粘度法测分子量

合集下载

粘度法测分子量

粘度法测分子量

粘度法测定聚合物的粘均分子量线型聚合物溶液的基本特性之一,是粘度比较大,并且其粘度值与分子量有关,因此可利用这一特性测定聚合物的分子量。

粘度法尽管是一种相对的方法,但因其仪器设备简单,操作方便,分子量适用范围大,又有相当好的实验精确度,所以成为人们最常用的实验技术,在生产和科研中得到广泛的应用。

一、 实验目的掌握粘度法测定聚合物分子量的原理及实验技术。

二、基本原理聚合物溶液与小分子溶液不同,甚至在极稀的情况下,仍具有较大的粘度。

粘度是分子运动时内摩擦力的量度,因溶液浓度增加,分子间相互作用力增加,运动时阻力就增大。

表示聚合物溶液粘度和浓度关系的经验公式很多,最常用的是哈金斯(Huggins )公式2[][]spk c cηηη=+ --------------------------------------- (1)在给定的体系中k 是一个常数,它表征溶液中高分子间和高分子与溶剂分子间的相互作用。

另一个常用的式子是2[][]ln rc cηβηη=--------------------------------------- (2)式中k 与β均为常数,其中k 称为哈金斯参数。

对于柔性链聚合物良溶剂体系,k =1/3,k+β= l/2。

如果溶剂变劣,k 变大;如果聚合物有支化,随支化度增高而显著增加。

从(1)式和(2)式看出,如果用sp cη或ln r cη对c 作图并外推到c →0(即无限稀释),两条直线会在纵坐标上交于一点,其共同截距即为特性粘度[η],如图1-1所示0ln limlim[]sprc c ccηηη→→== ----------------------------------------(3)图1-1通常式(1)和式(2)只是在了r η=1.2~2.0范围内为直线关系。

当溶液浓度太高或分子量太大均得不到直线,如图1-2所示。

此时只能降低浓度再做一次。

特性粘度[η]的大小受下列因素影响: (1)分子量:线型或轻度交联的聚合物分子量增大,[η]增大。

粘度法测定高聚物分子量

粘度法测定高聚物分子量

实验 3 粘度法测定高聚物分子量利用高聚物溶液的粘度与高聚物分子量的相互关系。

测定粘度可以计算分子量,这种方法称为粘度法,它是目前最常用的方法之一。

一、实验目的1.学习用粘度法测定高聚物分子量。

2.学习粘度法测定高聚物分子量的数据处理方法。

二、原理高分子溶液粘度的大小与其分子量,分子形状,溶液浓度溶剂性质。

温度等因素有关。

由于影响高聚物溶液粘度的因素较多,因此到目前为止,粘度与分子量的关系式还不能由理论式来计算,而是从经验而得。

在一定温度下,高分子溶液的特性粘度。

][η与高分子的分子量M 之间的经验公式:a KM =][η (1)在一定温度时,对某一高聚物—溶剂体系,公式中k 、α是常数,一般可查手册,如本体聚合的甲基丙烯酸甲酯在苯溶剂中,测得温度C ︒±125时,71.01034.12=⨯=-αK ,从实验测得特性粘度][η就可以求出高聚物的分子量。

特性粘度的定义为溶液浓度无限稀的情况下比浓粘度(/)sp c η或比浓对数粘度(1/r n c η)ln ()limlimsp rc c ccηηη→→== (2)式(2)中)(00ηηηηη⋅=x 分别为溶液和纯溶剂在同一温度下的粘度称为相对粘度。

)(00t t t t x ⋅=η分别为稀溶液及纯溶液用同一粘度设计在同一温度下测得的流出时间)单位秒。

而01sp x ηηηηη-==-称之增比粘度。

高聚物溶液的粘度和浓度之间依赖关系。

有下列公式。

2()()spK C cηηη'=+ (3)C cl rn 2)()(ηβηη-=……(4) 从式(3)和(4)可看出比浓粘度spcη和比浓对数粘度cl rn η与浓度c 成线性关系。

因此可以sp c η对c 或c l r n η对c 作图可得出两条直线。

以浓度c 外推射。

两条直线在c =0处。

即纵轴上相交一点。

此点的截距即是特性粘度[η]然后根据(1)求出高聚物的分子量。

由上法求出的高聚物分子量是高聚物的平均分子量ηM 称为粘均分子量。

01-粘度法测定聚合物的分子量

01-粘度法测定聚合物的分子量

实验一 粘度法测定聚合物的分子量粘度法是一种测定聚合物分子量的相对方法,但因为其仪器设备简单,操作方便,分子量适用范围大,实验精度也较高,所以粘度法是聚合物分子量测定方法中最为常用的一种。

粘度法除了主要用来测定粘均分子量外,还可用于测定溶液中的大分子尺寸,测定聚合物的溶度参数等。

一、实验目的与要求熟练掌握测定聚合物溶液粘度的实验技术及粘度法测定聚合物分子量的基本原理。

二、实验原理在高分子溶液中,我们所感兴趣的不是溶液的绝对粘度,而是当高分子进入溶液后所引起的溶液粘度的变化。

如果用η0表示纯溶剂的粘度,η表示高分子溶液的粘度,则有:相对粘度 ηr : 0r ηηη=(1.1)增比粘度 ηsp : 01sp r ηηηηη-==- (1.2) 特性粘数 [η ]: 00ln []limlimsprc c c cηηη→→== (1.3)其中,spcη称为比浓粘度,表示浓度为c 的情况下,单位浓度增加对溶液增比粘度的贡献。

ln rcη称为比浓对数粘度,表示在浓度为c 的情况下,单位浓度增加对溶液相对粘度自然对数值的贡献。

它们都随溶液浓度的变化而变化。

特性粘数[η]表示高分子溶液浓度c →0时,单位浓度的增加对溶液增比粘度或相对粘度对数的贡献,其数值不随溶液浓度大小而变化,但随浓度的表示方法而异。

特性粘数的单位是浓度单位的倒数,即dl/g 或ml/g 。

高分子溶液的粘度与其分子量有关,同时对溶液的浓度也有很大的依赖性。

粘度法测定聚合物的分子量,就需要消除浓度对粘度的影响,因此,实验中主要是测量高分子溶液的特性粘数[η]。

表达溶液粘度与浓度关系的经验方程式很多,应用较为广泛的有如下两个:2[]'[]spk c cηηη=+ (1.4)2ln [][]rc cηηβη=- (1.5) 式中,'k 和β都是常数。

由此可以看出,只要配制几个不同浓度的高分子溶液,分别测定溶液及纯溶剂的粘度,然后计算出sp cη和ln r c η,在同一张图中分别作sp c c η 、ln r c c η的图可以得到两条直线,将两条直线外推至0c →,其共同的截距即为特性粘数[η],如下图所示。

粘度法测定高聚物分子量

粘度法测定高聚物分子量

粘度法测定高聚物分子量高聚物分子量是评价高聚物性质的重要指标之一。

粘度法是一种常用的测定高聚物分子量的方法。

本文将介绍粘度法的原理、测量方法及注意事项。

一、粘度法测定高聚物分子量的原理高聚物在溶液中的流动特性与其分子量有关。

分子量较大的高聚物在溶液中会形成较高浓度的聚合体,聚合体之间的热运动会受到阻碍,导致溶液的粘度增加。

因此,溶液的粘度与高聚物分子量成正比。

利用该原理,可以通过测定高聚物在溶液中的粘度来确定其分子量。

常用的粘度测量方法有旋转粘度计法、滴定粘度计法和玻璃密封管法等。

二、旋转粘度计法测定高聚物分子量在旋转粘度计法中,测量高聚物溶液在不同转速下的粘度,并利用氢氧化钠溶液对高聚物分子做标准化处理,从而计算出高聚物的分子量。

具体测量步骤如下:1. 准备高聚物的溶液,其中高聚物的质量浓度应在0.1-1.0g/L之间,一般用异丙醇或二甲基亚砜作为溶剂,同时应注意避免产生泡沫;2. 将旋转粘度计置于稳定的温度下,启动仪器并调整转速至稳定状态;3. 将高聚物溶液倒入粘度计测试杯中,并调整温度至与旋转粘度计相同;4. 测量高聚物在不同转速下的粘度,通常用10rpm和100rpm两种转速测量,每种转速测量三次;5. 将测量数据带入标准化计算公式得到高聚物的相对分子质量(Mw)和粘度平均分子量(Mn)。

四、玻璃密封管法测定高聚物分子量玻璃密封管法是一种直接测定高聚物溶液粘度的方法,需要在室温下严格控制高聚物溶液的密封性。

具体测量步骤如下:1. 准备高聚物的溶液,将溶液倒入玻璃密封管中,同时保证密封严密;2. 将密封管悬置于水槽中,并与相邻秤盘连接,以便测量密度和相对分子质量;3. 测量高聚物溶液的密度,并记录所用的温度;4. 使用标准计算公式计算高聚物的相对分子质量(Mw)和粘度平均分子量(Mn)。

五、注意事项1. 在高聚物的溶液制备过程中要避免产生泡沫,以免干扰粘度测定的准确性;2. 在粘度测定过程中要对仪器有所了解,并遵循测量操作规程,以免造成误差;3. 对于粘度计的使用要注意仪器的清洁,以保证测量精度;4. 不同的粘度测量方法具有不同的适用范围和测量精度,应根据实际需要和条件进行选择。

粘度法测定高聚物的相对分子量

粘度法测定高聚物的相对分子量

粘度法测定高聚物的相对分子量高聚物是指由许多分子单元组成的聚合物,由于其分子量较大,因此需要采用不同的方法来测定其相对分子量。

粘度法是一种比较常用的方法,其原理是通过测定高聚物在溶液中的流动性质,来间接计算高聚物的相对分子量。

一、粘度法原理粘度是液体流动阻力的度量,表示液体分子间相互作用力的大小。

在溶液中,高聚物分子通过溶剂分子间的相互作用形成静电层和水合层,从而增加了流体的阻力。

因此,粘度可以被用来估算高聚物分子量,通过测量高聚物溶液和溶剂的比粘度,计算高聚物的相对分子量。

比粘度定义为:其中,η为溶液的粘度,Ω为摩尔质量,V为体积,c为摩尔浓度。

当固定温度、溶剂和浓度时,高聚物的比粘度随着相对分子量的增加而增加。

在一定浓度下,可以通过测量溶液的粘度和溶剂的粘度来计算比粘度。

因此,根据下式计算高聚物的相对分子量:其中,是比粘度,K为马尔可夫常数,可以计算为:其中,ρ为溶液密度,η0为溶剂的粘度,V为溶液的体积,C为高聚物的浓度,M为高聚物的相对分子量。

二、实验操作1、实验原料和仪器甲基苯、亚甲基蓝、二甲亚砜、甲基纤维素、萘酚指示剂、比色皿、粘度计、pH计、洗涤瓶、加热板等。

2、实验步骤(1)制备高聚物溶液取一定量的甲基纤维素粉末,加入甲基苯中,并加入少量的亚甲基蓝。

将溶液充分搅拌,直到甲基纤维素完全溶解,然后用萘酚指示剂调节pH值在6-8之间。

(2)制备溶剂将二甲亚砜加入甲基苯中,并用萘酚指示剂调节pH值在6-8之间即可制备好溶剂。

(3)测定溶液和溶剂的粘度在两个比色皿中分别加入一定体积的高聚物溶液和甲基苯溶剂,再加入一定量的萘酚指示剂。

用粘度计测量两种溶液的粘度,并记录相关数据。

根据比粘度公式和马尔可夫常数公式,计算高聚物的相对分子量。

三、实验注意事项1、实验操作需要在室温下进行,避免大幅度的温度变化。

2、粘度计的使用需要严格按照说明书进行操作。

3、萘酚指示剂需要加入适量的量才能达到理想的pH值。

粘度法测分子量

粘度法测分子量

粘度法测定聚合物的粘均分子量线型聚合物溶液的基本特性之一,是粘度比较大,并且其粘度值与分子量有关,因此可利用这一特性测定聚合物的分子量。

粘度法尽管是一种相对的方法,但因其仪器设备简单,操作方便,分子量适用范围大,又有相当好的实验精确度,所以成为人们最常用的实验技术,在生产和科研中得到广泛的应用。

一、实验目的掌握粘度法测定聚合物分子量的原理及实验技术。

二、基本原理聚合物溶液与小分子溶液不同,甚至在极稀的情况下,仍具有较大的粘度。

粘度是分子运动时内摩擦力的量度,因溶液浓度增加,分子间相互作用力增加,运动时阻力就增大。

表示聚合物溶液粘度和浓度关系的经验公式很多,最常用的是哈金斯(Huggins)公式--------------------------------------- (1)在给定的体系中k是一个常数,它表征溶液中高分子间和高分子与溶剂分子间的相互作用。

另一个常用的式子是-------------------------------------- (2)图1-1式中k与β均为常数,其中k称为哈金斯参数。

对于柔性链聚合物良溶剂体系,k =1/3,k+β= l/2。

如果溶剂变劣,k 变大;如果聚合物有支化,随支化度增高而显著增加。

从(1)式和(2)式看出,如果用或对c作图并外推到c→0(即无限稀释),两条直线会在纵坐标上交于一点,其共同截距即为特性粘度[η],如图1-1所示----------------------------------------(3)通常式(1)和式(2)只是在了=1.2~2.0范围内为直线关系。

当溶液浓度太高或分子量太大均得不到直线,如图1-2所示。

此时只能降低浓度再做一次。

特性粘度[η]的大小受下列因素影响:(1)分子量:线型或轻度交联的聚合物分子量增大,[η]增大。

(2)分子形状:分子量相同时,支化分子的形状趋于球形,[η]较线型分子的小。

(3)溶剂特性:聚合物在良溶剂中,大分子较伸展,[η]较大,而在不良溶剂中,大分子较卷曲,[η]较小。

粘度法测定聚合物分子量

粘度法测定聚合物分子量

粘度法测定聚合物分子量粘度法是一种常见的测定聚合物分子量的方法。

它是通过测量聚合物溶液的流动性质,从而间接地推断出聚合物的相对分子量。

粘度法有多种变种,包括楔形管粘度法、圆柱粘度法和柱塞式粘度法等。

本文将重点介绍楔形管粘度法和圆柱粘度法。

楔形管粘度法是一种常用的粘度测定方法。

它的基本原理是利用溶液在楔形管中的流动阻力与溶液粘度成正比的关系。

聚合物分子量增大,溶液的粘度也会增加。

具体测定步骤如下:1.准备样品溶液:将待测聚合物溶解于适量的溶剂中,配制得一定浓度的溶液。

2.装置测试装置:将样品溶液注入楔形管中,确保楔形管内部和外部都被充分润湿。

3.测量压降:在一定温度下,施加压力使溶液从上方流经楔形管,测量上下两端的压降。

4.计算粘度:根据斯托克斯定律,通过测定的压降和流量,计算出溶液的粘度。

5.绘制扩张流动图:将测得的多组数据绘制在扩张流动图上,通过与已知相对分子量的标准聚合物的比较,推断出待测聚合物的相对分子量。

圆柱粘度法是另一种常见的粘度测定方法,其测量原理与楔形管粘度法类似,不同之处在于采用圆柱形试样。

1.准备样品溶液:将待测聚合物溶解于适量的溶剂中,配制得一定浓度的溶液。

2.装置测试装置:将样品溶液注入圆柱形试样中,确保试样内部和外部都被充分润湿。

3.测量压力:上下两端施加一定的压力使溶液通过圆柱形试样,测量上下两端的压力差。

4.计算粘度:根据斯托克斯定律,通过测定的压力差和流量,计算出溶液的粘度。

5.绘制流动曲线:将测得的多组数据绘制在流动曲线上,通过与已知相对分子量的标准聚合物的比较,推断出待测聚合物的相对分子量。

在实际应用中,粘度法通常与其他测量方法结合使用,以提高测定精度和可靠性。

在测定聚合物分子量时,还可以使用光散射法、凝胶渗透色谱法等进行验证和互相印证,以获得更准确的结果。

粘度法在聚合物领域的研究中具有重要的地位,对于深入了解聚合物的分子结构和性质具有重要意义。

粘度法测分子量

粘度法测分子量

一、实验目的1、掌握用粘度法测定高分子化合物相对分子量的原理。

2、用乌氏粘度计测定聚乙烯醇溶液的特性粘度,计算其粘均相对分子量。

二、实验原理高分子化合物相对分子量对于高分子化合物溶液的性能影响很大,是个重要的基本参数。

一般高分子化合物是相对分子量大小不同的大分子的混合物,相对分子量常在103~107之间,所以通常所测高分子化合物相对分子量是平均相对分子量。

测定高分子化合物相对分子量的方法很多,不同方法所测得的平均相对分子量有所不同。

粘度法是常用的测定相对分子量的方法之一,粘度法测得的平均相对分子量称为粘均相对分子量。

高分子化合物溶液的粘度比一般较纯溶剂的粘度大得多,其粘度增加的分数称为增比粘度,其定义为:式中,称为相对粘度。

增比粘度随粘液中高分子化合物的浓度c增加而增加。

为了便于比较,定义单位浓度的增比粘度/c为比浓粘度,它随溶液浓度c改变而改变。

当浓度c趋于零时,比浓粘度的极限值为[],[]称为特性粘度,即:式中溶液浓度c习惯上取质量浓度(单位为或)。

特性粘度[η]可以作为高分子化合物的平均相对分子量的度量。

根据实验结果证明,任意浓度下比浓粘度与浓度的关系可以用经验公式表示如下:因此,利用/c对c作图,用外推法可求出[η]。

当c趋近于0时,(ln)/ c的极限值也等于[η],可以证明如下:当溶液浓度c很小时,忽略高次项,则得:当溶液浓度较小时,(ln)/c对c作图,也得一条直线,其截距也等于[η],见图S3-1。

[η]单位和数值,随溶液浓度的表示法不同而异,[η]的单位为浓度单位的倒数。

在一定温度和溶剂条件下,特性粘度[]与高聚物的相对分子质量M间关系通常用下列经验方程式表达:式中K和α 是与温度、溶剂及高聚物本性有关的常数。

通常对于每种高聚物溶液,要用已知平均相对分子量的高聚物求得K、α值。

然后,用此K、α值及同种待测高聚物溶液的特性粘度实验值,可求得此待测高聚物的粘均相对分子量。

在确定K、α值时,已知的平均相对分子量是用其他方法测得的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、实验目的
1、掌握用粘度法测定高分子化合物相对分子量的原理。

2、用乌氏粘度计测定聚乙烯醇溶液的特性粘度,计算其粘均相对分子量。

二、实验原理
高分子化合物相对分子量对于高分子化合物溶液的性能影响很大,是个重要的基本参数。

一般高分
子化合物是相对分子量大小不同的大分子的混合物,相对分子量常在103~107之间,所以通常所测高分
子化合物相对分子量是平均相对分子量。

测定高分子化合物相对分子量的方法很多,不同方法所测得的平均相对分子量有所不同。

粘度法是
常用的测定相对分子量的方法之一,粘度法测得的平均相对分子量称为粘均相对分子量。

高分子化合物溶液的粘度比一般较纯溶剂的粘度大得多,其粘度增加的分数称为增比粘度,
其定义为:
式中,称为相对粘度。

增比粘度随粘液中高分子化合物的浓度c增加而增加。

为了便于比较,定
义单位浓度的增比粘度/c为比浓粘度,它随溶液浓度c改变而改变。

当浓度c趋于零时,比浓粘度的
极限值为[],[]称为特性粘度,即:
式中溶液浓度c习惯上取质量浓度(单位为或)。

特性粘度[η]可以作为高分子化合
物的平均相对分子量的度量。

根据实验结果证明,任意浓度下比浓粘度与浓度的关系可以用经验公式表
示如下:
因此,利用/c对c作图,用外推法可求出[η]。

当c趋近于0时,(ln)/ c的极限值也等于[η],可以证明如下:
当溶液浓度c很小时,忽略高次项,则得:
当溶液浓度较小时,(ln)/c对c作图,也得一条直线,其截距也等于[η],见图S3-1。

[η]单位和数值,随溶液浓度的表示法不同而异,[η]的单位为浓度单位的倒数。

在一定温度和溶剂条件下,特性粘度[]与高聚物的相对分子质量M间关系通常用下列经验方程式表
达:式中K和α 是与温度、溶剂及高聚物本性有关的常数。

通常对于每种高聚物溶液,要用已
知平均相对分子量的高聚物求得K、α值。

然后,用此K、α值及同种待测高聚物溶液的特性粘度实验值,
可求得此待测高聚物的粘均相对分子量。

在确定K、α值时,已知的平均相对分子量是用其他方法测得的。

对于许多高聚物溶液,在有关手册或书中可查得它们的K、α值。

测定高聚物溶液的粘度,最方便是使用毛细管粘度计。

本实验中采用乌氏粘度计,其结构如图S3-2
所示,乌氏粘度计的最大优点是粘度计中的溶液体积不影响测定结果。

因此,可在粘度计中用逐步稀释
法得到不同浓度溶液的粘度。

乌氏粘度计毛细管K的直径、长度和球E体积是根据溶剂的粘度选定的,要
求溶剂的流过的时间不小于100s。

但毛细管直径不宜小于0.5mm,否则测定或洗涤时容易堵塞。

球F的容
积应为B管中a刻度至球F底体积的8~10倍,则在测定过程中可以使溶液稀释至起始浓度的五分之一左右。

为使球F不致过大,球E的体积以4~5mL为宜。

此外球D至球F底端的距离,应尽量小些。

由于粘度计由玻
璃吹制而成,其三根支管很容易折断,使用时应特别小心。

液体在毛细管粘度计中因重力作用而流动时遵守泊索利方程。

当考虑动能的影响,更完全的公式可写为:
式中m为毛细管末端校正系数,是一个接近于1的仪器常数,视毛细管两端处液体流动情况而异,通
常m值约为1.12。

对于指定的粘度计,上式中许多参数是一定的,则此式可写为下列形式:
式中B<1,若流出时间t在100s以上,则第二项可以忽略,上式写为:。

通常测定相对分子量时溶液较稀(),溶液的密度与溶剂密度相近,当用同一支
粘度计测定溶剂和溶液粘度时,
式中t为测定溶液粘度计面由a刻度流至b刻度的时间,为测定溶剂流过的时间。

三、实验仪器和药品
1、实验仪器:恒温槽、分析天平、乌氏粘度计、秒表、三号玻璃砂漏斗、移液管(5ml、10ml)、注射器、量筒(100ml)、容量瓶(100ml)、烧杯(100ml)、洗瓶。

2、实验药品:聚乙烯醇、正丁醇。

四、实验步骤
1、用分析天平准确称取0.8~1g 聚乙烯醇于烧杯(100ml)中,加入约60ml蒸馏水,加热溶解。

冷却后,小心地转移至容量瓶(100ml)中,滴几滴正丁醇(起消泡作用),加水至刻度。

用三号玻璃砂漏斗过滤(因溶解、过滤较慢,这一工作可由实验室预先完成)。

2、调节恒温槽温度至30.0℃。

在洗净、烘干的乌氏粘度计B管和C管上各套一段乳胶管。

然后,将粘度计垂直固定在恒温槽中,要使水面完全浸没G球。

检查粘度计毛细管K是否垂直,调整粘度计至垂直,固定。

用移液管吸取10ml聚乙烯醇水溶液,从A管注入粘度计。

恒温10min后进行测定。

将C管的乳胶管用夹子夹紧,使其不漏气。

在B管上用注射器将溶液吸至G球的三分之二位置。

使B管上口通大气,球G中的液面下降。

立即松开夹子,使C管通大气,球D中溶液回到球F中。

此时球G液面应离刻线a较远。

当液面流经刻线a时,立即启动秒表,开始计量时间。

当液面降至刻线b时,停止秒表,记录液面由a至b所需的时间。

重复操作三次,测量值之间不得大于0.3s,取平均值。

3、依次由A管处用移液管加入5,5,5,10,10ml蒸馏水,混合均匀后,溶液浓度变为:。

每次加入水后,恒温10min,用上述同样方法测定流过时间。

注意每次加蒸馏水后,应用注射器将溶液抽至G球,并使之流下,反复数次,以保证粘度计中各处溶液的浓度均匀。

4、倒出溶液,用蒸馏水清洗粘度计,尤其要注意洗净粘度计毛细管及球E等部分。

最后测定蒸馏水的流过时间。

说明:聚乙烯醇溶液很容易形成泡沫,而泡沫的存在直接影响流过时间的测定,甚至使实验不能进行。

因此,在聚乙烯醇溶液中加入几滴正丁醇以破泡沫。

为保证实验数据的规律性,在纯溶剂中也应加入同样
多的正丁醇。

同时,在实验操作中,抽吸液体必须缓慢,避免气泡的形成。

若D球中有气泡,应将其赶到
球F中去。

液面升到球E中时液面上不得有气泡,这是实验成败的关键。

五、数据记录和处理
1、计算每个溶液的浓度和不同浓度溶液的、、(ln)/c、/c,并列表。

2、作(ln)/c对c 及/C对c 的图,作直线,外推至c0,求出[η]。

3、由式计算聚乙烯醇的粘均相对分子量Mη。

已知30.0℃时,式中,
α=0.64。

相关文档
最新文档