三年高考(2016-2018)数学(理)真题分类解析:专题14-与数列相关的综合问题
算法-三年高考(2016-2018)数学(理)试题分项版解析+Word版含解析

N的值为 20,则输出 T 的值为
结构 , 有时与函数、 数列、概率结合进行综合考查 . 根据题目条件补充判断框中的条件 , 读出程序框图的功能 ,
执行程序框图并输出结果是高考的热点 . 一般以选择题形式出现 , 分值约为 5 分 , 属中低档题 .
1.【 2018 年理数全国卷 II 】为计算 应填入
2018 年高考全景展示 ,设计了下面的程序框图,则在空白框中
2017 课标全国Ⅰ ,8;
2017 课标全国Ⅲ ,7;
2016 课标全国Ⅰ ,9; 了解
2015 课标Ⅰ ,9;
2015 课标Ⅱ ,8;
2014 课标Ⅰ ,7
选择题
★★★
分析解读 1. 理解算法的概念与特点 , 会用自然语言描述算法 , 能熟练运用程序框图表示算法 .2. 理解基本
算法语句 , 掌握算法的基本思想 , 能编写程序解决简单问题 .3. 程序框图 . 高考对本章主要考查三种基本逻辑
A.
B.
C.
D.
【答案】 B
点睛:算法与流程图的考查,侧重于对流程图循环结构的考查
. 先明晰算法及流程图的相关概念,包括选择
结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明
确流程图研究的数学问题,是求和还是求项 .
2. 【 2018 年理数北京】执行如图所示的程序框图,输出的
①已知程序框图 , 求输出的结果 , 可按程序框图的流程依次执行 , 最后得出结果.
②完善程序框图问题 , 结合初始条件和输出结果 , 分析控制循环的变量应满足的条件或累加、累乘的变量的
表达式.
③对于辨析程序框图功能问题 , 可将程序执行几次 , 即可根据结果作出判断.
三年高考(2016-2018)数学(理)真题分类解析:专题08-导数与不等式、函数零点

专题08 导数与不等式、函数零点相结合2018年高考全景展示1.【2018年全国卷Ⅲ理】已知函数.(1)若,证明:当时,;当时,;(2)若是的极大值点,求.【答案】(1)见解析(2)当时,;当时,.故当时,,且仅当时,,从而,且仅当时,.所以在单调递增.又,故当时,;当时,.(2)(i)若,由(1)知,当时,,这与是的极大值点矛盾.(ii)若,设函数.由于当时,,故与符号相同.又,故是的极大值点当且仅当是的极大值点..如果,则当,且时,,故不是的极大值点.如果,则存在根,故当,且时,,所以不是的极大值点.如果,则.则当时,;当时,.所以是的极大值点,从而是的极大值点,综上,.点睛:本题考查函数与导数的综合应用,利用函数的单调性求出最值证明不等式,第二问分类讨论和,当时构造函数时关键,讨论函数的性质,本题难度较大。
2.【2018年理数全国卷II】已知函数.(1)若,证明:当时,;(2)若在只有一个零点,求.【答案】(1)见解析(2)【解析】分析:(1)先构造函数,再求导函数,根据导函数不大于零得函数单调递减,最后根据单调性证得不等式,(2)研究零点,等价研究的零点,先求导数:,这里产生两个讨论点,一个是a与零,一个是x与2,当时,,没有零点;当时,先减后增,从而确定只有一个零点的必要条件,再利用零点存在定理确定条件的充分性,即得a的值.(2)设函数.在只有一个零点当且仅当在只有一个零点.(i)当时,,没有零点;(ii)当时,.当时,;当时,.所以在单调递减,在单调递增.故是在的最小值.①若,即,在没有零点;②若,即,在只有一个零点;③若,即,由于,所以在有一个零点,由(1)知,当时,,所以.故在有一个零点,因此在有两个零点.综上,在只有一个零点时,.点睛:利用函数零点的情况求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.3.【2018年江苏卷】某农场有一块农田,如图所示,它的边界由圆O的一段圆弧(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为,要求均在线段上,均在圆弧上.设OC与MN所成的角为.(1)用分别表示矩形和的面积,并确定的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为.求当为何值时,能使甲、乙两种蔬菜的年总产值最大.【答案】(1)矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ),sinθ的取值范围是[,1).(2)当θ=时,能使甲、乙两种蔬菜的年总产值最大【解析】分析:(1)先根据条件求矩形长与宽,三角形的底与高,再根据矩形面积公式以及三角形面积公式得结果,最后根据实际意义确定的取值范围;(2)根据条件列函数关系式,利用导数求极值点,再根据单调性确定函数最值取法.详解:解:(1)连结PO并延长交MN于H,则PH⊥MN,所以OH=10.过O作OE⊥BC于E,则OE∥MN,所以∠COE=θ,故OE=40cosθ,EC=40sinθ,则矩形ABCD 的面积为2×40cos θ(40sin θ+10)=800(4sin θcos θ+cos θ), △CDP 的面积为×2×40cos θ(40–40sin θ)=1600(cos θ–sin θcos θ). 过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则GK =KN =10.令∠GOK =θ0,则sin θ0=,θ0∈(0,).当θ∈[θ0,)时,才能作出满足条件的矩形ABCD ,所以sin θ的取值范围是[,1). 答:矩形ABCD 的面积为800(4sin θcos θ+cos θ)平方米,△CDP 的面积为1600(cos θ–sin θcos θ),sin θ的取值范围是[,1).令,得θ=,当θ∈(θ0,)时,,所以f (θ)为增函数;当θ∈(,)时,,所以f (θ)为减函数,因此,当θ=时,f (θ)取到最大值.答:当θ=时,能使甲、乙两种蔬菜的年总产值最大.点睛:解决实际应用题的步骤一般有两步:一是将实际问题转化为数学问题;二是利用数学内部的知识解决问题.2017年高考全景展示1.【2017课标3,理11】已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .1【答案】C 【解析】试题分析:函数的零点满足()2112x x x x a e e --+-=-+,设()11x x g x ee--+=+,则()()211111111x x x x x x e g x eeee e ---+----'=-=-=,当()0g x '=时,1x =,当1x <时,()0g x '<,函数()g x 单调递减, 当1x >时,()0g x '>,函数()g x 单调递增, 当1x =时,函数取得最小值()12g =,设()22h x x x =- ,当1x =时,函数取得最小值1- ,若0a ->,函数()h x 与函数()ag x 没有交点,当0a -<时,()()11ag h -=时,此时函数()h x 和()ag x 有一个交点, 即21a -⨯=-,解得12a =.故选C. 【考点】 函数的零点;导函数研究函数的单调性,分类讨论的数学思想【名师点睛】函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用. 2.【2017课标1,理21】已知函数2()(2)xx f x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围. 【解析】试题分析:(1)讨论()f x 单调性,首先进行求导,发现式子特点后要及时进行因式分解,在对a 按0a ≤,0a >进行讨论,写出单调区间;(2)根据第(1)题,若0a ≤,()f x 至多有一个零点.若0a >,当ln x a =-时,()f x 取得最小值,求出最小值1(ln )1ln f a a a-=-+,根据1a =,(1,)a ∈+∞,(0,1)a ∈进行讨论,可知当(0,1)a ∈有2个零点,设正整数0n 满足03ln(1)n a>-,则00000000()e (e 2)e 20n n n n f n a a n n n =+-->->->.由于3l n (1)l na a->-,因此()f x 在(ln ,)a -+∞有一个零点.所以a 的取值范围为(0,1).(2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点.(ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+. ①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e(2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln(1)n a>-,则00000000()e (e 2)e 20n n n nf n a a n n n =+-->->->. 由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点. 综上,a 的取值范围为(0,1).【考点】含参函数的单调性,利用函数零点求参数取值范围.【名师点睛】研究函数零点问题常常与研究对应方程的实根问题相互转化.已知函数()f x 有2个零点求参数取值范围,第一种方法是分离参数,构造不含参数的函数,研究其单调性、极值、最值,判断y a =与其交点的个数,从而求出a 的范围;第二种方法是直接对含参函数进行研究,研究其单调性、极值、最值,注意点是若()f x 有2个零点,且函数先减后增,则只需其最小值小于0,且后面还需验证有最小值两边存在大于0的点.3.【2017课标II ,理】已知函数()2ln f x ax ax x x =--,且()0f x ≥。
三年高考(2016-2018)高考数学试题分项版解析 专题01 集合 理(含解析)

专题01 集合考纲解读明方向分析解读1.掌握集合的表示方法,能判断元素与集合的“属于”关系、集合与集合之间的包含关系.2.深刻理解、掌握集合的元素,子、交、并、补集的概念.熟练掌握集合的交、并、补的运算和性质.能用韦恩(Venn)图表示集合的关系及运算.3.本部分内容在高考试题中多以选择题或填空题的形式出现,以函数、不等式等知识为载体,以集合语言和符号语言表示为表现形式,考查数学思想方法.4.本节内容在高考中分值约为5分,属中低档题.命题探究练扩展2018年高考全景展示1.【2018年理北京卷】已知集合A={x||x|<2},B={–2,0,1,2},则A B=A. {0,1}B. {–1,0,1}C. {–2,0,1,2}D. {–1,0,1,2}【答案】A【解析】因此A B=,选A.点睛:认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.2.【2018年理新课标I卷】已知集合,则A. B.C. D.【答案】B点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.3.【2018年全国卷Ⅲ理】已知集合,,则A. B. C. D.【答案】C【解析】由集合A得,所以,故答案选C.点睛:本题主要考查交集的运算,属于基础题。
4.【2018年理数全国卷II】已知集合,则中元素的个数为A. 9 B. 8 C. 5 D. 4【答案】A【解析】.,当时,;当时,;当时,;所以共有9个,选A.点睛:本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别.5.【2018年理数天津卷】设全集为R,集合,,则A. B. C. D.【答案】B 【解析】 由题意可得:,结合交集的定义可得:.本题选择B 选项.点睛:本题主要考查交集的运算法则,补集的运算法则等知识,意在考查学生的转化能力和计算求解能力. 6.【2018年江苏卷】已知集合,,那么________.【答案】{1,8}【解析】由题设和交集的定义可知:. 点睛:本题考查交集及其运算,考查基础知识,难度较小.2017年高考全景展示1.【2017课标1,理1】已知集合A ={x |x <1},B ={x |31x<},则( ) A .{|0}A B x x =< B .A B =R C .{|1}A B x x =>D .AB =∅【答案】A【解析】由31x <可得033x <,则0x <,即{|0}B x x =<,所以{|1}{|0}{|0}A B x x x x x x =<<=<,{|1}{|0}{|1}A B x x x x x x =<<=<,故选A.【考点】集合的运算,指数运算性质.【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理. 2.【2017课标II ,理】设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =( )A.{}1,3-B.{}1,0C.{}1,3D.{}1,5 【答案】C【考点】 交集运算,元素与集合的关系【名师点睛】集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.两个防范:一是不要忽视元素的互异性;二是保证运算的准确性.3.【2017课标3,理1】已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为( )A .3B .2C .1D .0【答案】B【考点】 交集运算;集合中的表示方法.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性. 4.【2017北京,理1】若集合A ={x |–2<x <1},B={x |x <–1或x >3},则A B =( )(A ){x |–2<x <–1} (B ){x |–2<x <3} (C ){x |–1<x <1} (D ){x |1<x <3} 【答案】A【解析】利用数轴可知{}21A B x x =-<<-,故选A.【考点】集合的运算【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示,若集合是无限集合就用描述法表示,注意代表元素是什么,集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.5.【2017浙江,1】已知}11|{<<-=x x P ,}20{<<=x Q ,则=Q P ( )A .)2,1(-B .)1,0(C .)0,1(-D .)2,1(【答案】A【解析】利用数轴,取Q P ,所有元素,得=Q P )2,1(-. 【考点】集合运算【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理. 6.【2017天津,理1】设集合{1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ,则()A B C =( )(A ){2} (B ){1,2,4} (C ){1,2,4,6} (D ){|15}x x ∈-≤≤R 【答案】B 【解析】(){1246}[15]{124}AB C =-=,,,,,, ,选B【考点】 集合的运算【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理. 7.【2017江苏,1】已知集合{1,2}A =,2{,3}B a a =+,若{1}A B =则实数a 的值为 . 【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1.【考点】元素的互异性【名师点睛】(1)认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误. (3)防范空集.在解决有关,A B A B =∅⊆等集合问题时,往往忽略空集的情况,一定先考虑∅是否成立,以防漏解.2016年高考全景展示1.【2016课标1,理1】设集合{}2430A x x x =-+< ,{}230x x ->,则A B = ( )(A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭(D )3,32⎛⎫⎪⎝⎭【答案】D考点:集合的交集运算【名师点睛】集合是每年中的必考题,一般以基础题形式出现,属得分题.解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算.2.【2016新课标3理数】设集合{}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则ST =( )(A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) 【答案】D【技巧点拨】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化.3.【2016新课标2理数】已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B =( )(A ){1} (B ){12}, (C ){0123},,, (D ){10123}-,,,, 【答案】C 【解析】试题分析:集合B {x |1x 2,x Z}{0,1}=-<<∈=,而A {1,2,3}=,所以A B {0,1,2,3}=,故选C.考点: 集合的运算.【名师点睛】集合的交、并、补运算问题,应先把集合化简在计算,常常借助数轴或韦恩图处理. 4. 【2016山东理数】设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A B =( )(A )(1,1)-(B )(0,1)(C )(1,)-+∞(D )(0,)+∞【答案】C 【解析】试题分析:}0|{>=y y A ,}11|{<<-=x x B ,则AB =∞(-1,+),选C. 考点:1.指数函数的性质;2.解不等式;3.及集合的运算.【名师点睛】本题主要考查集合的并集、补集,是一道基础题目.从历年题目看,集合的基本运算,是必考考点,也是考生必定得分的题目之一.本题与求函数值域、解不等式等相结合,增大了考查的覆盖面. 5.【2016浙江理数】已知集合{}{}213,4,P x x Q x x =∈≤≤=∈≥R R 则()P Q ⋃=R ð( ) A .[2,3] B .( -2,3 ] C .[1,2) D .(,2][1,)-∞-⋃+∞ 【答案】B 【解析】试题分析:根据补集的运算得{}[](]24(2,2),()(2,2)1,32,3=<=-∴=-=-R R Q x x P Q 痧.故选B .考点:1、一元二次不等式;2、集合的并集、补集.【易错点睛】解一元二次不等式时,2x 的系数一定要保证为正数,若2x 的系数是负数,一定要化为正数,否则很容易出错.6.【2016年北京理数】已知集合{|||2}A x x =<,{1,0,1,2,3}B =-,则A B =( )A.{0,1}B.{0,1,2}C.{1,0,1}-D.{1,0,1,2}- 【答案】C【解析】由}22|{<<-=x x A ,得}1,0,1{-=B A ,故选C. 考点:集合交集.【名师点睛】1. 首先要弄清构成集合的元素是什么(即元素的意义),是数集还是点集,如集合)}(|{x f y x =,)}(|{x f y y =,)}(|),{(x f y y x =三者是不同的.2.集合中的元素具有三性——确定性、互异性、无序性,特别是互异性,在判断集合中元素的个数时,以及在含参的集合运算中,常因忽视互异性,疏于检验而出错.3.数形结合常使集合间的运算更简捷、直观.对离散的数集间的运算或抽象集合间的运算,可借助Venn 图实施,对连续的数集间的运算,常利用数轴进行,对点集间的运算,则通过坐标平面内的图形求解,这在本质上是数形结合思想的体现和运用.4.空集是不含任何元素的集合,在未明确说明一个集合非空的情况下,要考虑集合为空集的可能.另外,不可忽视空集是任何元素的子集.7.【2016年四川理数】设集合{|22}A x x =-≤≤,Z 为整数集,则A Z 中元素的个数是( )(A )3 (B )4 (C )5 (D )6 【答案】C 【解析】由题意,{2,1,0,1,2}AZ =--,故其中的元素个数为5,选C.考点:集合中交集的运算.【名师点睛】集合的概念及运算一直是的热点,几乎是每年必考内容,属于容易题.一般是结合不等式,函数的定义域值域考查,解题的关键是结合韦恩图或数轴解答.8.【2016天津理数】已知集合{1,2,3,4},{|32},A B y y x x A ===-∈,则A B =( )(A ){1}(B ){4}(C ){1,3}(D ){1,4}【答案】D 【解析】试题分析:{1,4,7,10},A B {1,4}.B ==选D. 考点:集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,误求并集,属于基本题,难点系数较小.一要注意培养良好的答题习惯,避免出现粗心错误,二是明确集合交集的考查立足于元素互异性,做到不重不漏.9.【2016江苏卷】已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B ____________. 【答案】{}1,2- 【解析】 试题分析:{1,2,3,6}{|23}{1,2}AB x x =--<<=-考点:集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,属于基本题,难点系数较小.一要注意培养良好的答题习惯,避免出现粗心错误,二是明确江苏对于集合题的考查立足于列举法,强调对集合运算有关概念及法则的理解。
历年高考理科数列真题汇编含答案解析

高考数列选择题部分(2016全国I )(3)已知等差数列{}n a 前9项的和为27,10=8a ,则100=a(A )100 (B )99 (C )98 (D )97(2016上海)已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞→lim .下列条件中,使得()*∈<N n S S n 2恒成立的是( )(A )7.06.0,01<<>q a (B )6.07.0,01-<<-<q a(C )8.07.0,01<<>q a (D )7.08.0,01-<<-<q a(2016四川)5. 【题设】某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg2≈0.30)( A )2018年 (B )2019年 (C )2020年 (D )2021年 (2016天津)(5)设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n −1+a 2n <0”的( )(A )充要条件 (B )充分而不必要条件 (C )必要而不充分条件 (D )既不充分也不必要条件(2016浙江)6. 如图,点列{A n },{B n }分别在某锐角的两边上,且1122,,n n n n n n A A A A A A n ++++=≠∈*N ,1122,,n n n n n n B B B B B B n ++++=≠∈*N ,(P Q P Q ≠表示点与不重合). 若1n n n n n n n d A B S A B B +=,为△的面积,则A .{}n S 是等差数列B .2{}n S 是等差数列C .{}n d 是等差数列D .2{}n d 是等差数列1.【2015高考重庆,理2】在等差数列{}n a 中,若2a =4,4a =2,则6a = ( )A 、-1B 、0C 、1D 、62.【2015高考福建,理8】若,a b 是函数()()20,0f x x px q p q =-+>> 的两个不同的零点,且,,2a b - 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q + 的值等于( ) A .6 B .7 C .8 D .93.【2015高考北京,理6】设{}n a 是等差数列. 下列结论中正确的是( )A .若120a a +>,则230a a +>B .若130a a +<,则120a a +<C .若120a a <<,则213a a a >D .若10a <,则()()21230a a a a -->4.【2015高考浙江,理3】已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若3a ,4a ,8a 成等比数列,则( )A.140,0a d dS >>B. 140,0a d dS <<C. 140,0a d dS ><D.140,0a d dS <>1.【2014年重庆卷(理02)】对任意等比数列{}n a ,下列说法一定正确的是( )139.,,A a a a 成等比数列 236.,,B a a a 成等比数列 248.,,C a a a 成等比数列 369.,,D a a a 成等比数列2.【2014年全国大纲卷(10)】等比数列{}n a 中,452,5a a ==,则数列{lg }n a 的前8项和等于( )A .6B .5C .4D .35.【2014年福建卷(理03)】等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( )A .8B .10C .12D .14高考数列填空题部分(2016全国I )(15)设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2 …a n 的最大值为 .(2016上海)无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意*∈N n ,{}3,2∈n S ,则k 的最大值为________.(2016北京)12.已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则6=S _______..(2016江苏)8. 已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是 ▲ .(2016浙江)13.设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1= ,S 5= .5.【2015高考安徽,理14】已知数列{}n a 是递增的等比数列,14239,8a a a a +==,则数列{}n a 的前n 项和等于 .6.【2015高考新课标2,理16】设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________.7.【2015高考广东,理10】在等差数列{}n a 中,若2576543=++++a a a a a ,则82a a += .8.【2015高考陕西,理13】中位数1010的一组数构成等差数列,其末项为2015,则该数列的首项为 .9.【2015江苏高考,11】数列}{n a 满足11=a ,且11+=-+n a a n n (*N n ∈),则数列}1{na 的前10项和为3.【2014年广东卷(理13)】若等比数列{}n a 的各项均为正数,且512911102e a a a a =+,则1220ln ln ln a a a +++= 。
三年高考(2016-2018)数学(理)真题分类解析:专题04-函数性质与应用

专题04 函数性质与应用考纲解读明方向1.考查函数的单调区间的求法及单调性的应用,如应用单调性求值域、比较大小或证明不等式,运用定义或导数判断或证明函数的单调性等.2.借助数形结合的思想解题.函数的单调性、周期性、奇偶性的综合性问题是高考热点,应引起足够的重视.3.本节内容在高考中分值为5分左右,属于中档题.命题探究练扩展2018年高考全景展示1.【2018年理数全国卷II】已知是定义域为的奇函数,满足.若,则A. B. 0 C. 2 D. 50【答案】C【解析】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.详解:因为是定义域为的奇函数,且,所以,因此,因为,所以,,从而,选C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.2.【2018年江苏卷】函数满足,且在区间上,则的值为________.【答案】点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.3.【2018年理新课标I卷】已知函数,则的最小值是_____________.【答案】【解析】分析:首先对函数进行求导,化简求得,从而确定出函数的单调区间,减区间为,增区间为,确定出函数的最小值点,从而求得代入求得函数的最小值.详解:,所以当时函数单调减,当时函数单调增,从而得到函数的减区间为,函数的增区间为,所以当时,函数取得最小值,此时,所以,故答案是.点睛:该题考查的是有关应用导数研究函数的最小值问题,在求解的过程中,需要明确相关的函数的求导公式,需要明白导数的符号与函数的单调性的关系,确定出函数的单调增区间和单调减区间,进而求得函数的最小值点,从而求得相应的三角函数值,代入求得函数的最小值.2017年高考全景展示1.【2017天津,理6】已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为( )(A )a b c << (B )c b a << (C )b a c <<(D )b c a <<【答案】C【解析】因为()f x 是奇函数且在R 上是增函数,所以在0x >时,()0f x >, 从而()()g x xf x =是R 上的偶函数,且在[0,)+∞上是增函数,22(log 5.1)(log 5.1)a g g =-=,0.822<,又4 5.18<<,则22log 5.13<<,所以即0.8202log 5.13<<<,0.82(2)(log 5.1)(3)g g g <<,所以b a c <<,故选C .【考点】 指数、对数、函数的单调性【名师点睛】比较大小是高考常见题,指数式、对数式的比较大小要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性进行比较大小,特别是灵活利用函数的奇偶性和单调性数形结合不仅能比较大小,还可以解不等式.2.【2017课标3,理15】设函数10()20x x x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是_________.【答案】1,4⎛⎫-+∞ ⎪⎝⎭写成分段函数的形式:()())132,021112,0222112,2x x x x g x f x f x x x x -⎧+≤⎪⎪⎪⎛⎫=+-=++<≤⎨ ⎪⎝⎭⎪⎪>⎪⎩,函数()g x 在区间(]11,0,0,,,22⎛⎤⎛⎫-∞+∞ ⎪⎥⎝⎦⎝⎭三段区间内均单调递增,且:)01111,201,12142g -⎛⎫-=++>⨯> ⎪⎝⎭,据此x 的取值范围是:1,4⎛⎫-+∞ ⎪⎝⎭. 【考点】 分段函数;分类讨论的思想【名师点睛】(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围. 3.【2017山东,理15】若函数()x e f x ( 2.71828e =是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.下列函数中所有具有M 性质的函数的序号为 . ①()2x f x -=②()3x f x -=③()3f x x =④()22f x x =+【答案】①④④()()22xxe f x ex=+,令()()22x g x ex =+,则()()()2222110x xxg x e x e x e x ⎡⎤'=++⋅=++>⎣⎦,∴()()22x x e f x e x =+在R 上单调递增,故()22f x x =+具有M 性质.【考点】1.新定义问题.2.利用导数研究函数的单调性. 【名师点睛】1.本题考查新定义问题,属于创新题,符合新高考的走向.它考查学生的阅读理解能力,接受新思维的能力,考查学生分析问题与解决问题的能力,新定义的概念实质上只是一个载体,解决新问题时,只要通过这个载体把问题转化为我们已经熟悉的知识即可.2.求可导函数单调区间的一般步骤 (1)确定函数f (x )的定义域(定义域优先); (2)求导函数f ′(x );(3)在函数f (x )的定义域内求不等式f ′(x )>0或f ′(x )<0的解集.(4)由f ′(x )>0(f ′(x )<0)的解集确定函数f (x )的单调增(减)区间.若遇不等式中带有参数时,可分类讨论求得单调区间.3.由函数f (x )在(a ,b )上的单调性,求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,要注意“=”是否可以取到.4.【2017浙江,17】已知α∈R ,函数a a xx x f +-+=|4|)(在区间[1,4]上的最大值是5,则a 的取值范围是___________. 【答案】9(,]2-∞ 【解析】试题分析:[][]41,4,4,5x x x∈+∈,分类讨论: ①.当5a ≥时,()442f x a x a a x x x=--+=--,函数的最大值9245,2a a -=∴=,舍去; ②.当4a ≤时,()445f x x a a x x x=+-+=+≤,此时命题成立; ③.当45a <<时,(){}max max 4,5f x a a a a =-+-+⎡⎤⎣⎦,则:4545a a a a a a ⎧-+≥-+⎪⎨-+=⎪⎩或:4555a a a aa a ⎧-+<-+⎪⎨-+=⎪⎩,解得:92a =或92a < 综上可得,实数a 的取值范围是9,2⎛⎤-∞ ⎥⎝⎦.【考点】基本不等式、函数最值【名师点睛】本题利用基本不等式,由[][]41,4,4,5x x x∈+∈,通过对解析式中绝对值号的处理,进行有效的分类讨论:①当5a ≥;②4a ≤;③45a <<,问题的难点最要在于对分界点的确认及讨论上,属难题.解题时,应仔细对各个情况进行逐一讨论. 5.【2017江苏,11】已知函数31()2e e x xf x x x =-+-, 其中e 是自然对数的底数. 若2(1)(2)0f a f a -+≤,则实数a 的取值范围是 . 【答案】1[1,]2-【解析】因为31()2e ()exx f x x f x x -=-++-=-,所以函数()f x 是奇函数,因为22()32e e 320x x f 'x x x -=-++≥-+,所以数()f x 在R 上单调递增, 又21)02()(f f a a +-≤,即2())2(1a a f f ≤-,所以221a a ≤-,即2120a a +-≤, 解得112a -≤≤,故实数a 的取值范围为1[1,]2-. 【考点】利用函数性质解不等式【名师点睛】解函数不等式:首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内2016年高考全景展示1.【2016年高考北京理数】已知x )A.11x y ->B.sin sin 0x y ->C.11()()022x y -<D.ln ln 0x y +> 【答案】C考点: 函数性质【名师点睛】函数单调性的判断:(1)常用的方法有:定义法、导数法、图象法及复合函数法. (2)两个增(减)函数的和仍为增(减)函数;一个增(减)函数与一个减(增)函数的差是增(减)函数; (3)奇函数在关于原点对称的两个区间上有相同的单调性,偶函数在关于原点对称的两个区间上有相反的单调性.2.【2016高考新课标2理数】已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑( )(A )0 (B )m (C )2m (D )4m 【答案】C 【解析】试题分析:由于()()2f x f x -+=,不妨设()1f x x =+,与函数111x y x x+==+的交点为()()1,2,1,0-,故12122x x y y +++=,故选C.考点: 函数图象的性质【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数的图象有对称中心.3. 【2016高考山东理数】已知函数f (x )的定义域为R .当x <0时,3()1f x x =- ;当11x -≤≤ 时,()()f x f x -=-;当12x >时,11()()22f x f x +=- .则f (6)= ( )(A )−2 (B )−1 (C )0 (D )2【答案】D考点:1.函数的奇偶性与周期性;2.分段函数.【名师点睛】本题主要考查分段函数的概念、函数的奇偶性与周期性,是高考常考知识内容.本题具备一定难度.解答此类问题,关键在于利用分段函数的概念,发现周期函数特征,进行函数值的转化.本题能较好的考查考生分析问题解决问题的能力、基本计算能力等.4.【2016年高考四川理数】已知函数()f x 是定义在R 上的周期为2的奇函数,当0<x <1时,()4xf x =,则5()(1)2f f -+= . 【答案】-2 【解析】试题分析:因为函数()f x 是定义在R 上周期为2的奇函数,所以(1)(1),(1)(12)(1)f f f f f -=--=-+=,所以(1)(1)f f -=,即(1)0f =,125111()(2)()()422222f f f f -=--=-=-=-=-,所以5()(1)22f f -+=-.考点:函数的奇偶性和周期性.【名师点睛】本题考查函数的奇偶性,周期性,属于基本题,在求值时,只要把5()2f -和(1)f ,利用奇偶性与周期性化为(0,1)上的函数值即可.5.【2015高考新课标1,理13】若函数f (x )=ln(x x 为偶函数,则a = 【答案】1【解析】由题知ln(y x =是奇函数,所以ln(ln(x x ++- =22ln()ln 0a x x a +-==,解得a =1. 【考点定位】函数的奇偶性【名师点睛】本题主要考查已知函数奇偶性求参数值问题,常用特值法,如函数是奇函数,在x =0处有意义,常用f (x )=0,求参数,否则用其他特值,利用特值法可以减少运算.6.【2016高考天津理数】已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a足1(2)(a f f ->,则a 的取值范围是______. 【答案】13(,)22考点:利用函数性质解不等式【名师点睛】不等式中的数形结合问题,在解题时既要想形又要以形助数,常见的“以形助数”的方法有:(1)借助数轴,运用数轴的有关概念,解决与绝对值有关的问题,解决数集的交、并、补运算非常有效. (2)借助函数图象性质,利用函数图象分析问题和解决问题是数形结合的基本方法,需注意的问题是准确把握代数式的几何意义实现“数”向“形”的转化.。
人教版【三年高考】(2016-2018)数学(理科)真题分类解析:专题14-与数列相关的综合问题(含答案)

专题14 与数列相关的综合问题考纲解读明方向分析解读 1.会用公式法、倒序相加法、错位相减法、裂项相消法、分组转化法求解不同类型数列的和.2.能综合利用等差、等比数列的基本知识解决相关综合问题.3.数列递推关系、非等差、等比数列的求和是高考热点,特别是错位相减法和裂项相消法求和.分值约为12分,难度中等.2018年高考全景展示1.【2018年浙江卷】已知成等比数列,且.若,则 A. B.C.D.【答案】B【解析】分析:先证不等式,再确定公比的取值范围,进而作出判断. 详解:令则,令得,所以当时,,当时,,因此, 若公比,则,不合题意;若公比,则但,即,不合题意;因此,,选B.点睛:构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如2.【2018年浙江卷】已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前n项和,则使得成立的n的最小值为________.【答案】27【解析】分析:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值.点睛:本题采用分组转化法求和,将原数列转化为一个等差数列与一个等比数列的和.分组转化法求和的常见类型主要有分段型(如),符号型(如),周期型(如). 3.【2018年理数天津卷】设是等比数列,公比大于0,其前n项和为,是等差数列.已知,,,.(I)求和的通项公式;(II)设数列的前n项和为,(i)求;(ii)证明.【答案】(Ⅰ),;(Ⅱ)(i).(ii)证明见解析.【解析】分析:(I)由题意得到关于q的方程,解方程可得,则.结合等差数列通项公式可得(II)(i)由(I),有,则.(ii)因为,裂项求和可得.详解:(I)设等比数列的公比为q.由可得.因为,可得,故.设等差数列的公差为d,由,可得由,可得从而故所以数列的通项公式为,数列的通项公式为(II)(i)由(I),有,故.(ii)因为,所以.点睛:本题主要考查数列通项公式的求解,数列求和的方法,数列中的指数裂项方法等知识,意在考查学生的转化能力和计算求解能力.4.【2018年江苏卷】设,对1,2,···,n的一个排列,如果当s<t时,有,则称是排列的一个逆序,排列的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记为1,2,···,n的所有排列中逆序数为k的全部排列的个数.(1)求的值;(2)求的表达式(用n表示).【答案】(1)2 5 2)n≥5时,【解析】分析:(1)先根据定义利用枚举法确定含三个元素的集合中逆序数为2的个数,再利用枚举法确定含四个元素的集合中逆序数为2的个数;(2)先寻求含n个元素的集合中逆序数为2与含n+1个元素的集合中逆序数为2的个数之间的关系,再根据叠加法求得结果.详解:解:(1)记为排列abc的逆序数,对1,2,3的所有排列,有,所以.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.因此,.点睛:探求数列通项公式的方法有观察(观察规律)、比较(比较已知数列)、归纳、转化(转化为特殊数列)、联想(联想常见的数列)等方法.寻求相邻项之间的递推关系,是求数列通项公式的一个有效的方法.5.【2018年江苏卷】设是首项为,公差为d的等差数列,是首项为,公比为q的等比数列.(1)设,若对均成立,求d的取值范围;(2)若,证明:存在,使得对均成立,并求的取值范围(用表示).【答案】(1)d的取值范围为.(2)d的取值范围为,证明见解析。
2016-2018三年高考数学(理)真题分类专题汇编解析版

2016-2018三年高考数学(理)真题专题分类汇编解析版目录专题01 集合 (1)专题02 常用逻辑用语 (10)专题03基本初等函数 (16)专题04 函数性质与应用 (23)专题05 函数图像与方程 (33)专题06 导数的几何意义 (43)专题07导数的应用 (56)专题08 导数与不等式、函数零点相结合 (85)专题01 集合考纲解读明方向1.掌握集合的表示方法,能判断元素与集合的“属于”关系、集合与集合之间的包含关系.2.深刻理解、掌握集合的元素,子、交、并、补集的概念.熟练掌握集合的交、并、补的运算和性质.能用韦恩(Venn)图表示集合的关系及运算.3.本部分内容在高考试题中多以选择题或填空题的形式出现,以函数、不等式等知识为载体,以集合语言和符号语言表示为表现形式,考查数学思想方法.4.本节内容在高考中分值约为5分,属中低档题.命题探究练扩展2018年高考全景展示1.【2018年理北京卷】已知集合A={x||x|<2},B={–2,0,1,2},则A∩B=A. {0,1}B. {–1,0,1}C. {–2,0,1,2}D. {–1,0,1,2}【答案】A【解析】∵|x|<2,∴−2<x<2,因此A∩B={−2,0,1,2}∩(−2,2)={0,1},选A.点睛:认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.2.【2018年理新课标I卷】已知集合A={x|x2−x−2>0},则∁R A=A. {x|−1<x<2}B. {x|−1≤x≤2}C. {x|x<−1}∪{x|x>2}D. {x|x≤−1}∪{x|x≥2}【答案】B点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.3.【2018年全国卷Ⅲ理】已知集合A={x|x−1≥0},B={0 , 1 , 2},则A∩B=A. {0}B. {1}C. {1 , 2}D. {0 , 1 , 2}【答案】C【解析】由集合A得x≥1,所以A∩B={1,2},故答案选C.点睛:本题主要考查交集的运算,属于基础题。
三年高考(2016-2018)数学(文)真题分类解析:专题14-与数列相关的综合问题含答案

考纲解读明方向考点内容解读要求常考题型预测热度1.数列求和掌握非等差、等比数列求和的几种常见方法掌握解答题★★★2.数列的综合应用能在具体的问题情境中识别数列的等差关系或等比关系,抽象出数列的模型,并能用有关知识解决相应的问题掌握选择题解答题★★★分析解读 1.会用公式法、倒序相加法、错位相减法、裂项相消法、分组转化法求解不同类型数列的和.2.能综合利用等差、等比数列的基本知识解决相关综合问题.3.数列递推关系、非等差、等比数列的求和是高考热点,特别是错位相减法和裂项相消法求和.分值约为12分,难度中等.2018年高考全景展示1.【2018年浙江卷】已知成等比数列,且.若a1,a2,a3,a4,则a1>1A. B. C. D.a1<a3,a2<a4a1>a3,a2<a4a1>a3,a2>a4【答案】B点睛:构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如2.【2018年浙江卷】已知集合,.将的所{a n}S n有元素从小到大依次排列构成一个数列.记为数列的前n项和,则使得成立的n的最小值为________.【答案】27【解析】分析:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值.点睛:本题采用分组转化法求和,将原数列转化为一个等差数列与一个等比数列的和.分组转化法求和的常见类型主要有分段型(如),符号型(如),周期a n =(‒1)n n 2型(如).3.【2018年浙江卷】已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足b 1=1,数列{(b n +1−b n )a n }的前n 项和为2n 2+n .(Ⅰ)求q 的值;(Ⅱ)求数列{b n }的通项公式.【答案】(Ⅰ)(Ⅱ)【解析】分析:(Ⅰ)根据条件、等差数列的性质及等比数列的通项公式即可求解公比,(Ⅱ)先根据数列前n 项和求通项,解得,再通过叠加法以及错位{(b n +1‒b n )a n }相减法求.详解:(Ⅰ)由是的等差中项得,所以a 4+2a 3+a 5=2a 4+4,a 3+a 4+a 5=3a 4+4=28解得.由得,因为,所以.a 4=8a 3+a 5=208(q +1q )=20q >1(Ⅱ)设,数列前n 项和为.由解得.{c n }由(Ⅰ)可知,所以,故a n =2n ‒1,.设,所以,因此,又,所以.b 1=1点睛:用错位相减法求和应注意的问题:(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“”与“”的表达式时应特别注意将两式“错项对齐”以便下一S n qS n 步准确写出“”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,S n ‒qS n 应分公比等于1和不等于1两种情况求解.4.【2018年天津卷文】设{a n }是等差数列,其前n 项和为S n (n ∈N *);{b n }是等比数列,公比大于0,其前n 项和为T n (n ∈N *).已知b 1=1,b 3=b 2+2,b 4=a 3+a 5,b 5=a 4+2a 6.(Ⅰ)求S n 和T n ;(Ⅱ)若S n +(T 1+T 2+…+T n )=a n +4b n ,求正整数n 的值.【答案】(Ⅰ),;(Ⅱ)4.S n =n(n +1)2T n =2n‒1【解析】分析:(I )由题意得到关于q 的方程,解方程可得,则.结q =2合题意可得等差数列的首项和公差为,则其前n 项和.(II )由(I ),S n =n(n +1)2知 据此可得 解得(舍),或.则nn 2‒3n ‒4=0,n =‒1n =4的值为4.点睛:本小题主要考查等差数列、等比数列的通项公式及前n项和公式等基础知识.考查数列求和的基本方法和运算求解能力.5.【2018年江苏卷】设,对1,2,···,n的一个排列,如果当s<t时,有,则称是排列的一个逆序,排列的所有逆序的总个数称为其逆序i s>i t(i s,i t)数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记为1,2,···,n的所有排列中逆序数为k的全部排列的个数.f n(k)(1)求的值;(2)求的表达式(用n表示).【答案】(1)2 5 2)n≥5时,f n(2)=n2‒n‒22【解析】分析:(1)先根据定义利用枚举法确定含三个元素的集合中逆序数为2的个数,再利用枚举法确定含四个元素的集合中逆序数为2的个数;(2)先寻求含n个元素的集合中逆序数为2与含n+1个元素的集合中逆序数为2的个数之间的关系,再根据叠加法求得结果.点睛:探求数列通项公式的方法有观察(观察规律)、比较(比较已知数列)、归纳、转化(转化为特殊数列)、联想(联想常见的数列)等方法.寻求相邻项之间的递推关系,是求数列通项公式的一个有效的方法.6.【2018年江苏卷】设是首项为,公差为d 的等差数列,是首项为,公比为q {a n }a 1{b n }b 1的等比数列.(1)设,若对均成立,求d 的取值范围;a 1=0,b 1=1,q =2n =1,2,3,4(2)若,证明:存在,使得对均成立,并求的取值范围(用表示).n =2,3,鈰?m +1d b 1,m,q 【答案】(1)d 的取值范围为.(2)d 的取值范围为,证明见解析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题14 与数列相关的综合问题考纲解读明方向考点内容解读要求高考示例常考题型预测热度1.数列求和掌握非等差、等比数列求和的几种常见方法掌握2017课标全国Ⅰ,12;2016课标全国Ⅱ,17解答题★★★2.数列的综合应用能在具体的问题情境中识别数列的等差关系或等比关系,抽象出数列的模型,并能用有关知识解决相应的问题掌握2017山东,19;2015福建,8;2013重庆,12选择题解答题★★★分析解读 1.会用公式法、倒序相加法、错位相减法、裂项相消法、分组转化法求解不同类型数列的和.2.能综合利用等差、等比数列的基本知识解决相关综合问题.3.数列递推关系、非等差、等比数列的求和是高考热点,特别是错位相减法和裂项相消法求和.分值约为12分,难度中等.2018年高考全景展示1.【2018年浙江卷】已知成等比数列,且.若,则A. B. C. D.【答案】B【解析】分析:先证不等式,再确定公比的取值范围,进而作出判断.详解:令则,令得,所以当时,,当时,,因此,若公比,则,不合题意;若公比,则但,即,不合题意;因此,,选B.点睛:构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如2.【2018年浙江卷】已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前n项和,则使得成立的n的最小值为________.【答案】27【解析】分析:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值.点睛:本题采用分组转化法求和,将原数列转化为一个等差数列与一个等比数列的和.分组转化法求和的常见类型主要有分段型(如),符号型(如),周期型(如). 3.【2018年理数天津卷】设是等比数列,公比大于0,其前n项和为,是等差数列.已知,,,.(I)求和的通项公式;(II)设数列的前n项和为,(i)求;(ii)证明.【答案】(Ⅰ),;(Ⅱ)(i).(ii)证明见解析.【解析】分析:(I)由题意得到关于q的方程,解方程可得,则.结合等差数列通项公式可得(II)(i)由(I),有,则.(ii)因为,裂项求和可得.详解:(I)设等比数列的公比为q.由可得.因为,可得,故.设等差数列的公差为d,由,可得由,可得从而故所以数列的通项公式为,数列的通项公式为(II)(i)由(I),有,故.(ii)因为,所以.点睛:本题主要考查数列通项公式的求解,数列求和的方法,数列中的指数裂项方法等知识,意在考查学生的转化能力和计算求解能力.4.【2018年江苏卷】设,对1,2,···,n的一个排列,如果当s<t时,有,则称是排列的一个逆序,排列的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记为1,2,···,n的所有排列中逆序数为k的全部排列的个数.(1)求的值;(2)求的表达式(用n表示).【答案】(1)2 5 2)n≥5时,【解析】分析:(1)先根据定义利用枚举法确定含三个元素的集合中逆序数为2的个数,再利用枚举法确定含四个元素的集合中逆序数为2的个数;(2)先寻求含n个元素的集合中逆序数为2与含n+1个元素的集合中逆序数为2的个数之间的关系,再根据叠加法求得结果.详解:解:(1)记为排列abc的逆序数,对1,2,3的所有排列,有,所以.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.因此,.点睛:探求数列通项公式的方法有观察(观察规律)、比较(比较已知数列)、归纳、转化(转化为特殊数列)、联想(联想常见的数列)等方法.寻求相邻项之间的递推关系,是求数列通项公式的一个有效的方法.5.【2018年江苏卷】设是首项为,公差为d的等差数列,是首项为,公比为q的等比数列.(1)设,若对均成立,求d的取值范围;(2)若,证明:存在,使得对均成立,并求的取值范围(用表示).【答案】(1)d的取值范围为.(2)d的取值范围为,证明见解析。
【解析】分析:(1)根据题意结合并分别令n=1,2,3,4列出不等式组,即可解得公差d的取值范围;(2)先根据绝对值定义将不等式转化为,根据条件易得左边不等式恒成立,再利用数列单调性确定右边单调递增,转化为最小值问题,即得公差d的取值范围. 详解:解:(1)由条件知:.因为对n=1,2,3,4均成立,即对n=1,2,3,4均成立,即11,1d3,32d5,73d9,得.因此,d的取值范围为.(2)由条件知:.若存在d,使得(n=2,3,···,m+1)成立,即,即当时,d满足.因为,则,从而,,对均成立.因此,取d=0时,对均成立.下面讨论数列的最大值和数列的最小值().①当时,,当时,有,从而.因此,当时,数列单调递增,故数列的最大值为.②设,当x>0时,,所以单调递减,从而<f(0)=1.当时,,因此,当时,数列单调递减,故数列的最小值为.因此,d的取值范围为.点睛:对于求不等式成立时的参数范围问题,一般有三个方法,一是分离参数法, 使不等式一端是含有参数的式子,另一端是一个区间上具体的函数,通过对具体函数的研究确定含参式子满足的条件.二是讨论分析法,根据参数取值情况分类讨论,三是数形结合法,将不等式转化为两个函数,通过两个函数图像确定条件.2017年高考全景展示1.【2017课标1,理12】几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2, 4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是A.440 B.330 C.220 D.110【答案】A【解析】试题分析:由题意得,数列如下:11,1,2,1,2,4,1,2,4,,2k-则该数列的前(1)122k k k ++++=项和为 1(1)1(12)(122)222k k k k S k ++⎛⎫=+++++++=-- ⎪⎝⎭要使(1)1002k k +>,有14k ≥,此时122k k ++<,所以2k +是之后的等比数列11,2,,2k +的部分和,即1212221t t k -+=+++=-,所以2314t k =-≥,则5t ≥,此时52329k =-=, 对应满足的最小条件为293054402N ⨯=+=,故选A. 【考点】等差数列、等比数列的求和.【名师点睛】本题非常巧妙的将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断.2.【2017浙江,6】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C 【解析】试题分析:由d d a d a S S S =+-+=-+)105(22110211564,可知当0>d ,则02564>-+S S S ,即5642S S S >+,反之,02564>⇒>+d S S S ,所以为充要条件,选C . 【考点】 等差数列、充分必要性【名师点睛】本题考查等差数列的前n 项和公式,通过公式的套入与简单运算,可知4652S S S d +-=, 结合充分必要性的判断,若q p ⇒,则p 是q 的充分条件,若q p ⇐,则p是q 的必要条件,该题“0>d ”⇔“02564>-+S S S ”,故为充要条件. 3.【2017山东,理19】已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2 (Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2)…P n+1(x n+1, n+1)得到折线P 1 P 2…P n+1,求由该折线与直线y =0,11n x x x x +==,所围成的区域的面积n T.【答案】(I)12.n n x -=(II )(21)21.2n n n T -⨯+=【解析】试题分析:(I)依题意布列1x 和公比q 的方程组. (II )利用梯形的面积公式,记梯形11n n n n P P Q Q ++的面积为n b . 求得12(1)2(21)22n n n n n b n --++=⨯=+⨯, 应用错位相减法计算得到(21)21.2n n n T -⨯+=试题解析:(I)设数列{}n x 的公比为q ,由已知0q >. 由题意得1121132x x q x q x q +=⎧⎨-=⎩,所以23520q q --=, 因为0q >,所以12,1q x ==, 因此数列{}n x 的通项公式为12.n n x -=(II )过123,,,P P P ……1n P +向x 轴作垂线,垂足分别为123,,,Q Q Q ……1n Q +, 由(I)得111222.n n n n n x x --+-=-= 记梯形11n n n n P P Q Q ++的面积为n b . 由题意12(1)2(21)22n n n n n b n --++=⨯=+⨯, 所以123n T b b b =+++……+n b=101325272-⨯+⨯+⨯+……+32(21)2(21)2n n n n ---⨯++⨯ ①又0122325272n T =⨯+⨯+⨯+……+21(21)2(21)2n n n n ---⨯++⨯ ②①-②得121132(22......2)(21)2n n n T n ----=⨯++++-+⨯=1132(12)(21)2.212n n n ---+-+⨯- 所以(21)21.2n n n T -⨯+=【考点】1.等比数列的通项公式;2.等比数列的求和;3.“错位相减法”.【名师点睛】本题主要考查等比数列的通项公式及求和公式、数列求和的“错位相减法”.此类题目是数列问题中的常见题型.本题覆盖面广,对考生计算能力要求较高.解答本题,布列方程组,确定通项公式是基础,准确计算求和是关键,易错点是在“错位”之后求和时,弄错等比数列的项数.本题将数列与解析几何结合起来,适当增大了难度,能较好的考查考生的数形结合思想、逻辑思维能力及基本计算能力等.4.【2017北京,理20】设{}n a 和{}n b 是两个等差数列,记1122max{,,,}n n n c b a n b a n b a n =--⋅⋅⋅-(1,2,3,)n =⋅⋅⋅,其中12max{,,,}s x x x ⋅⋅⋅表示12,,,s x x x ⋅⋅⋅这s 个数中最大的数.(Ⅰ)若n a n =,21n b n =-,求123,,c c c 的值,并证明{}n c 是等差数列; (Ⅱ)证明:或者对任意正数M ,存在正整数m ,当n m ≥时,nc M n>;或者存在正整数m ,使得12,,,m m m c c c ++⋅⋅⋅是等差数列.【答案】(Ⅰ)详见解析;(Ⅱ)详见解析. 【解析】试题分析:(Ⅰ)分别代入求123,,c c c ,观察规律,再证明当3n ≥时,11()()20k k k k b na b na n ++---=-<,所以k k b na -关于*k ∈N 单调递减. 所以112211max{,,,}1n n n c b a n b a n b a n b a n n =---=-=-,即证明;(Ⅱ)首先求{}n c 的通项公式,分1110,0,0d d d >=<三种情况讨论证明.(Ⅱ)设数列{}n a 和{}n b 的公差分别为12,d d ,则12111121(1)[(1)]()(1)k k b na b k d a k d n b a n d nd k -=+--+-=-+--.所以1121211121(1)(),,n b a n n d nd d nd c b a n d nd -+-->⎧=⎨-≤⎩当时,当时,①当10d >时,取正整数21d m d >,则当n m ≥时,12nd d >,因此11n c b a n =-. 此时,12,,,m m m c c c ++是等差数列.②当10d =时,对任意1n ≥,1121121(1)max{,0}(1)(max{,0}).n c b a n n d b a n d a =-+-=-+--此时,123,,,,,n c c c c 是等差数列.③当10d <时, 当21d n d >时,有12nd d <. 所以1121121112(1)()()n c b a n n d nd b d n d d a d n n n-+---==-+-++ 111212()||.n d d a d b d ≥-+-+--对任意正数M ,取正整数12112211||max{,}M b d a d d d m d d +-+-->-,故当时,nc M n>. 【考点】1.新定义;2.数列的综合应用;3.推理与证明.【名师点睛】近年北京卷理科压轴题一直为新信息题,本题考查学生对新定义的理解能力和使用能力,本题属于偏难问题,反映出学生对于新的信息的的理解和接受能力,本题考查数列的有关知识及归纳法证明方法,即考查了数列(分段形函数)求值,又考查了归纳法证明和对数据的分析研究,考查了学生的分析问题能力和逻辑推理能力,本题属于拔高难题,特别是第二两步难度较大,适合选拔优秀学生.5.【2017天津,理18】已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)求数列221{}n n a b -的前n 项和()n *∈N . 【答案】 (1)32n a n =-.2n n b =.(2)1328433n n n T +-=⨯+. 【解析】试题分析:根据等差数列和等比数列通项公式及前n 项和公式列方程求出等差数列首项1a 和公差d 及等比数列的公比q ,写出等差数列和等比孰劣的通项公式,利用错位相减法求出数列的和,要求计算要准确.试题解析:(I )设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q . 由已知2312b b +=,得21()12b q q +=,而12b =,所以260q q +-=. 又因为0q >,解得2q =.所以,2n n b =. 由3412b a a =-,可得138d a -= ①. 由114=11S b ,可得1516a d += ②,联立①②,解得11a =,3d =,由此可得32n a n =-.所以,数列{}n a 的通项公式为32n a n =-,数列{}n b 的通项公式为2n n b =. (II )解:设数列221{}n n a b -的前n 项和为n T ,由262n a n =-,12124n n b --=⨯,有221(31)4n n n a b n -=-⨯, 故23245484(31)4n n T n =⨯+⨯+⨯++-⨯,23414245484(34)4(31)4n n n T n n +=⨯+⨯+⨯++-⨯+-⨯,上述两式相减,得231324343434(31)4n n n T n +-=⨯+⨯+⨯++⨯--⨯1112(14)4(31)414(32)48.n n n n n ++⨯-=---⨯-=--⨯- 得1328433n n n T +-=⨯+. 所以,数列221{}n n a b -的前n 项和为1328433n n +-⨯+. 【考点】等差数列、等比数列、数列求和【名师点睛】利用等差数列和等比数列通项公式及前n 项和公式列方程组求数列的首项和公差或公比,进而写出通项公式及前n 项和公式,这是等差数列、等比数列的基本要求,数列求和方法有倒序相加法,错位相减法,裂项相消法和分组求和法等,本题考查错位相减法求和.6.【2017浙江,22】(本题满分15分)已知数列{x n }满足:x 1=1,x n =x n +1+ln(1+x n +1)(*∈N n ). 证明:当*∈N n 时, (Ⅰ)0<x n +1<x n ; (Ⅱ)2x n +1− x n ≤12n n x x +; (Ⅲ)112n +≤x n ≤212n +.【答案】(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ)见解析. 【解析】试题分析:(Ⅰ)由数学归纳法证明;(Ⅱ)由(Ⅰ)得2111111422(2)ln(1)n n n n n n n n x x x x x x x x ++++++-+=-+++, 构造函数2()2(2)ln(1)(0)f x x x x x x =-+++≥,由函数单调性可证; (Ⅲ)由1111ln(1)n n n n n x x x x x ++++=++≤+,得1122n n n n x x x x ++≥-,递推可得1211(N )22n n n x n *--≤≤∈ 试题解析:(Ⅰ)用数学归纳法证明:0>n x 当n =1时,x 1=1>0假设n =k 时,x k >0,那么n =k +1时,若01≤+k x ,则0)1ln(011≤++=<++k k k x x x ,矛盾,故01>+k x . 因此)(0*∈>N n x n ,所以111)1ln(+++>++=n n n n x x x x ,因此)(01*+∈<<N n x x n n(Ⅲ)因为1111ln(1)n n n n n x x x x x ++++=++≤+,所以112n n x -≥得1122n n n n x x x x ++≥-, 111112()022n n x x +-≥-〉,12111111112()2()2222n n n n x x x ----≥-≥⋅⋅⋅-=, 故212n n x -≤,1211(N )22n n n x n *--≤≤∈ 【考点】不等式证明【名师点睛】本题主要考查数列的概念、递推关系与单调性等基础知识,不等式及其应用,同时考查推理论证能力、分析问题和解决问题的能力,属于难题.本题主要应用:(1)数学归纳法证明不等式;(2)构造函数2()2(2)ln(1)(0)f x x x x x x =-+++≥,利用函数的单调性证明不等式;(3)由递推关系证明. 7.【2017江苏,19】 对于给定的正整数k ,若数列{}n a 满足1111n k n k n n n k n k a a a a a a --+-++-++++++++2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”. (1)证明:等差数列{}n a 是“(3)P 数列”;(2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列. 【答案】(1)见解析(2)见解析【解析】证明:(1)因为{}n a 是等差数列,设其公差为d ,则1(1)n a a n d =+-, 从而,当4n ≥时,n k n k a a a -++=+11(1)(1)n k d a n k d --+++-122(1)2n a n d a =+-=,1,2,3,k =所以n n n n n n n a a a a a a a ---+++++=321123+++6, 因此等差数列{}n a 是“()3P 数列”.(2)数列{}n a 既是“()P 2数列”,又是“()3P 数列”,因此, 当3n ≥时,n n n n n a a a a a --+++++=21124,①当4n ≥时,n n n n n n n a a a a a a a ---++++++++=3211236.② 由①知,n n n a a a ---+=-32141()n n a a ++,③n n n a a a ++++=-23141()n n a a -+,④将③④代入②,得n n n a a a -++=112,其中4n ≥, 所以345,,,a a a 是等差数列,设其公差为d'.在①中,取4n =,则235644a a a a a +++=,所以23a a d'=-, 在①中,取3n =,则124534a a a a a +++=,所以122a a d'=-, 所以数列{}n a 是等差数列.【考点】等差数列定义及通项公式【名师点睛】证明{}n a 为等差数列的方法: (1)用定义证明:1(n n a a d d +-=为常数); (2)用等差中项证明:122n n n a a a ++=+; (3)通项法: n a 为n 的一次函数;(4)前n 项和法:2n S An Bn =+2016年高考全景展示1.【2016高考浙江理数】如图,点列{A n },{B n }分别在某锐角的两边上,且1122,,n n n n n n A A A A A A n ++++=≠∈*N ,1122,,n n n n n n B B B B B B n ++++=≠∈*N ,(P Q P Q ≠表示点与不重合).若1nn n n n n n d A B S A B B +=,为△的面积,则( )A .{}n S 是等差数列B .2{}nS 是等差数列 C .{}n d 是等差数列 D .2{}nd 是等差数列 【答案】A 【解析】试题分析:n S 表示点n A 到对面直线的距离(设为n h )乘以1n n B B +长度一半,即112n n n n S h B B +=,由题目中条件可知1n n B B +的长度为定值,那么我们需要知道n h 的关系式,过1A 作垂直得到初始距离1h ,那么1,n A A 和两个垂足构成了等腰梯形,那么11tan n n n h h A A θ+=+⋅,其中θ为两条线的夹角,即为定值,那么1111(tan )2n n n n S h A A B B θ+=+⋅,111111(tan )2n n n n S h A A B B θ+++=+⋅,作差后:1111(tan )2n n n n n n S S A A B B θ+++-=⋅,都为定值,所以1n n S S +-为定值.故选A . 考点:等差数列的定义.【思路点睛】先求出1n n n +∆A B B 的高,再求出1n n n +∆A B B 和112n n n +++∆A B B 的面积n S 和1n S +,进而根据等差数列的定义可得1n n S S +-为定值,即可得{}n S 是等差数列.2.【2016年高考四川理数】某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg2≈0.30) ( A )2018年 (B )2019年 (C )2020年 (D )2021年 【答案】B 【解析】试题分析:设第n 年的研发投资资金为n a ,1130a =,则1130 1.12n n a -=⨯,由题意,需1130 1.12200n n a -=⨯≥,解得5n ≥,故从2019年该公司全年的投入的研发资金超过200万,选B.考点:等比数列的应用.【名师点睛】本题考查等比数列的实际应用.在实际问题中平均增长率问题可以看作是等比数列的应用,解题时要注意把哪个作为数列的首项,然后根据等比数列的通项公式写出通项,列出不等式或方程就可解得结论.3. 【2016高考新课标2理数】n S 为等差数列{}n a 的前n 项和,且17=128.a S =,记[]=lg n n b a ,其中[]x 表示不超过x 的最大整数,如[][]0.9=0lg99=1,.(Ⅰ)求111101b b b ,,; (Ⅱ)求数列{}n b 的前1 000项和.【答案】(Ⅰ)10b =,111b =, 1012b =;(Ⅱ)1893. 【解析】试题分析:(Ⅰ)先用等差数列的求和公式求公差d ,从而求得通项n a ,再根据已知条件[]x 表示不超过x 的最大整数,求111101b b b ,,;(Ⅱ)对n 分类讨论,再用分段函数表示n b ,再求数列{}n b 的前1 000项和.试题解析:(Ⅰ)设{}n a 的公差为d ,据已知有72128d +=,解得 1.d = 所以{}n a 的通项公式为.n a n =111101[lg1]0,[lg11]1,[lg101] 2.b b b ======(Ⅱ)因为0,110,1,10100,2,1001000,3,1000.n n n b n n ≤<⎧⎪≤<⎪=⎨≤<⎪⎪=⎩所以数列{}n b 的前1000项和为1902900311893.⨯+⨯+⨯= 考点:等差数列的的性质,前n 项和公式,对数的运算.【名师点睛】解答新颖性的数学题,一是通过转化,化“新”为“旧”;二是通过深入分析,多方联想,以“旧”攻“新”;三是创造性地运用数学思想方法,以“新”制“新”,应特别关注创新题型的切入点和生长点.于是,B m =A m -d m >2-1=1,B m -1=min{a m ,B m }≥2. 故d m -1=A m -1-B m -1≤2-2=0,与d m -1=1矛盾.所以对于任意n ≥1,有a n ≤2,即非负整数列{a n }的各项只能为1或2. 因为对任意n ≥1,a n ≤2=a 1, 所以A n =2.故B n =A n -d n =2-1=1.因此对于任意正整数n ,存在m 满足m >n ,且a m =1,即数列{a n }有无穷多项为1. 考点定位:本题考查新定义信息题,考查学生对新定义的理解能力和使用能力。