92 W 15 = = = 38.7kN sin α 0.388
Fmax
斜杆AB的轴力为
FN = Fmax = 38.7kN
F
a
a′ b′
c
c′ d′
F
b
d
平面假设—变形前原为平面的横截面, 变形后仍保持为平面且仍垂直于轴线。
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
《材料力学》课程教案2

《材料力学》课程教案2(二)拉伸、压缩的超静定问题设教学安排 ● 新课引入如图所示的两杆组成的桁架结构受力,由于是平面汇交力系,可由静力平衡方程求出两杆内力。
如果为了提高构件安全性,再加一个杆,三杆内力还能由静力平衡方程求出吗?● 新课讲授一、 静定结构(一)提出问题1和2两杆组成桁架结构受力如图所示,角度已知,两杆抗拉刚度相同,2211A E A E =,求两杆中内力的大小。
(二)分析:求内力⇒截面法(1截2代3列平衡方程)⇒=∑0x 021=-ααSin F Sin F N N ⇒=∑0y 0321=-++F F Cos F Cos F N N N αα 两个方程,两个未知数,可以求解。
引出静定结构:约束反力(轴力)可以由静力平衡方程完全求出。
二、 超静定结构和超静定次数(一)继续提问在现实中为了增加构件的安全性,往往可以多加一个杆,在问题一的基础上在中间再加一个3杆,抗拉刚度为33A E ,如图所示,求3杆中内力的大小。
(二)分析:求内力⇒截面法(1截2代3列平衡方程) ①静平衡方程:平面汇交力系,只能列两个平衡方程⇒=∑0x21=-ααSin F Sin F N N⇒=∑0y 0321=-++F F Cos F Cos F N N N αα 两个方程,三个未知数,解不出。
引出超静定结构:约束反力(轴力)不能由静力平衡方程完全求出。
超静定次数:约束反力(轴力)多余平衡方程的个数。
上述问题属于一次超静定问题。
三、超静定结构的求解方法(一)继续提问,引导学生深入思考:超静定到底能不能求解?实际上F 一定,作用于每个杆上的力都是确定的。
还需再找一个补充方程,材料力学是变形体,受力会引起变形,力和力的关系看不出, 先把变形关系找到,再转化成力的关系。
(重点)②几何方程——变形协调方程:要找变形关系,关键是画变形图(难点)。
节点在中间杆上,左右两杆抗拉刚度相同,角度相同,即对称,因此中间杆仅沿竖直方向产生伸长,确定最终位置。
材料力学课件第二章 轴向拉伸和压缩

2.3 材料在拉伸和压缩时的力学性能
解: 量得a点的应力、应变分别 为230MPa、0.003
E=σa/εa=76.7GPa 比例极限σp=σa=230MPa 当应力增加到σ=350MPa时,对应b点,量得正应变值
ε = 0. 0075 过b点作直线段的平行线交于ε坐标轴,量得 此时的塑性应变和弹性应变
εp=0. 0030 εe= 0 . 0075-0.003=0.0045
内力:变形固体在受到外力作用 时,变形固体内部各相邻部分之 间的相互作用力的改变量。
①②③ 切加求 一内平 刀力衡
应力:是内力分布集度,即 单位面积上的内力
p=dF/dA
F
F
FX = 0
金属材料拉伸时的力学性能
低碳钢(C≤0.3%)
Ⅰ 弹性阶段σe σP=Eε
Ⅱ 屈服阶段 屈服强度σs 、(σ0.2)
FN FN<0
2.2 拉压杆截面上的内力和应力
第二章 轴向拉伸和压缩
在应用截面法时应注意:
(1)外载荷不能沿其作用线移动。
2.2 拉压杆截面上的内力和应力
第二章 轴向拉伸和压缩
在应用截面法时应注意:
(2)截面不能切在外载荷作用点处,要离开或 稍微离开作用点。
1
2
11
22
f 30 f 20
60kN
Ⅲ 强化阶段 抗压强度 (强度极限)σb
Ⅳ 局部颈缩阶段
例1
一根材料为Q235钢的拉伸试样,其直径d=10mm,工作段 长度l=100mm。当试验机上荷载读数达到F=10kN 时,量 得工作段的伸长为Δ l=0.0607mm ,直径的缩小为 Δd=0.0017mm 。试求此时试样横截面上的正应力σ,并求出 材料的弹性模量E。已知Q235钢的比例极限为σ p =200MPa。
2第二章拉伸、压缩与剪切概述

22
屈服极限的确定方法
σ
b
0.2
o
0.2%
在ε轴上取0.2%的点, 对此点作平行于σ-ε曲线 的直线段的直线(斜率亦为 E),与σ-ε曲线相交点对 应的应力即为σ0.2 .
ε
σb是衡量脆性材料强度的唯一指标。
材料力学 土木工程系 陈爱萍
23
§2.5 材料压缩时的力学性能
国家标准规定《金属压缩试验方法》(GB7314—87)
材料力学 土木工程系 陈爱萍
28
§2.7 失效、 安全因数和强度计算
一、极限应力、安全系数、许用应力
材料破坏时的应力称为极限应力。 由于各种原理使结构丧失其正常工作能力的现象,称为失效
jx
s b
塑性材料 脆性材料
构件工作时允许达到的最大应力值称许用应力
jx
n
材料力学 土木工程系 陈爱萍
(3) 必须是等截面直杆,否则横截面上应力将不是均匀 分布,当截面变化较缓慢时,可近似用该公式计算。
材料力学 土木工程系 陈爱萍
12
§2.3 直杆拉伸或压缩时斜截面上的应力
F
FF
p cos
FN A
cos cos2
p
sin
cos sin
1 sin 2
材料力学 土木工程系 陈爱萍
37
求解超静定问题的基本步骤:
(1)平衡方程; (2)几何方程——变形协调方程; (3)物理方程——弹性定律; (4)补充方程:由几何方程和物理方程得; (5)解由平衡方程和补充方程组成的方程组。
材料力学 土木工程系 陈爱萍
38
材料力学 第2章杆件的拉伸与压缩

第2章 杆件的拉伸与压缩提要:轴向拉压是构件的基本受力形式之一,要对其进行分析,首先需要计算内力,在本章介绍了计算内力的基本方法——截面法。
为了判断材料是否会发生破坏,还必须了解内力在截面上的分布状况,即应力。
由试验观察得到的现象做出平面假设,进而得出横截面上的正应力计算公式。
根据有些构件受轴力作用后破坏形式是沿斜截面断裂,进一步讨论斜截面上的应力计算公式。
为了保证构件的安全工作,需要满足强度条件,根据强度条件可以进行强度校核,也可以选择截面尺寸或者计算容许荷载。
本章还研究了轴向拉压杆的变形计算,一个目的是分析拉压杆的刚度问题,另一个目的就是为解决超静定问题做准备,因为超静定结构必须借助于结构的变形协调关系所建立的补充方程,才能求出全部未知力。
在超静定问题中还介绍了温度应力和装配应力的概念及计算。
不同的材料具有不同的力学性能,本章介绍了塑性材料和脆性材料的典型代表低碳钢和铸铁在拉伸和压缩时的力学性能。
2.1 轴向拉伸和压缩的概念在实际工程中,承受轴向拉伸或压缩的构件是相当多的,例如起吊重物的钢索、桁架第2章 杆件的拉伸与压缩 ·9··9·2.2 拉(压)杆的内力计算2.2.1 轴力的概念为了进行拉(压)杆的强度计算,必须首先研究杆件横截面上的内力,然后分析横截面上的应力。
下面讨论杆件横截面上内力的计算。
取一直杆,在它两端施加一对大小相等、方向相反、作用线与直杆轴线相重合的外力,使其产生轴向拉伸变形,如图2.2(a)所示。
为了显示拉杆横截面上的内力,取横截面把m m −拉杆分成两段。
杆件横截面上的内力是一个分布力系,其合力为N F ,如图2.2(b)和2.2(c)所示。
由于外力P 的作用线与杆轴线相重合,所以N F 的作用线也与杆轴线相重合,故称N F 为轴力(axial force)。
由左段的静力平衡条件0X =∑有:()0+−=N F P ,得=N F P 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料力学第二章-10 拉伸、压缩超静定问题
2-10 拉伸、压缩超静定问题
第二点和第三点特别重要
各杆发生轴向拉伸,得到外力即得到内力。
1、静力学关系
①判断是否超静定
②取谁为研究对象
③123在外载作用下可能发生什么变形(都是拉伸)
④受力完成后构成什么力系(平面汇交力系)
⑤列方程
2、物理关系(拉压变形的胡克定律)
l1 l2 l3变形方程
3、协调关系(铰接点节点位置)
4、代入方程
5、求解
许可载荷由哪些因素决定?
①木柱、钢材危险面上危险点不
能超过其本身的许用应力
②已知许用应力、横截面积,缺
少力
③确定研究对象、受力分析、列平衡方程
1、静力学关系
N2+4N1-F=0
2、物理关系
l1 l2变形量
3、协调关系
l1=l2
4、代入求N1N2
5、求解
三关系法总结
注意事项
1、内力按真实方向假设;
2、变形与内力一致;
内力无法确定真实方向时可任意假设,但必须满足变形与内力一致;
4、必须画出两种图:受力图、变形协调图;
5、两种方程:静力平衡方程、协调方程;
要求:变形与内力一致;
【分析】不管静定或者静不定,12杆特征为2力杆,2力杆不
能取2力杆为研究对象;对象只能落在AB构建AB的钢体上。
力的作用下12杆分别
发生拉伸变形;。