数学教学论期末复习资料1
教学论复习

中学数学教学概论期末考试复习绪言1.斯托利亚尔(苏联)认为,“数学教育学的对象中包含的问题大致可以分成两类:(1)属于‘教什么’的教学内容问题;(2)属于‘如何教’的教学方法问题。
”2.Tom Kieren在《数学教育研究——三角形》一文中对数学教育的研究对象作了形象的比喻和描述。
他把H.Bauersfeld在第三届国际数学教育大会上描述的数学教育的三个研究对象即课程、教学和学习,数学教育学有三个研究方面,这就是课程论、教学论和学习论。
第一章中学数学教学的目的和任务1.确定中学数学教学的依据:主要依据国家的教育方针、普通中学的性质和任务、教学学科的特点和中学生的年龄特征。
2.普通中学的性质:普通中学进行的是基础教育而不是职业(专业)教育;普通中学的任务:一方面要教给学生为继续升学或参加生产劳动所必需的、较系统的科学文化知识;另一方面,必须联系生产、生活实际,注意培养学生的实践能力和生产劳动的技能技巧,培养学生进入社会后的必要的生存和发展能力。
3.数学学科的特点:(1)数学学科的抽象性与严谨性;(2)数学的广泛应用性;(3)数学的思辨性和结论的确定性。
4.2001年颁布的《全日制义务教育数学课程标准(实验稿)》从“知识与技能”、“数学思考”、“解决问题”、“情感与态度”四个方面作了具体阐述。
2003年颁布的《普通高中数学课程标准(实验)》明确提出,“本标准的目标要求包括三个方面:知识与技能,过程与方法,情感、态度与价值观”。
5.知识:是经验的概括;技能:是一系列行动方式的概括;能力:是对思想材料进行加工的活动过程的概括。
6.中学数学基础知识是指:“大纲”或“标准”中规定的代数、几何、统计与概率、微积分初步等的概念、法则、性质、公式、定理、公理以及由其内容所反映出来的数学思想和方法;基本技能是指按照一定的程序与步骤进行运算、处理数据(包括使用计算器、计算机等信息技术工具)、简单的推理、画图以及绘制图表等。
小学数学课程教学论复习资料

小学数学课程教学论复习资料小学数学课程教学论复习资料第一章1. 小学数学课程应体现出基础性、普及性和发展性。
P102. 数学课程目标是教育目标的具体体现,小学数学课程目标既反映了小学教育目标的要求,又体现了国家对小学阶段的学生在数学方面的知识与技能、过程与方法、情感态度与价值观等方面的基本要求。
P113. 数学的基本特点:理论的抽象性、逻辑的严谨性和应用的广泛性。
P124. 数学是研究现实世界的数量关系和空间形式的一门科学。
P125. 新的数学课程目标的特点(四基):基本知识、基本技能、基本思想、基本活动经验。
P146. 《数学课程标准》从知识技能、数学思考、问题解决、情感态度四个方面对总体目标进行具体阐述。
P157. 在发展形象思维方面,主要在于让学生建立初步的空间观念,能够借助图形去进行思维,这也是学生学习“图形与几何”的首要目标。
P178. 学科数学与科学数学的主要区别:P22第一,科学数学是对数学原理与方法的系统阐述。
一般从基本的概念和原理出发,完整地、系统地表述某一个数学领域的问题与方法。
而作为学科的数学要更多地考虑学生的心理特点和认识规律,从学生的学习需要和可能出发,安排和呈现有关的内容和方法。
因此,学科数学一般要从学生的生活实际出发,让学生充分感知所学的内容。
第二,作为科学的数学,对所有的定理、公式、法则等都要进行严格的论证和推导,以保证其逻辑性和严谨性。
而作为学科的数学,从学生学习的需要和接受能力出发,往往不做严格的论证,更多地通过列举的方式,用归纳的方法得出结论。
让学生具体地认识有关的原理。
第三,作为科学的数学,可以完全按照数学自身的理论体系和逻辑顺序安排,尽量使内容完整、系统和科学化。
而作为学科的数学,在不影响内容科学性的前提下,应当考虑儿童的认知规律,一些内容的呈现顺序和编排方式可作适当的调整。
9. 选择小学数学课程内容的原则:1依据数学课程目标;2满足学生需要,促进学生发展;3反映社会进步和数学学科自身的发展。
小学数学教学论复习资料

1.标志着中国古代数学体系形成的著作是(C)A.《周髀算经》B.《孙子算经》C.《九章算术》D.《几何原本》2.”学习的目的就是要掌握学科的知识结构,在头脑中建立相应的编码系统”,这是当代认知学派(D)的观点。
A.皮亚杰B.加涅C.奥苏贝尔D.布鲁娜3.下列哪一大纲中首先提出了“直观几何”的概念?(B)A.1950年的《小学算术课程暂行标准(草案)》B.1952年的《小学算术教学大纲(草案)》C.1956年的《小学算术教学大纲(修订草案)》D.1986年的《全日制小学数学教学大纲》4.综合式教材体系是以(D)A.代数知识为主B.平面几何知识为主C. 立体几何知识为主D.算术知识为主5.强调“影响学习的唯一最重要的因素就是学习者已经知道了什么。
”的教育心理学家是(C ) A.布鲁纳B.皮亚杰C.奥苏贝尔D.杜威6.根据数学思维活动的总体规律,思维可分为(A )A.逻辑思维、形象思维、直觉思维B.形象思维、逻辑思维、集中思维C.逻辑思维、集中思维、发散思维D.集中思维、发散思维、创造思维7.小学生通过观察4:2=2, 40^20=2, 400^200=2……归纳出商不变的性质,这说明其数学学习是(C)A.感性的B. 理性的C.感性和理性统一的D.既非感性的亦非理性的8.学生在掌握了长方体、正方体、圆柱形的概念后,再把它们归纳成“柱体”,这种概念的同化属于(C)A.类属同化B .并列同化C.总括同化9.新授课最常用的一种课型是(B)A.探究研讨课B.讲练课C.自学辅导课D.引导发现课10.探究研讨课的基本结构是(A)A.明确教学任务一一探究一研讨一一得出结论一阅读课本一巩固练B.探究一一研讨一一结论一一巩固二探究一一假设一论证一一结论D.探究一一假设一一研讨一验证假设11.“认知结构是主客体的相互作用中,主体认识的一种主动积极的建构过程”这一观点的倡导者是(C)A.斯金纳B.布鲁纳C.皮亚杰D.杜威12.某学生学会了三角形面积公式后计算一个已知三角形的底和高求面积的题目,这种思维形式属于(B )A.创造性思维B.再造性思维C.发散思维D.灵感13.把数学思维划分为再造性思维与创造性思维的依据是(D )A.小学生数学思维的发展阶段B.数学思维活动的总体规律C.解决数学问题的方向D.数学思维品质14.下列可称为心算的是(A)A. 口算B.笔算C.珠算D.验算15. “自然数就是非空的等价集合类的共同特征”。
小学数学教学论复习资料1

数学第一章1、数学课程应致力于实现义务教育阶段的培养目标,体现基础性、普及性和发展性。
义务教育阶段的数学课程要面向全体学生,适合学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。
2,具有理论的抽象性、逻辑的严谨性及应用的广泛性.P123两层次:总体目标学段目标 p13总体目标:1、获得适应社会生活和进一步发展所必须的数学知识,思想方法和应用技能2、初步学会运用数学的思维方式去观察、分析、解决日常生活中和其他学科相关的问题,增强应用数学的意识3、体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心4、具有初步的创新精神和实践能力,在情感态度和一般能力方面得到充分发展。
总体目标:知识与技能:经历讲一些实际问题抽象为数与代数问题的过程,掌握数与代数的基础知识和基本技能,并能解决简单问题经历探究物体与图形的形状,大小,位置关系和变换的过程,掌握空间与图形的基础知识和基本技能,并能解决简单问题经历提出问题,收集和处理数据,做出决策和预测的过程,掌握统计与概率的基础知识和基本技能,并能解决的问题数学思考:经历运用数学符号和图形描述现实世界的过程,建立初步的数感和符号感,发展抽象思维丰富对现实空间及图形的认识,简历初步的空间观念,发展形象思维经历运用数据描述信息,做出判断的过程,发展统计观念经历观察,试验,猜想,证明等数学活动的过程,发展合理推断能力和初步的演绎推理能力,能有条理地,清晰的阐述自己的观点解决问题:初步学会从数学的角度提出问题,解决问题,并能综合运用所学的知识和技能解决问题,发展应用意识形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神学会与人合作,并能与他人交流思维的过程和结果初步形成评价与反思的意识情感与态度:在数学学习活动中获得成功的体验,锻炼克服困难的意志建立自信心在初步认识数学与人类生活的密切联系以及对人类历史发展的作用,体验数学活动充满着探索与创造,感受数学的严谨,以及数学结论的确定性形成实事求是的态度以及进行质疑和独立思考的能力小学数学课程的内容:数与代数:第一学段:学习万以内的数,简单的分数,小数,常见的量。
数学教学论完整复习含答案版

数学教学论期末考试提纲1.《数学教学论》的学科特点是什么?是一门综合性的独立边缘学科;是一门实践性很强的理论学科;是一门发展中的理论学科.2. 简述《数学教学论》是一门怎样的课程?谈谈你学习这门课程的感受。
《数学教学论》是一种社会文化现象,其中有许许多多的奥秘需要人们去研究,这便使《数学教学论》应运而生。
从事数学教育研究,既要通晓数学,又要研究教育,但它又绝非“教育学原理+数学例子”。
《数学教学论》是综合数学、教育学、心理学、哲学、文化学、思维科学、系统科学、信息技术学等多门学科的交叉科学,它具有综合性、实践性、科学性、教育性等基本特点。
感受:第一学习数学论有助于缩短师范生转为老师的周期;第二能提高师范生的数学教育论水平;第三能使师范生掌握数学课堂教学的基本技能;第四学习数学教学理论有利于师范生形成数学教育教学研究的能力;第五学习数学教学论对普及新一轮改革有特殊意义.3.义务教育阶段的课程目标是什么?义务教育数学课程目标是国家根据义务教育培养目标、学生的年龄特征和数学学科特点制定的关于义务教育数学课程实施效果的预先规定,它具有基础性、预设性、强制性、全面性和宏观性等特点。
在义务教育数学课程中,课程目标具有决定数学课程内容选择、指导教科书编写、制约教学方式选用、确立教学评价标准等作用。
同时,它还有为学生的学习与发展指明方向、确立质量标准、提供动力、调控学习和发展过程等育人功能。
4. 义务教育阶段的教学目标是什么?(1)学好基本知识和基本技能(2)培养和发展能力:运算能力,逻辑思维能力,空间想象能力,解决问题能力,应用意识,良好的思维品质(3)培养良好的个性品质和辩证唯物主义观点.5.高中阶段的课程目标是什么?(1)获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。
通过不同形式的自主学习、探究活动体验数学发现和创造的历程。
小学数学教学论复习资料

名词解释1.教材:是根据一定的学科任务而选编和组织的、具有一定范围和深度的、含有一定能力要求的内容体系。
2.数学学习:是根据教学计划进行的在数学教师指导下,学生从已有的经验出发,主动获得对数学知识的理解与数学技能的掌握,并在思维能力、情感态度与价值观等多方面得到进步和发展的过程。
3.接受学习:指由教师向学生提供前人发现、创造、积累的人类的社会经验,学生把这些经验内化为自己的经验,使其成为自己认知事物、分析问题、处理问题及发明创造的工具的一种学习方式。
4.发现学习:指在教学中教师不把现成结论告诉学生,而是创设恰当的问题情境,让学生在教师的指导下主动发现问题、探究问题并获得正确答案的一种学习活动过程。
5.同化:新知识被认知结构中的原有适当观念吸收,新旧观念发生相互作用,新知识获得心理意义且使原有认知结构发生变化的过程。
6.顺应:改造原有认知结构而建立新的认知结构的过程。
7.空间想象力:指对客观事物的空间形式进行观察分析、归纳和想象的能力。
8.数学问题:指人们在数学活动中所面临的,用已有的知识和经验无法直接解决而又没有现成对策的新问题、新情境。
9.数感:指关于数与数量表示、数量大小比较、数量和运算结果的估计等方面的直观感觉。
10.符号意识:指能够理解并且运用符号表示数、数量关系和变化规律。
11.数学认知结构:就是学生头脑里的数学知识按照自己的理解深度、广度、结合自己的知觉、记忆、联想等认知特点,组合成的一个具有内部规律的整体结构。
12.数学概念:是客观世界中数量关系和空间形式的本质属性在人们头脑中的反映,它是用数学语言和符号揭示事物共同属性的思维形式。
14.数学课堂教学过程:指学生在教室有意识、有计划的组织和引导下,并在一定的时间和空间内的一种定向的数学学习活动过程。
15.数学素养:解答题一、数学的基本特征1.抽象性:抽去了具体内容的形式科学,用形式化、符号化和精确化的语言,没有任何物质和能量的特征2.严谨性:数学的结果是从一些基本概念和公理出发通过严格的逻辑推理而得到的。
数学教学论期末复习资料1

数学教学论
绪论
1、我国从什么时候开始招收数学教育方向的硕士研究生?什么时候开始招收学科教学(数学)方向教育专业硕士研究生?什么时候开始招收数学课程与教学论方向博士研究生?什么时候开始计划招生学科教学方向教育专业博士研究生?
答:我国从1962年开始招收数学教育方向的硕士研究生;1998年开始招收学科教学(数学)方向教育专业硕士研究生;20世纪末,开始招收数学课程与教学论方向博士研究生;2010年开始计划招收学科教学方向教育专业博士研究生。
2、什么是数学教学论?
答:数学教学论是研究数学教学过程中教和学的联系、相互作用及其统一的科学。
第一章现代数学发展概况
1、何谓数学观?
答:数学观是人们对数学本质、规律和活动的各种认识的总和。
2、简述课程改革中数学教师角色转变和观念更新的主要内容.
答:(1)、数学教学论、数学教学观和数学活动观与数学教育评价观的重新认识;(2)、从教书匠的角色定位向既是教书匠又是教育家的双重角色转变;
(3)、从知识的传输者向知识的解释者的转变;从至高无上的知识的终极权威向展示知识的形成建构过程的转变;从绝对数学真理的代言人向演化的、动态的、相对的数学真理探索者的转变。
(4)、从学生数学思想方法和学生思维活动的决定者、控制着向引导者、参与者的转变;从数学教学管理方式上的管理这=者、灌输者、命令者向合作者、咨询者、对话者的转变。
(5)、无论在课程设置、教材处理还是教学过程当中,教师都要对数学不仅有一个横向的透视,而且要有纵向的穿透。
(6)、数学教师应具备初步的数学教育哲学思想,是其数学教育观从经验上升到理论的必要阶梯。
数学教学论期末考试复习提纲

《数学教学论》复习内容数学的特点:作为科学的数学的特点(恩格斯);作为教育学科的数学特点(米山国藏)宏观的数学方法主要包括:公理化方法、数学建模方法、随机思想方法。
学科课程与经验课程的区别与联系影响数学课程发展的三个基本因素:社会发展的需求、数学学科体系、学生心理基础。
数学发展史上的4大高峰:几何原本为代表的公理化数学、微积分为代表的无穷小算法数学、希尔伯特为代表的公理化数学、计算机技术为代表的信息时代数学数学课程的现代发展:注重问题解决、大众数学、数学应用;大众数学的三层含义中学阶段学生的数学学习要经历如下5次转折与飞跃:从算术到代数、从代数到几何推理、从演绎几何到解析几何、从常量数学到变量数学、从确定性数学到随机数学。
20世纪国际数学教育5次规模大的数学教育改革运动:世纪初的贝利—克莱因运动(改革中心是注重学生的函数思维);五六十年代的“新数学运动”(其有两个思想基础:数学本身的变革和课程观念的变革);70年代回到基础(其出发点是要引起对基本技能的重视);80年代问题解决(问题解决是80年代数学教育的核心);90年代的建构数学。
PISA考查的重点是15岁学生的阅读、数学和科学素养,2000重阅读、2003重数学素养、2006年重科学素养测试。
数学素养的3个维度:过程、内容和背景美国NCTM颁布的4个标准的年代与名称:1989年《学校数学课程与评估标准》、1991年《数学教学的职业标准》、1995年《学校数学的考核标准》、2000年《学校数学教育的原则与标准》采用标准的3大原因:保证质量、明确目标和促进改革1949年建国后第一部中学数学教学大纲颁布的年份1952年首次提出全面培养学生的三大能力是在961和1963年的中学数学教学大纲中新一轮数学课程改革发端于1990年代,《全日制义务教育数学课程标准》和《普通高中数学课程标准》颁布的时间:2001,2003,初中与高中实验区实施新课程的初始时间:2001,2004,江苏进入实验新课程时间2005。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学教学论
绪论
1、我国从什么时候开始招收数学教育方向的硕士研究生什么时候开始招收学科教学(数学)方向教育专业硕士研究生什么时候开始招收数学课程与教学论方向博士研究生什么时候开始计划招生学科教学方向教育专业博士研究生
答:我国从1962年开始招收数学教育方向的硕士研究生;1998年开始招收学科教学(数学)方向教育专业硕士研究生;20世纪末,开始招收数学课程与教学论方向博士研究生;2010年开始计划招收学科教学方向教育专业博士研究生。
2、什么是数学教学论
答:数学教学论是研究数学教学过程中教和学的联系、相互作用及其统一的科学。
第一章现代数学发展概况
1、何谓数学观
答:数学观是人们对数学本质、规律和活动的各种认识的总和。
2、简述课程改革中数学教师角色转变和观念更新的主要内容.
答:(1)、数学教学论、数学教学观和数学活动观与数学教育评价观的重新认识;(2)、从教书匠的角色定位向既是教书匠又是教育家的双重角色转变;
(3)、从知识的传输者向知识的解释者的转变;从至高无上的知识的终极权威向展示知识的形成建构过程的转变;从绝对数学真理的代言人向演化的、动态的、相对的数学真理探索者的转变。
(4)、从学生数学思想方法和学生思维活动的决定者、控制着向引导者、参与者的转变;从数学教学管理方式上的管理这=者、灌输者、命令者向合作者、咨询者、对话者的转变。
(5)、无论在课程设置、教材处理还是教学过程当中,教师都要对数学不仅有一个横向的透视,而且要有纵向的穿透。
(6)、数学教师应具备初步的数学教育哲学思想,是其数学教育观从经验上升到理论的必要阶梯。