解三角形复习学案
解三角形(学案)

第一章 解三角形(学案)1.已知△ABC 中,30A =,105C =,8b =,则等于( )A 4 B2. △ABC 中,45B =,60C =,1c =,则最短边的边长等于( )A 36 B 26 C 21 D 23 3.长为5、7、8的三角形的最大角与最小角之和为 ( )A 90°B 120°C 135°D 150°4.△ABCABC 一定是 ( )A 直角三角形B 钝角三角形C 等腰三角形D 等边三角形5.△ABC 中,60B =,2b ac =,则△ABC 一定是 ( )A 锐角三角形B 钝角三角形C 等腰三角形D 等边三角形6.△ABC 中,∠A=60°, a= 6 , b=4, 那么满足条件的△ABC ( )A 有 一个解B 有两个解C 无解D 不能确定 7. △ABC 中,8b =,16ABC S =,则A ∠等于 ( ) A o 30 B o 60 C o 30或o 150 D o 60或o 120 8.△ABC 中,若60A =,)A 2 B 21 C 3 D 23ABC ,C 的平分线CD 把三角形面积分成3:2两部分,则cos A =( )D 010.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为 ( )A 锐角三角形B 直角三角形C 钝角三角形D 由增加的长度决定11 在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为( )C. 200米12 海上有A 、B 两个小岛相距10海里,从A 岛望C 岛和B 岛成60°视角,从B 岛望C 岛和A 岛成75°的视角,则B 、C 间的距离是 ( ) A.10 海里 B.5海里 海里 海里 13.在△ABC 中,如果sin :sin :sin 2:3:4A B C =,那么cos C 等于 。
14.在△ABC ,150c =,30B =,则边长a = 。
解三角形学案

解三角形知识点1、三角形三角关系:A+B+C=180°;C=180°—(A+B);2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-sincos ,cos sin ,tan cot 222222A B C A B C A B C +++=== 4.正弦定理:2sin sin sin a b c R A B C === 5、正弦定理的变形公式:①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =; ②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C ++===A +B +A B . 6、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=))()((c p b p a p p ---7.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩ 或 222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩. 8.(1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角.2、已知两角和其中一边的对角,求其他边角.(2)两类余弦定理解三角形的问题:1、已知三边求三角.2、已知两边和他们的夹角,求第三边和其他两角.9、如何判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:①若222a b c +=,则90C =;②若222a b c +>,则90C < ;③若222a b c +<,则90C > .10、三角形的五心:垂心——三角形的三边上的高相交于一点重心——三角形三条中线的相交于一点外心——三角形三边垂直平分线相交于一点内心——三角形三内角的平分线相交于一点旁心——三角形的一条内角平分线与其他两个角的外角平分线交于一点已知条件定理应用一般解法一边和两角(如a、B、C)正弦定理由A+B+C=180˙,求角A,由正弦定理求出b与c,在有解时有一解。
八年级数学下册第9章解直角三角形 复习教学案

第九章解直角三角形复习学案陈光双学习目标:1.熟练掌握锐角三角比、解直角三角形的方法,提高自己的解题能力;2.构造直角三角形,综合应用勾股定理和锐角三角比解决简单的实际问题。
一、自主学习,补全网络:1、锐角三角比定义:在直角三角形ABC中,∠A的边与∠A的边的比叫∠A的正切,∠A的 __ __与_ ___的比叫∠A正弦.∠A的_______与_______的比叫∠A的余弦. 当∠A的度数越大时,∠A的正切值∠A正弦值∠A的余弦值互余角的三角比的关系:sinA=cos(90º-A)、cosA=sin(90º-A)、tanA·tan(90º-A)=1 同角三角比的关系:、2、特殊角三角函数值:3a,b,c。
(1)三边之间的关系:(2)锐角之间的关系:(3)边角之间的关系:4.利用解直角三角形解决实际问题的一般步骤:1.在Rt△ABC中,∠C=90º,a=4,b=6,sinA=()A.23B C2. 在Rt△ABC中,∠C=90º,sinA=23,则cosA()A3.在△ABC中∠A=105°∠B=45°,sin C的值是() A. B. C. 1 D.4.计算:(1)2cos 30°+tan 60°(2) 1sin60452︒+︒5.如图,∠AOB 是放在正方形网格中的一个角,则sin ∠AOB= .(第5题) (第6题) (第7题) (第8题) 6.如图,在所示的直角坐标系中,P 是第一象限的点,其坐标是(3,y ),且OP 与x 轴的正半轴的夹角α的正切值是34,则y= ,cos α= . 7.如图,在△ABC 中,∠ACB =90°,AC=6,BC=8,则tan ∠ACD= .8.如图:一棵大树的一段BC 被风吹断,顶端着地与地面成300角,顶端着地处C 与大树底端相距4米,则原来大树高为_________米. 三、典型例题:例1:一艘渔船在A 处观测到东北方向有一小岛C ,周围4.8海里范围内是水产养殖场,渔船沿北偏东30°方向航行10海里到达B 处,在B 处测得小岛C 在北偏东60°方向,这时渔船改变航线向正东(BD )方向航行,这艘渔船是否有进入养殖场的可能?训练:在一次数学活动课上,老师带领学生去测一条南北流向的河宽,如图所示,某学生在河东岸点A 处观测到河对岸水边有一点 C ,测得C 在A 北偏西31°的方向上,沿河岸向北前行20米到达B 处,测得C 在B 北偏西45°的方向上,请你根据以上数据,帮助该同学计算出这条河的宽度.(参考数值:tan31°≈53,sin31°≈21)AB O例2:如图,一段河坝的断面为梯形ABCD ,试根据图中数据,求出坡角α和坝底宽AD .(i =CE ∶ED ,单位米,结果保留根号)训练:如图,斜坡AC 的坡度(坡比)为31∶,AC =10米.坡顶有一旗杆BC ,旗杆顶端B 点与A 点有一条彩带AB 相连,AB =14米.试求旗杆BC 的高度.四、反馈练习: 1.在△ABC 中,若cosA=22,tanB=3,则这个三角形一定是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形2. 在△ABC 中,∠C =90°,53sin =A ,则=B tan ( ). A.53 B.54 C.43 D.343.等腰三角形底边长为10㎝,周长为36cm ,那么底角的余弦等于( ).A.513B.1213C .1013D .5124.如图一艘船以每小时320海里的速度向正北方向航行,在A 处看灯塔S 在船的北偏东300方向,半小时后航行到B 处,再看灯塔S 在船的正东方向,此时船离灯塔_______海里. 5.若tan(α+10°)=3,则锐角α的度数是 .6.如图,∠AOB 是放置在正方形网格中的一个角,则cos ∠AOB 的值是 .AB C D B O A B第(4)题 第(6)题 第(8)题 第(9)题7.已知tan α=125,α是锐角,则sin α= ,cos α= .8.如图,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D ′处,那么tan ∠BAD ′等于 .9.如图,在直角坐标系xOy 中,射线OM 为第一象限中的射线,A 点坐标为(1,0),以原点O 为圆心,OA 长为半径画弧,交y 轴于B 点,交OM 于P 点,作CA ⊥x 轴交OM 于C 点.设∠XOM =α .则P 点坐标 ;C 点坐标 (用α 的三角比表示) 11.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点.DE ∶AE =1∶2.求:sin B 、cos B 、tan B .12.已知:如图,△ABC 中,AC =12cm ,AB =16cm ,⋅=31sin A (1)求AB 边上的高CD ; (2)求△ABC 的面积S ; (3)求tan B .13.在一次数学活动课上,老师带领同学们去测量一座古塔CD 的高度.他们首先从A 处安置测倾器,测得塔顶C 的仰角21CFE ∠=°,然后往塔的方向前进50米到达B 处,此时测得仰角37CGE ∠=°,已知测倾器高1.5米,请你根据以上数据计算出古塔CD 的高度.(参考数据:3sin 375°≈,3tan 374°≈,9sin 2125°≈,3tan 218°≈)CGEDBAF•教学反思:多加强练习,让学生在练中加强,并学会解直角三角形的应用。
解直角三角形复习课学案

图25.3.3解直角三角形复习课学案【学习目标】1、探索直角三角形中锐角三角函数值与三边之间的关系.掌握三角函数定义2、掌握30°、45°、60°等特殊角的三角函数值,并会进行有关特殊角的三角函数值的计算.3、能综合运用直角三角形的勾股定理与边角关系解决实际问题,提高数学建模能力.【重点】合理构造直角三角形、解直角三角形实际应用; 【难点】如何读懂题意对实际应用题进行建立方程解题;一、生活问题:(09·滨州)某楼梯侧面视图如图,其中AB=4m,∠BAC=30°,∠C=90°,因某种活动,要求铺设红色地毯,则在AB 段楼梯所铺地毯的长应 。
二、知识点梳理:3.解直角三角形的依据(1)由直角三角形中已知 个元素求出另外 个元素的过程叫解直角三角形三边关系:(2)直角三角形中的边角关系 两锐角关系:角与边的关系:sinA=cosA=tanA=4. 锐角三角函数的特殊关系(1) 锐角三角函数的恒正性:锐角三角函数值都是正实数,即 0<sinA <1,0<cosA <1.(2)余角关系:若A+B=90,则 sinB= ,cosB= ,tanB= ,cotB= . (3)平方关系:22sincos 1A A +=(4)、商式关系:sin tan cos A A A =cos cot sin AA A=5、在解直角三角形及应用时经常接触到的一些概念(1)仰角和俯角 (2)方位角 (3)斜坡的坡度三、试题归类:第1类:侧重在网格背景下求三角函数值1、(08·襄樊)在正方形网格中,点A 、B 、C 、D 的位置如图所示,则cosB 的值为( )A 、B 、C 、D 、1题 2题1.锐角三角函数的意义2.特殊角的三角函数值正弦:sin A = 余弦:cos A = 正切:tan A =30° 45° 60° sin α cos α tan α233322212、有一个三角形在正方形网格纸中的位置如图, 则sin α=____。
九年级数学《解直角三角形-复习课》教案

第28章解直角三角形(单元复习课)教学任务分析问题1:在Rt △ABC 中,∠C=90°则(1)∠A 、∠B 的关系是_________, (2)_____,,的关系是c b a(3)边角关系是________________________________________________________________________________问题2:你能根据上述边角关系得到30°、45°、60°角的三角函数值吗?填写下表。
问题3:同角的三角函数之间有什么关系?互余的两角呢?问题4:锐角的正弦值是怎样随着角度数的变化而变化的?余弦、正切呢?其锐角三角函数值的范围分别是什么? 2、组织交流,总结要点;3、板书教师总结知识结构图(多媒体展示)。
【学生活动】 1、学生反思回顾知识点,回答和完成导学案中的问题及三个表格;2、绘制出自己总结的知识结构图;3、交流展示自己总结的知识结构图及自主学习的成果;4、看听记教师的总结。
用数学的意识。
帮助学生学会用数学的思考方法解决实际问题,引发认知冲突,激发学生学习兴趣。
【媒体应用】1、展示反思回顾的问题;2、展示导学案中提出的问题;3、展示师生共同总结的本章本章要点和本章知识结构图。
活动三 基础训练,查补缺漏: 【基础闯关】1、Rt △ABC 中,∠C=90°若SinA= 时,tanA= 。
2、Rt △ABC 中,∠C=90°,若AC=3BC ,则CosA= 。
3、菱形ABCD 中对角线AC 交BD 于点O ,且AC=8,BD=6,则下列结论中正确的为( )A 、Sin ∠ADB=B 、Cos ∠DAB=C 、tan ∠DBA =D 、tan ∠ADB=4、计算: (1)(2)丨Sin45°- 1丨-【教师活动】 1、操作多媒体出示问题。
2、组织学生交流和点评,得出正确答案。
【学生活动】 1、尝试完成练习,有困难的同学可以合作完成; 2、参与交流展示及点评。
人教版下册四年级数学《复习三角形知识》教案

人教版下册四年级数学《复习三角形知识》
教案
教学目标
- 复习三角形的定义和性质
- 认识不同类型的三角形
- 掌握判断和画出不同类型三角形的方法
教学准备
- 教材:人教版下册四年级数学教材
- 教具:直尺、量角器、彩色铅笔
教学过程
导入
1. 利用多媒体展示图片,让学生回顾三角形的定义和性质。
复习三角形的定义和性质
1. 提问学生对三角形的定义和性质进行回答,鼓励学生积极参
与讨论。
2. 引导学生总结三角形的性质,例如三条边的长度关系、角的
和等于180度等。
认识不同类型的三角形
1. 利用多媒体展示不同类型的三角形图片,如等边三角形、等
腰三角形、直角三角形等。
2. 引导学生观察并讨论不同类型的三角形的特点,例如等边三
角形三条边相等、直角三角形有一个角为直角等。
判断和画出不同类型三角形的方法
1. 引导学生通过观察三角形的边长和角度来判断三角形的类型。
2. 提示学生使用直尺和量角器来画出不同类型的三角形,帮助
他们理解三角形的构成。
拓展练习
1. 分发练习册,让学生自主完成相关练习题,巩固所学的知识。
2. 教师巡视并及时解答学生的疑惑。
总结
1. 总结本节课所学的内容,强调三角形的定义、性质以及不同类型的三角形。
2. 鼓励学生通过课后练习巩固所学知识。
课后作业
1. 完成练习册上的相关练习题。
2. 复习并总结本节课所学的知识。
会考复习学案之11解三角形
2013高中数学会考复习(十一)解三角形【知识回顾】注:在ΔABC 中,sinA>sinB 是A>B 的充要条件。
(∵sinA>sinB ⇔22R R>⇔a>b ⇔A>B ) 二、重要结论:(1)三角形内角和定理:A+B+C=π(2)三角形中角的变换:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sin cos ,cos sin 2222A B C A B C ++==.(3)三角形中的边角关系:三角形中等边对等角,大边对大角,反之亦然;三角形中任意两边之和大于第三边,任意两边之差小于第三边。
(4)三角形的形状:①若222c b a >+时,角C 是锐角;②若222c b a =+时,角C 是直角;③若222c b a <+时,角C 是钝角。
(5)A >B >C ⇔sinA >sinB >sinC; 三、ΔABC 的面积公式(1)∆S =21ah a =21bh b =21ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)111sin sin sin ()2224abcS ab C ac B bc A R R====为外接圆半径;(3)1()()2S r a b c r =++为内切圆半径;【题组自测】考点1:正、余弦定理的应用1、在ΔABC 中,(1)若,c=1,B=45o,求边a 及角C 的值;(2)若A=600,a=7,b=5,求边c; (3)若a=7,b=3,c=5,求最大角和sinC.考点2:三角形形状的判定 2、(1)在ABC ∆中,已知C B A sin cos sin 2=,那么ABC ∆一定是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .正三角形 (2)在△ABC 中,若2cos B sin A =sinC ,则△ABC 的形状一定是( ) A.等腰直角三角形 B.直角三角形 C.等腰三角形 D.等边三角形 3、(1)在ABC ∆中,若C B A 222sin sin sin +=,判断ABC ∆的形状; (2)在△ABC 中,若,cos cos cos C c B b A a =+判断△ABC 的形状。
高考数学:解三角形(复习学案)
专题09 解三角形(一) 三角形中的求值问题1.例题【例1】设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =23,cos A =32,且b <c ,则b =( )A . 3B .2C .2 2D .3【例2】在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,若1a =,cos )cos 0A C C b A ++=,则角A =( )A .23π B .3π C .6π D .56π 【例3】在ABC ∆中,角A ,B ,C 的对边分别是a ,b ,c ,4a =,b =cos (2)cos c B a b C =-,则ABC ∆的面积为______.【例4】(2017·全国高考真题(理))△ABC 的内角、、A B C 的对边分别为a b c 、、, 已知△ABC 的面积为23sin a A.(1)求sin sin B C ;(2)若6cos cos 1,3,B C a ==求△ABC 的周长.【例5】如图,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC =17.(1)求sin ∠BAD ; (2)求BD ,AC 的长.2.巩固提升综合练习【练习1】(2019·全国高考真题)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则bc =( )A .6B .5C .4D .3【练习2】(2018·全国高考真题)△ABC 的内角A , B , C 的对边分别为a , b , c ,已知bsinC +csinB =4asinBsinC ,b 2+c 2−a 2=8,则△ABC 的面积为________. 【练习3】 在ABC ∆中,已知AB 边上的中线1CM =,且1tan A ,1tan C ,1tan B成等差数列,则AB 的长为________.【练习4】在△ABC 中,已知AB =2,AC =5,tan ∠BAC =-3,则BC 边上的高等于( ) A .1 B .2 C . 3 D .2【练习5】已知圆内接四边形ABCD 的边长AB =2,BC =6,CD =DA =4,求四边形ABCD 的面积S .【练习6】 △ABC 的内角A ,B ,C 的对边分别为a ,b ,c 已知c cos B =(3a -b )cos C . (1)求sin C 的值;(2)若c =26,b -a =2,求△ABC 的面积.(二)三角形中的最值或范围问题1.例题【例1】在△ABC中,已知c=2,若sin2A+sin2B-sin A sin B=sin2C,则a+b的取值范围为________.【例2】已知在锐角ABC∆中,角A,B,C的对边分别为a,b,c,若2cos cosb Cc B=,则111tan tan tanA B C++的最小值为()A B C D.【例3】已知△ABC的外接圆半径为R,角A,B,C所对的边分别为a,b,c,若a sin B cos C +32c sin C=2R,则△ABC面积的最大值为( )A.25B.45C.255D.125【例4】在ABC∆中,角A,B,C的对边分别为a,b,c,且cos Ccos cos cos2ab Ac A B+=,ABC∆,则ABC∆周长的最小值为______.2.巩固提升综合练习【练习1】 设锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c ,若2,2a B A ==,则b 的取值范围为( )A .(0,4)B .(2,C .D .4)【练习2】 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若bc =1,b +2c cos A =0,则当角B 取得最大值时,△ABC 的周长为( ) A .2+3 B .2+2 C .3D .3+2【练习3】已知ABC ∆1,且满足431tan tan A B+=,则边AC 的最小值为_______.【练习4】在ABC ∆中,23BAC π∠=,已知BC 边上的中线3AD =,则ABC ∆面积的最大值为__________.(三)解三角形的实际应用必备知识:实际测量中的有关名称、术语南偏西60°指以正南方向为始边,转向目标方向线形成的角1.例题【例1】在海岸A处,发现北偏东45°方向,距离A处(3-1)n mile的B处有一艘走私船,在A处北偏西75°的方向,距离A 2 n mile的C处的缉私船奉命以10 3 n mile的速度追截走私船.此时,走私船正以10 n mile/h的速度从B处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?【例2】如图,A,B两点在河的同侧,且A,B两点均不可到达,测出A,B的距离,测量者可以在河岸边选定两点C,D,测得CD=a,同时在C,D两点分别测得∠BCA=α,∠ACD=β,∠CDB=γ,∠BDA=δ.在△ADC和△BDC中,由正弦定理分别计算出AC和BC,再在△ABC中,应用余弦定理计算出AB.若测得CD=32km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,求A,B两点间的距离.【例3】某人在点C测得塔顶A在南偏西80°,仰角为45°,此人沿南偏东40°方向前进100米到D,测得塔顶A的仰角为30°,则塔高为____________米.2.巩固提升综合练习【练习1】甲船在A处,乙船在甲船正南方向距甲船20海里的B处,乙船以每小时10海里的速度向正北方向行驶,而甲船同时以每小时8海里的速度由A处向北偏西60°方向行驶,问经过多少小时后,甲、乙两船相距最近?【练习2】如图,一艘船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这艘船航行的速度为( )A.1762海里/时B .346海里/时 C.1722海里/时D .342海里/时【练习3】某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度:A 、B 、C 三地位于同一水平面上,在C 处进行该仪器的垂直弹射,观测点A 、B 两地相距100米,∠BAC =60°,在A 地听到弹射声音的时间比在B 地晚217秒.在A 地测得该仪器弹至最高点H 时的仰角为30°,求该仪器的垂直弹射高度CH .(声音的传播速度为340米/秒)1.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a ,b ,c 成等比数列,且a 2=c 2+ac -bc ,则cb sin B =( )A .32B .233C .33D .32.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,a =3,c =23,b sin A =a cos ⎪⎭⎫⎝⎛+6πB 则b =( ) A .1 B.2 C.3D.53.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =2,c =32,tan B =2tan A ,则△ABC 的面积为( ) A .2 B .3 C .32D .423.如图,在△ABC 中,∠C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足.若DE =22,则cos A 等于( ) A .223B .24C .64D .634.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若B =2A ,则2ba的取值范围是( ) A .(2,2) B .(2,6) C .(2,3)D .(6,4)5.在ΔABC 中,角A 、B 、C 所对的边分别为a ,b ,c ,a =2,B =45°,若三角形有两解,则b 的取值范围是_______.6.已知a ,b ,c 是△ABC 中角A ,B ,C 的对边,a =4,b ∈(4,6),sin 2A =sin C ,则c 的取值范围为________.7.设△ABC 的内角A ,B ,C 的对边a ,b ,c 成等比数列,cos(A -C )-cos B =12,延长BC至点D ,若BD =2,则△ACD 面积的最大值为________.8.(2019·高考全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若b =6,a =2c ,B =π3,则△ABC 的面积为________. 9.若满足3ABC π∠=, AC =3, ,BC m ABC =恰有一解,则实数m 的取值范围是______.10.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,外接圆的半径为1,且tan A tan B =2c -bb ,则△ABC 面积的最大值为________.11.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a 2+c 2-b 2=ab cos A +a 2cos B . (1)求角B ;(2)若b =27,tan C =32,求△ABC 的面积.12.已知ABC ∆中,角A B C 、、的对边分别为a b c ,,,若cos sin a b C c B =+(Ⅰ)求B ;(Ⅰ)若2b = ,求ABC ∆面积的最大值。
解三角形 正弦定理和余弦定理复习学案教师版
第 1 页解三角形正弦定理和余弦定理复习学案一、正、余弦定理解三角形的基本问题例1 在△ABC 中,(1)已知a =3,b =2,B =45°,求A 、C 、c ;(2)已知sin A ∶sin B ∶sin C =(3+1)∶(3-1)∶10,求最大角.点拨 (1)已知两边及其中一边对角,先利用正弦定理求出角A ,再求其余的量. (2)先由sin A ∶sin B ∶sin C =a ∶b ∶c ,求出a ∶b ∶c ,再由余弦定理求出最大角.解 (1)由正弦定理及已知条件有3sin A =2sin 45°,得sin A =32,∵a >b ,∴A >B =45°,∴A =60°或120°.当A =60°时,C =180°-45°-60°=75°,c =b sin C sin B =2sin 75°sin 45°=6+22,当A =120°时,C =180°-45°-120°=15°,c =b sin C sin B =2sin 15°sin 45°=6-22(2)根据正弦定理可知a ∶b ∶c =sin A ∶sin B ∶sin C =(3+1)∶(3-1)∶10, ∴边c 最大,即角C 最大.设a =(3+1)k ,b =(3-1)k ,c =10k ,则cos C =a 2+b 2-c 22ab =(3+1)2+(3-1)2-(10)22(3+1)(3-1)=-12.∵C ∈(0,π),∴C =2π3回顾归纳 已知三角形的两边和其中一边的对角,应用正弦定理解三角形时,有时可能出现一解、两解或无解情况,应结合图形并根据“三角形中大边对大角”来判断解的情况,作出正确取舍.►变式训练1 (1)△ABC 中,AB =1,AC =3,∠C =30°,求△ABC 的面积;(2)已知a 、b 、c 是△ABC 中∠A 、∠B 、∠C 的对边,S 是△ABC 的面积.若a =4,b =5,S =53,求c 的长度.解 (1)1sin 30°=3sin B ,∴sin B =32,∴B =60°或120°,当B =60°时,A =90°,∴BC =2,此时,S △ABC =32.当B =120°时,A =30°,∴S △ABC =12×3×1×sin 30°=34.综上,△ABC 的面积为32或34.(2)∵S =12ab sin C ,∴sin C =32,于是C =60°或C =120°.当C =60°时,c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =21,∴c =21;当C =120°时,c 2=a 2+b 2-2ab cos C =a 2+b 2+ab =61, ∴c =61.∴c 的长度为21或61. 二、正、余弦定理在三角形中的应用例2 在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边长.已知b 2=ac 且a 2-c 2=ac -bc .第 2 页(1)求∠A 的大;(2)求b sin Bc 的值.点拨 (1)利用cos A =b 2+c 2-a22bc 求解;(2)利用正弦定理对代数式b sin Bc进行转化.解 (1)∵b 2=ac 且a 2-c 2=ac -bc ,∴a 2-c 2=b 2-bc ,∴b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =bc 2bc =12,∴A =60°.(2)方法一 在△ABC 中,由正弦定理得:sin B =b sin A a ,∵b 2=ac ,∴b a =cb.∴sin B =b sin A a =c ·sin A b ,∴b sin B c =sin A =sin 60°=32.方法二 在△ABC 中,由面积公式得:12bc sin A =12ac sin B∵b 2=ac ,∴bc sin A =b 2sin B ,∴b sin B c =sin A =sin 60°=32.回顾归纳 (1)在三角形的三角变换中,正、余弦定理及勾股定理是解题的基础.如果题目中同时出现角及边的关系,往往要利用正、余弦定理化成仅含边或仅含角的关系.(2)要注意利用△ABC 中A +B +C =π,以及由此推得的一些基本关系式:sin(B +C )=sinA ,cos(B +C )=-cos A ,tan(B +C )=-tan A ,sin B +C 2=cos A2等,进行三角变换的运算.►变式训练2 在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,4sin 2B +C 2-cos 2A =72.(1)求∠A 的度数;(2)若a =3,b +c =3,求b 、c 的值.解 (1)∵B +C =180°-A ,∴B +C 2=90°-A2.由4sin 2B +C 2-cos 2A =72,得4cos 2A 2-cos 2A =72,即2(1+cos A )-(2cos 2 A -1)=72.整理得4cos 2A -4cos A +1=0.∴cos A =120°<A <180°,∴A =60°.(2)由A =60°,根据余弦定理得cos A =b 2+c 2-a 22bc ,即b 2+c 2-a 22bc =12.∴b 2+c 2-a 2=bc ,∵a =3,∴b 2+c 2-bc =3.又b +c =3,∴b 2+c 2+2bc =9,∴bc =2.由⎩⎪⎨⎪⎧ b +c =3bc =2,解得⎩⎪⎨⎪⎧ b =1c =2或⎩⎪⎨⎪⎧b =2c =1. 三、正、余弦定理在实际问题中的应用例3 A 、B 、C 是一条直路上的三点,AB =BC =1 km ,从这三点分别遥望一座电视发射塔P ,A 见塔在东北方向,B 见塔在正东方向,C 见塔在南偏东60°方向.求塔到直路的距离.解如图所示,过C、B、P分别作CM⊥l,BN⊥l,PQ⊥l,垂足分别为M、N 、Q.设BN=x,则PQ=x,PA=2x.∵AB=BC,∴CM=2BN=2x,PC=2x.在△PAC中,由余弦定理得AC2=PA2+PC2-2PA·PC·cos 75°,即4=2x2+4x2-42x2·624-,解得x2=2(43)13+,过P作PD⊥AC,垂足为D,则线段PD的长为塔到直路的距离.在△PAC中,由于12AC·PD=12PA·PC·sin 75°,得PD020sin7522sin752P A P C xAC⋅⋅⋅==,=2(43)62753213413+++⋅⋅=(km).答塔到直路的距离为75313+km.回顾归纳(1)解斜三角形应用题的程序是:①准确地理解题意;②正确地作出图形(或准确地理解图形);③把已知和要求的量尽量集中在有关三角形中,利用正弦定理和余弦定理有顺序地解这些三角形;④根据实际意义和精确度的要求给出答案.(2)利用解斜三角形解决有关测量的问题时,其关键在于透彻理解题目中的有关测量术语.►变式训练3如图所示,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救,甲船立即前往救援,同时把消息告知在甲船的南偏西30°,相距10海里C处的乙船,设乙船按方位角为θ的方向沿直线前往B处救援,求sin θ的值.解在△ABC中,AB=20,AC=10,∠BAC=120°,由余弦定理知:BC2=AB2+AC2-2AB·AC·cos 120°=202+102-2×20×10×12⎛⎫-⎪⎝⎭=700.∴BC=107第3 页第 4 页由正弦定理得sin sin A B B C A C B B A C=∠∠,∴sin ∠ACB=A B B C·sin ∠BAC=·sin 120°=7.∴cos ∠ACB=7.∴sin θ=sin(∠ACB+30°)=sin ∠ACB ·cos 30°+cos ∠ACB ·sin 30°=7×2+7×12=14,.课堂小结:1.正弦定理揭示了三角形的两边和对角的关系,因此,可解决两类问题: (1)已知两角和其中任一边,求其他两边和一角,此时有一组解. (2)已知两边和其中一边的对角,求另一边的对角,从而进一步求出其他解,其解不确定. 2.余弦定理揭示了三角形中两边及其夹角与对应边的关系,是勾股定理的推广,它能解决以下两个问题:(1)已知三边,求其他三角,其解是唯一的.(2)已知两边及它们的夹角,求第三边及其他两角,此时也只有一解.3.正、余弦定理将三角形的边和角有机地联系起来,从而使三角形与几何产生了联系,为求与三角形有关的量(如面积、外接圆、内切圆)提供了理论基础,也是判断三角形形状、证明三角形中有关等式的重要依据.课后作业一、选择题1.在△ABC 中,A =60°,a =43,b =42,则B 等于( ) A .45°或135° B .135° C .45° D .以上答案都不对答案 C 解析 sin B =b ·sin A a =22,且b <a ,∴B =45°.2.在△ABC 中,已知cos A cos B >sin A sin B ,则△ABC 是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形 答案 C 解析 cos A cos B >sin A sin B ⇔cos(A +B )>0,∴A +B <90°,∴C >90°,C 为钝角.3.(2008·福建)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为( )A.π6B.π3C.π6或5π6D.π3或2π3答案 D 解析 ∵(a 2+c 2-b 2)tan B =3ac , ∴a 2+c 2-b 22ac ·tan B =32,即cos B ·tan B =sin B =32.∵0<B <π,∴角B 的值为π3或2π3.4.在△ABC 中,A =60°,AC =16,面积为2203,那么BC 的长度为( ) A .25 B .51 C .49 3 D .49第 5 页答案 D 解析 S △ABC =12AC ×AB ×sin 60°=12×16×AB ×32=2203,∴AB =55.∴BC 2=AB 2+AC 2-2AB ×AC cos 60°=552+162-2×16×55×12=2 401∴BC =49.5.(2012·广东东莞模拟)△ABC 中,下列结论:①a 2>b 2+c 2,则△ABC 为钝角三角形;②a 2=b 2+c 2+bc ,则A 为60°;③a 2+b 2>c 2,则△ABC 为锐角三角形;④若A ∶B ∶C =1∶2∶3,则a ∶b ∶c =1∶2∶3.其中正确的个数为( )A .1B .2C .3D .4答案 A 解析 ①由a 2>b 2+c 2知A 为钝角,①正确;②由a 2=b 2+c 2+bc 知A =120°,②错;③由a 2+b 2>c 2,仅能判断C 为锐角,A 、B 未知,③错;④由A ∶B ∶C =1∶2∶3,知A =π6,B =π3,C =π2,∴sin A ∶sin B ∶sin C =12∶32∶1=1∶3∶2,④错.所以仅①正确.二、填空题6.三角形两条边长分别为3 cm,5 cm ,其夹角的余弦是方程5x 2-7x -6=0的根,则此三角形的面积是________.答案 6 cm 2解析 由5x 2-7x -6=0,解得x 1=-35,x 2=2.∵x 2=2>1,不合题意.∴设夹角为θ,则cos θ=-35得sin θ=45,∴S =12×3×5×45=6 (cm 2).7.在△ABC 中,A =60°,b =1,S △ABC =3,则asin A=______.答案 2393.解析 由S =12sin A =121×c ×32=3,∴c =4.∴a =b 2+c 2-2bc cos A =12+42-2×1×4cos 60°=13.∴a sin A =13sin 60°=2393. 8.一艘船以20 km/h 的速度向正北航行,船在A 处看见灯塔B 在船的东北方向,1 h 后船在C 处看见灯塔B 在船的北偏东75°的方向上,这时船与灯塔的距离BC 等于________.解析 如图所示,sin 45sin 30BCAC =,∴BC=sin 30A C ×sin 45°=20122⨯, (km).9.(2012·广东广州一模)已知△ABC 的内角A 、B 、C 所对的边分别为a ,b ,c ,且a =2,第 6 页cos B =35.(1)若b =4,求sin A 的值;(2)若△ABC 的面积S △ABC =4,求b ,c 的值.解 (1)∵cos B =35>0,且0<B <π,∴sin B =1-cos 2B =45由正弦定理得a sin A =b sin B ,sin A =a sin B b =2×454=25.(2)∵S △ABC =12ac sin B =4,∴12×2×c ×45=4,∴c =5.由余弦定理得b 2=a 2+c 2-2ac cos B =22+52-2×2×5×3517,∴b =17.10.在△ABC 中,已知AB =463,cos B =66,AC 上的中线BD =5,求sin A 的值.解 设E 为BC 的中点.连接DE ,则DE ∥AB ,且DE =12AB =263,设BE =x .在△BDE 中利用余弦定理可得:BD 2=BE 2+ED 2-2BE ·ED cos ∠BED ,5=x 2+83+2×263×66x ,解得x =1,x =-73(舍去).故BC =2,从而AC 2=AB 2+BC 2-2AB ·BC ·cos B =283AC =2213.又sin B =306,故2sin A =2213306,sin A =7014.11.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知a +b =5,c =7,且4sin 2A +B2-cos 2C =72.(1)求角C 的大小; (2)求△ABC 的面积.解 (1)∵A +B +C =180°,由4sin 2A +B 2-cos 2C =72,得4cos 2C 2-cos 2C =72, ∴4·1+cos C 2-(2cos 2C -1)=72,整理,得4cos 2C -4cos C +1=0,解得cos C =12,∵0°<C <180°,∴C =60°.(2)由余弦定理得c 2=a 2+b 2-2ab cos C , 即7=a 2+b 2-ab ,∴7=(a +b )2-3ab , 由条件a +b =5,得7=25-3ab ,ab =6,∴S △ABC =12ab sin C =12×6×32=332.。
九上 解直角三角形复习学案
水平线第二章 解直角三角形【知识网络】一、 锐角三角函数定义:在Rt △ABC 中,∠C=900, ∠A 、∠B 、∠C 的对边分别为a 、b 、c ,则∠A 的正弦可表示为:sinA= ,∠A 的余弦可表示为cosA= ∠A 的正切:tanA= ,它们统称为∠A 的锐角三角函数 二、特殊角的三角函数值:三、解直角三角形:1、定义:由直角三角形中除直角外的 个已知元素,求出另外 个未知元素的过程叫解直角三角形2、解直角三角形的依据:Rt ∠ABC 中,∠C=900 三边分别为a 、b 、c⑴三边关系: ⑵两锐角关系 ⑶边角之间的关系:sinA cosA tanA sinB cosB tanB3、解直角三角形应用中的有关概念⑴仰角和俯角:如图:在图上标上仰角和俯角 ⑵坡度坡角:如图:斜坡AB 的垂直度h 和水平宽度l 的比叫做坡度,用i 表示,即i= 坡面与水平面得夹角为 用字母α表示,则i=tanα= 。
⑶方位角:是指南北方向线与目标方向所成的小于900的水平角如图:OA 表示 OB 表示 OC 表示 OD 表示 (也可称东南方向)考点一:锐角三角函数的概念例1 (2013•贵阳)如图,P 是∠α的边OA 上一点,点P 的坐标为(12,5),则tan α等于( )对应训练:1.(2013•宿迁)如图,将∠AOB 放置在5×5的正方形网格中,则tan ∠AOB 的值是( ) 考点二:特殊角的三角函数值对应训练:1、(2013•重庆)计算6tan45°-2cos60°的结果是( ) 考点三:化斜三角形为直角三角形对应训练(2013•陕西)如图,四边形ABCD的对角线AC,BD相交于点O,且BD平分AC.若BD=8,AC=6,∠BOC=120°,则四边形ABCD的面积为.(结果保留根号)考点四:解直角三角形的应用例4、(10分)(2014·内江)“马航事件”的发生引起了我国政府的高度重视,迅速派出了舰船和飞机到相关海域进行搜寻.如图,在一次空中搜寻中,水平飞行的飞机观测得在点A俯角为30°方向的F点处有疑似飞机残骸的物体(该物体视为静止).为了便于观察,飞机继续向前飞行了800米到达B点,此时测得点F在点B俯角为45°的方向上,请你计算当飞机飞临F点的正上方点C时(点A,B,C在同一直线上),竖直高度CF约为多少米?(结果保留整数,参考数值:3≈1.7)对应训练:(2012山东泰安3分)如图,为测量某物体AB的高度,在在D点测得A点的仰角为30°,朝物体AB方向前进20米,到达点C,再次测得点A的仰角为60°,则物体AB的高度为【】[聚焦山东中考]1.(2013•聊城)河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1AB的长为()2、(2013泰安3分)如图,某海监船向正西方向航行,在A处望见一艘正在作业渔船D在南偏西45°方向,海监船航行到B处时望见渔船D在南偏东45°方向,又航行了半小时到达C处,望见渔船D在南偏东60°方向,若海监船的速度为50海里/小时,则A,B之间的距离为(取,结果精确到0.1海里).3.(2013•济宁)钓鱼岛及其附属岛屿是中国固有领土(如图1),A、B、C分别是钓鱼岛、南小岛、黄尾屿上的用时2秒,这辆校车是否超速?说明理【达标检测】一、选择题:1.(2013•温州)在△ABC 中,∠C=90°,AB=5,BC=3,则sinA 的值是( ) A .3 B .4 C .3 D .4A .B .C .D .A .B .C .D .A .30°B .45°C .60°D .90°5.(2013•宁夏)如图是某水库大坝横断面示意图.其中AB 、CD 分别表示水库上下底面的水平线,∠ABC=120°,BC 的长是50m ,则水库大坝的高度h 是( )A .mB .25mC .D m 6.(2013•山西)如图,某地修建高速公路,要从B 地向C 地修一座隧道(B 、C 在同一水平面上).为了测量B 、C 两地之间的距离,某工程师乘坐热气球从C 地出发,垂直上升100m 到达A 处,在A 处观察B 地的俯角为30°,则B 、C 两地之间的距离为( )A .mB .mC .D m 二、填空题:7.(2013•铜仁地区)如图,在直角三角形ABC 中,∠C=90°,AC=12,AB=13,则sinB 的值等于 .9.(2013•齐齐哈尔)请运用你喜欢的方法求tan75°= .10.(2013•荆门)如图,在Rt △ABC 中,∠ACB=90°,D 是AB 的中点,过D 点作AB 的垂线交AC 于点E ,BC=6,sinA=35,则DE= . 三、解答题:26.(2013•钦州)如图,某大楼的顶部树有一块广告牌CD ,小李在山坡的坡脚A 处测得广告牌底部D 的仰角为60°.沿坡面AB 向上走到B 处测得广告牌顶部C 的仰角为45°,已知山坡AB 的坡度i=1AB=10米,AE=15米.(测角器的高度忽略不计,结果精确到0.1米.参考数据: 1.414 1.732)(1)求点B 距水平面AE 的高度BH ;(2)求广告牌CD的高度.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.正弦定理: 1. 正弦定理:
2. 变形:① a:b:c sin A:sin B:sinC
②角化边 a 2Rsi nA b 2Rs in B c 2Rsi nC
4.判断三角形解的个数:
△ ABC 中,已知锐角 A,边b ,则 ① a bsi nA 时,无解;
② a bsi nA 或a b 时,有一个解; ③
bsi nA a b 时,有两个解。
注意:由正弦定理求角时,注意解的个数。
.三角形面积
注:由面积公式求角时注意解的个数 三.余弦定理 1.余弦定理:a 2 2
考点一 利用正、余弦定理解三角形
<33> (2014 •高考安徽卷)设厶ABC 的内角A, B, C 所对边的长分别是a , b , c ,且b = 3, c = 1, A = 2B.
(1)求a 的值;
n
⑵求sin A +才的值.
考点二 禾U 用正、余弦定理判定三角形的形状 ______
在厶ABC 中,a , b , c 分别为内角A , B , C 的对边,且2asin A = (2b + c)sin
(1)求A 的大小;
解三角形
③边化角 si nA 2R sin B 2R sin C c 2R
练习:△ ABC 中,① acosA bcosB ,则△ ABC 是 三角
形。
D
C
1 S ABC
2
S
ABC
1
absin C
2
bcsinA
acsin B
2 2
-(a b c )r ,其中r 是三角形内切圆半径 2
(其中R 是三角形外接圆的半径)
b2
2
c
注:后面的变形常与韦达定理结合使用。
⑵若sin B+ sin C= 1,试判断△ ABC的形状. (b c) 2bc(1 cosA) (a c)22ac(1 cosB)
(a b)22ab(1 cosC)
1 _______
2 ________ 2 __________2
△ ABC 中,D 是 BC 的中点,贝V AD _ J AB AC 2BC
2
4. 三角形的形状 ① 若a 2 b 2
c 2时,角C 是 _____ 角 2 2 2
② 若a b
c 时,角C 是 ______ 角 ③ 若a 2 b 2
c 2时,角C 是
角
5.应用
用余弦定理求角时只有一个解 四.应用题
1. 步骤:①由已知条件作出图形,②在图上标出已知量和要求的量;
③将实际问题转化为数学问题;
④作答
2. 注意方位角;俯角;仰角;张角;张角等
[高频考点]
考点三_与三角形面积有关的问题 __________________
(2014 •高考浙江卷)在厶ABC 中,内角A , B, C 所对的边分别为a , b , c.已知a z b , c ={3, cos^A — cos B
=:3sin Acos A — .'3sin Bcos B.
⑴求角C 的大小;
4
(2)若 sin A =,求△ ABC 的面积.
5
基础达标
n
1. (2014 •高考江西卷)在厶ABC 中,内角A, B, C 所对的边分别是a , b , c.若c 2二(a — b )2+ 6, C=p ,则△
练习:锐角三角形的三边为1,2, x ,求x 的取值范围
钝角三角形的三边为 1,2, x ,求x 的取值范围
B + (2 c + b)s in C.
如:方位角是指北方向顺时针转到目标方向线的角。
ABC
的面积是()
A. 3 D. 3 3
2. (2015 •安庆模拟)在厶ABC 中, A:B= 1 : 2, sin C= 1,则 a : b : c 等于()
A. 1 : 2 : 3 B . 3 : 2 : 1 C . 1 : 3 : 2 D . 2 : 3 : 1
3. (2015 •石家庄质检)在厶ABC中,角A、B、C所对的边长分别为a、b、c, sin A、sin B、sin C成等比数列,
且c = 2a,则cos B的值为() 3 4 5 6
3(2013 •高考陕西卷)设厶ABC的内角A, B, C所对的边分别为a, b, c,若bcos C+ ccos B= asin宀则厶ABC 的形状为()
A.锐角三角形 B .直角三角形C .钝角三角形 D .不确定
4(2015 •福建厦门检测)已知△ ABC中,设三个内角A, B, C所对的边长分别为a, b, c,且a= 1, b= .3, A
=30°,贝U c= __________ .
5(2014 •高考广东卷)在厶ABC中,角A,B,C所对应的边分别为a, b ,c,已知bcos C+ ccos B= 2b,则* .
6(2013 •高考浙江卷)在锐角△ ABC中,内角A, B, C的对边分别为a, b, c,且2asin B= , 3b.
(1)求角A的大小;
⑵若a = 6, b+ c= 8,求厶ABC的面积.
8. (必修5P ii8练习⑶ 改编)在四边形ABCD中, Z DAB与Z DCB互补,A吐1, CD= DA= 2,对角线BD^ /7.
⑴求BC
⑵求四边形ABCD勺面积.
能力提升
9. 在△ ABC中,a、b、c分别为Z A、Z B、Z C的对边,已知a, b, c成等比数列,且a2- c2= ac- bc,则Z A= ________ △ ABC的形状为 _______ .
10. (选做题)(必修5%B组T3改编)是否存在满足以下条件的三角形,
①三边长是三个连续偶数;
②最大角是最小角的2倍.
若存在,求出该三角形的内切圆半径;若不存在,说明理由.
3. 三角形中线:。