汽车差速器设计(1)

合集下载

差速器设计

差速器设计
由于选用对称式差速器,所以有 。从而可以得出
上式被称为是普通锥齿轮式差速器的特征方程。从上式中可知,无论在何种行驶情况下,差速器壳的转速就等于左右半轴转速和的一半。从特征方程中,我们可以得出几种特殊路况时的各部件的转速关系。当一侧的车轮陷入坑中打滑,而另一侧的车轮静止时,此时大化的车轮的转速将是差速器壳的两倍,即 。当采用中央制动器紧急制动时,此时 =0,当 时,那么就会有 。由于此时两侧车轮受力的方向不同,可能会造成偏转甩尾的情况。
差速器按结构可分为齿轮式、凸轮式、涡轮式和牙嵌式等多种型式。在一般用途的汽车上,差速器常选择对称锥齿轮式差速器。它的特点是,左右两个半轴齿轮大小相同,然后将转矩分配给左右两个驱动轮。因此此次设计选用对称式锥齿轮式差速器。由左右两半组成,用螺栓固定在一起整个壳体的两端以锥形滚柱轴承支承在主传动壳体的支座内,上面用螺钉固定着轴承盖。两轴承的外端装有调整圈,用以调整轴承的紧度。并能配合主动齿轮轴轴承壳与壳体之间的调整垫片,调整主动,从动锥齿轮的啮合间隙和啮合印痕。为了防止松动,在调整圈外缘齿间装有锁片,锁片用螺钉固定在轴承盖上。
差速器设计.
————————————————————————————————作者:
————————————————————————————————日期:
差速器设计
在车辆行驶过程中,会碰到多种情形的车况,导致左右车轮的行走的里程不同,即左右车轮会以不同的速度行驶,即会有左右车轮的转速不同。例如:
(1)汽车在进行转弯时,外侧的车轮要经过更多的路程,速度要比内侧车轮速度大;
代入数据经过计算可知:
45.1~53.5 ,所以此时将球面半径取为50 。
根据汽车设计相关书籍的节锥距的选取方法有:

所以将 取为49

差速器设计

差速器设计

差速器设计根据汽车行驶运动学的要求和实际的车轮、道路以及它们之间的相互关系表明:汽车在行驶过程中左右车轮在同一时间内所滚过的行程往往是有差别的。

例如,转弯时外侧车轮的行程总要比内侧的长。

另外,即使汽车作直线行驶,也会由于左右车轮在同一时间内所滚过的路面垂向波形的不同,或由于左右车轮轮胎气压、轮胎负荷、胎面磨损程度的不同以及制造误差等因素引起左右车轮外径不同或滚动半径不相等而要求车轮行程不等。

在左右车轮行程不等的情况下,如果采用一根整体的驱动车轮轴将动力传给左右车轮,则会由于左右驱动车轮的转速虽相等而行程却又不同的这一运动学上的矛盾,引起某一驱动车轮产生滑转或滑移。

这不仅会使轮胎过早磨损、无益地消耗功率和燃料及使驱动车轮轴超载等,还会因为不能按所要求的瞬时中心转向而使操纵性变坏。

此外,由于车轮与路面间尤其在转弯时有大的滑转或滑移,易使汽车在转向时失去抗侧滑能力而使稳定性变坏。

为了消除由于左右车轮在运动学上的不协调而产生的这些弊病,汽车左右驱动轮间都装有差速器,后者保证了汽车驱动桥两侧车轮在行程不等时具有以不同速度旋转的特性,从而满足了汽车行驶运动学要求。

同样情况也发生在多桥驱动中,前、后驱动桥之间,中、后驱动桥之间等会因车轮滚动半径不同而导致驱动桥间的功率循环,从而使传动系的载荷增大,损伤其零件,增加轮胎的磨损和燃料的消耗等,因此一些多桥驱动的汽车上也装了轴间差速器。

3.3.1差速器的结构型式选择差速器的结构型式选择,应从所设计汽车的类型及其使用条件出发,以满足该型汽车在给定的使用条件下的使用性能要求。

差速器的结构型式有多种。

大多数汽车都属于公路运输车辆,对于在公路上和市区行驶的汽车来说,由于路面较好,各驱动车轮与路面的附着系数变化很小,因此几乎都采用了结构简单、工作平稳、制造方便、用于公路汽车也很可靠的普通对称式圆锥行星齿轮差速器,作为安装在左、右驱动轮间的所谓轮间差速器使用;对于经常行驶在泥泞、松软土路或无路地区的越野汽车来说,为了防止因某一侧驱动车轮滑转而陷车,则可采用防滑差速器。

差速器课程设计文档

差速器课程设计文档

差速器课程设计文档一、教学目标本课程的教学目标是使学生掌握差速器的结构、工作原理和维护方法,培养学生分析和解决差速器相关问题的能力。

具体目标如下:1.知识目标:(1)了解差速器的组成部分及其功能;(2)掌握差速器的工作原理;(3)熟悉差速器的维护和故障诊断方法。

2.技能目标:(1)能够绘制差速器的结构示意图;(2)能够分析差速器的工作过程;(3)能够进行差速器的维护和故障排除。

3.情感态度价值观目标:(1)培养学生对汽车维修行业的兴趣和热情;(2)培养学生认真、细致、合作的学习态度;(3)培养学生关爱车辆、安全驾驶的意识。

二、教学内容本课程的教学内容主要包括以下几个方面:1.差速器的结构:介绍差速器的组成部分,如差速器壳、行星齿轮、半轴齿轮等,并阐述各部分的作用。

2.差速器的工作原理:讲解差速器的工作过程,包括行星齿轮的旋转、半轴齿轮的转动等,使学生理解差速器的工作原理。

3.差速器的维护方法:介绍差速器的维护方法,如定期检查、更换润滑油、调整间隙等,强调维护的重要性。

4.差速器的故障诊断与排除:讲解差速器常见故障的现象、原因及诊断方法,如异响、抖动等,并提供故障排除技巧。

三、教学方法本课程采用多种教学方法,以激发学生的学习兴趣和主动性:1.讲授法:教师讲解差速器的结构、工作原理和维护方法,引导学生掌握知识点。

2.讨论法:分组讨论差速器故障案例,培养学生的分析问题和解决问题的能力。

3.案例分析法:分析实际车辆中的差速器故障案例,使学生能够将理论知识应用于实际操作。

4.实验法:安排差速器实验,让学生亲自动手操作,提高学生的实践能力。

四、教学资源为实现教学目标,我们将使用以下教学资源:1.教材:选用权威、实用的教材,如《汽车差速器维修技术》。

2.参考书:提供相关领域的参考书籍,丰富学生的知识体系。

3.多媒体资料:制作精美的PPT、视频等多媒体资料,提高学生的学习兴趣。

4.实验设备:准备差速器实验设备,确保学生能够进行实践操作。

毕业设计(论文):汽车差速器的设计

毕业设计(论文):汽车差速器的设计

摘要摘要在去年金融危机的影响下,汽车产业结构的重组给汽车的发展带来了新的机遇,与汽车相关的各行各业更加注重汽车的质量。

差速器作为汽车必不可少的组成部分之一也在汽车市场上产生了激烈的竞争。

此次就是针对汽车差速器这一零件进行设计的。

本次设计主要对安装在驱动桥的两个半轴之间的差速器进行设计,主要涉及到了差速器非标准零件如齿轮结构和标准零件设计计算,同时也介绍了差速器的发展现状和差速器的种类。

对于差速器的方案选择和工作原理也作出了简略的说明。

在设计中参考了大量的文献,因此对差速器的结构和作用有了更透彻的了解。

再设计出合理适用的差速器的同时也对差速器相关的行业有了一定得认识。

通过绘制差速器的组件图也让我在学习方面得到了提高。

关键词:半轴、差速器、齿轮结构AbstractAbstractIn the last year under the impact of financial crisis, automotive industrial restructuring brought about by the development of motor vehicles to new opportunities, and automotive related businesses pay more attention to the quality of cars.Differential as an integral part of car, one of the automotive market also resulted in fierce competition.The differential is the spare parts for motor vehicles designed.The design of the main drivers on the installation of the bridge in between the two axle differential design, mainly related to the differential struct-ure of non-standard parts such as gear parts and standards for design and calculation, but also introduced the development of differential status and the type of differential.For differential selection and the principle of the program have also made a brief note. Reference in the desi-gn of a large amount of literature on the role of differential structure and have a more thoro-ugh understanding. Re-engineering the application of a reasonable differential at the same time also has been related industries must be aware of. Differential through the mapping component map also let me in the field of learning has been improved.Keywords: Axle, differential, gear structure目录摘要 (I)Abstract (II)目录 (I)第一章概述 (1)1.1汽车差速器的发展现状 (1)1.2汽车差速器的功用及其分类 (2)1.3课题设计初始数据的来源与依据 (3)第二章差速器的设计方案 (4)2.1差速器的方案选择及结构分析 (4)2.2差速器的工作原理 (4)第三章差速器非标准零件的设计 (8)3.1对称式行星齿轮设计计算 (8)3.1.1对称式行星齿轮参数确定 (8)3.1.2差速器齿轮几何计算图表 (11)3.1.3差速器齿轮的材料 (12)3.1.4差速器齿轮强度的计算 (12)3.2差速器行星齿轮轴的设计计算 (14)3.2.1行星齿轮轴的分类及选用 (14)3.2.2行星齿轮轴的尺寸设计 (14)3.2.3行星齿轮轴的材料 (14)3.3差速器垫圈的设计计算 (14)3.3.1半轴齿轮平垫圈的尺寸设计 (15)3.3.2行星齿轮球面垫圈的尺寸设计 (15)第四章差速器标准零件的选用 (16)4.1螺栓的选用和螺栓的材料 (16)4.2螺母的选用何螺母的材料 (16)4.3差速器轴承的选用 (16)第五章差速器总成的装复和调整 (17)5.1差速器总成的装复 (17)5.2差速器的零部件的调整 (17)小结 (18)致谢 (19)参考文献 (20)汽车差速器的概述第一章概述1.1汽车差速器的发展现状在汽车行业发展初期,法国雷诺汽车公司的创始人雷诺发明了汽车差速器,汽车差速器作为汽车必不可少的部件之一曾被汽车专家誉为“小零件大功用”。

差速器设计说明书

差速器设计说明书

对称锥齿轮式差速器设计1 差速器作用汽车在行驶过程中,左、右车轮在同一时间内所滚过的路程往往是不相等的,如转弯内侧车轮行程比外侧车轮短;左右两轮胎内的气压不等、胎面磨损不均匀、两车轮上的负荷 不均匀而引起车轮滚动半径不相等;左右两轮接触的路面条件不同,行驶阻力不等等。

这 样,如果驱动桥的左、右车轮刚性连接,则不论转弯行驶或直线行驶,均会引起车轮在路面 上的滑移或滑转,一方面会加剧轮胎磨损、功率和燃料消耗,另一方面会使转向沉重,通过 性和操纵稳定性变坏。

为此,在驱动桥的左、右车轮间都装有轮间差速器。

在多桥驱动的汽 车上还常装有轴间差速器,以提高通过性,同时避免在驱动桥间产生功率循环及由此引起的 附加载荷、传动系零件损坏、轮胎磨损和燃料消耗等。

差速器用来在两输出轴间分配转矩,并保证两输出轴有可能以不同角速度转动。

汽车上广泛采用的差速器为对称锥齿轮式差速器,具有结构简单、质量较小等优点,应 用广泛。

它又可分为普通锥齿轮式差速器、摩擦片式差速器和强制锁止式差速器等。

2 差速器原理结构由于普通锥齿轮式差速器结构简单、工作平稳可靠,所以广泛应用于一般使用条件的汽车驱 动桥中。

图5-19为其示意图,图中0w 为差速器 壳的角速度;1w 、2w 分别为左、右两半轴的 角速度;0T 为差速器壳接受的转矩;r T 为差速 器的内摩擦力矩;1T 、2T 分别为左、右两半轴 对差速器的反转矩。

根据运动分析可得 0212w w w =+(2-1)图1:普通锥齿轮式差速器示意图 显然,当一侧半轴不转时,另一侧半轴将以两倍的差速器壳体角速度旋转;当差速器壳体不转时,左右半轴将等速反向旋转。

根据力矩平衡可得{rT T T T T T =-=+12021 (2-2)差速器性能常以锁紧系数k 来表征,定义为差速器的内摩擦力矩与差速器壳接受的转矩之比,由下式确定T T k r= (2-3)结合(2-2)可得:⎩⎨⎧+=-=)1(5.0)1(5.00201k T T k T T (2-4)定义半轴转矩比12T T k b =,则b k 与k 之间有k kk b -+=11 11+-=b b k k k (2-5)普通锥齿轮差速器的锁紧系数忌一般为.O.05~O.15,两半轴转矩比足b 为1.11~1.35,这说明左、右半轴的转矩差别不大,故可以认为分配给两半轴的转矩大致相等,这样的分配比例对于在良好路面上行驶的汽车来说是合适的。

汽车差速器的设计解读

汽车差速器的设计解读

汽车差速器的设计解读汽车差速器是汽车传动系统中的重要组件之一,它承担着实现轮胎间差速调节、转向和牵引控制的功能。

它是通过一种特殊的机构设计来实现的,可以有效地解决行驶过程中的转向困难和转弯半径加大等问题。

下面将对汽车差速器的设计进行解读。

首先,汽车差速器设计的基本原理是通过两个轮胎的转速差异,使两侧轮胎产生不同的转速,从而实现转向。

在直线行驶时,两个轮胎的转速是相同的,差速器处于无差速状态,两侧轮胎顺利地同步转动;而在转弯时,由于内外侧轮胎行驶半径不同,转速也会不同,差速器会根据不同的转动速度来调整扭矩分配,使内外侧轮胎产生所需的差速,从而实现转向控制。

其次,差速器的设计结构相对复杂,主要由差速器机壳、行星齿轮、差速齿轮等组成。

差速器机壳是差速器的外壳,起到固定内部零件的作用;行星齿轮是差速器的核心部件,由太阳齿轮、行星齿轮和外齿轮组成,其基本结构通过行星齿轮与外齿轮的相互配合来实现不同速度的扭矩传递;差速齿轮将传递给差速器的扭矩分配到左右两侧的驱动轮上。

这些部件的合理设计和配合可以有效地实现差速调节和转向控制的功能。

此外,差速器的设计还需要考虑诸多工程问题。

首先是差速器的强度和耐久性问题,差速器要能够承受较大的扭矩和冲击力,以确保长时间的稳定工作;其次是差速器的密封性,差速器内部含有润滑油,需要保证密封性以防止油漏出和进入灰尘等杂质;再次是差速器的制造成本和安装调试问题,需要考虑材料的选择和工艺流程,以及装配和调试的便捷性。

最后,差速器的设计还需要根据不同车型和用途进行调整和优化。

不同车型和用途对差速器的要求有所不同,一些特殊要求,如越野性能、防滑功能和动力分配等,需要对差速器的设计进行改进和创新。

例如,一些越野车型会使用差速锁来提高车辆的通过能力;一些高性能车辆会采用电子控制差速器来实现更精确的扭矩分配和动力控制。

总之,汽车差速器的设计是一个综合性的工程问题,需要考虑诸多因素和要求,通过合理的设计和优化,才能实现汽车的高效转向和牵引控制。

4.差速器设计

4.差速器设计

第四节差速器设计汽车在行驶过程中,左、右车轮在同一时间内所滚过的路程往往是不相等的,如转弯时内侧车轮行程比外侧车轮短;左右两轮胎内的气压不等、胎面磨损不均匀、两车轮上的负荷不均匀而引起车轮滚动半径不相等;左右两轮接触的路面条件不同,行驶阻力不等等。

这样,如果驱动桥的左、右车轮刚性连接,则不论转弯行驶或直线行驶,均会引起车轮在路面上的滑移或滑转,一方面会加剧轮胎磨损、功率和燃料消耗,另一方面会使转向沉重,通过性和操纵稳定性变坏。

为此,在驱动桥的左、右车轮间都装有轮间差速器。

在多桥驱动的汽车上还常装有轴间差速器,以提高通过性,同时避免在驱动桥间产生功率循环及由此引起的附加载荷、传动系零件损坏、轮胎磨损和燃料消耗等。

差速器用来在两输出轴间分配转矩,并保证两输出轴有可能以不同角速度转动。

差速器按其结构特征可分为齿轮式、凸轮式、蜗轮式和牙嵌自由轮式等多种形式。

一、差速器结构形式选择(一)齿轮式差速器汽车上广泛采用的差速器为对称锥齿轮式差速器,具有结构简单、质量较小等优点,应用广泛。

他又可分为普通锥齿轮式差速器、摩擦片式差速器和强制锁止式差速器等1.普通锥齿轮式差速器由于普通锥齿轮式差速器结构简单、工作平稳可靠,所以广泛应用于一般使用条件的汽车驱动桥中。

图5—19为其示意图,图中ω0为差速器壳的角速度;ω1、ω2分别为左、右两半轴的角速度;为差速器的内摩擦力矩;T1、T2分别为左、右两半轴To为差速器壳接受的转矩;Tr对差速器的反转矩。

根据运动分析可得ω1+ω2=2ω0(5—23)显然,当一侧半轴不转时,另一侧半轴将以两倍的差速器壳体角速度旋转;当差速器壳体不转时,左右半轴将等速反向旋转。

根据力矩平衡可得T0T2T1T0T1-T2{=+= (5 - 24)差速器性能常以锁紧系数k 是来表征,定义为差速器的内摩擦力矩与差速器壳接受的转矩之比,由下式确定结合式(5—24)可得k )-0.5T0(1T1k )0.5T0(1T2{=+= (5 - 26)定义快慢转半轴的转矩比k b =T2/T1,则kb 与k 之间有kk -+=11kb kbk +-=11kb (5 - 27)普通锥齿轮差速器的锁紧系数是一般为0.05~0.15,两半轴转矩比k b=1.11~1.35,这说明左、右半轴的转矩差别不大,故可以认为分配给两半轴的转矩大致相等,这样的分配比例对于在良好路面上行驶的汽车来说是合适的。

差速器设计

差速器设计

目录第一部分差速器设计及驱动半轴设计1 车型数据 (3)2 普通圆锥齿轮差速器设计 (4)2.1 对称式圆锥行星齿轮差速器的差速原理 (4)2.2 对称式圆锥行星齿轮差速器的结构 (7)2.3 对称式圆锥行星齿轮差速器的设计和计算 (7)2.3.1 差速器齿轮的基本参数的选择 (8)2.3.2 差速器齿轮的几何计算 (11)2.3.3 差速器齿轮的强度计算 (13)2.3.4差速器齿轮的材料 (15)3 驱动半轴的设计 (14)3.1 半浮式半轴杆部半径的确定 (16)3.2 半轴花键的强度计算 (18)3.3 半轴其他主要参数的选择 (17)3.4 半轴的结构设计及材料与热处理 (19)第二部分 6109客车总体设计要求 (19)1. 6109客车车型数据 (19)1.1尺寸参数 (19)1.2质量参数 (19)1.3发动机技术参数 (19)1.3传动系的传动比 (19)1.5轮胎和轮辋规格 (20)2. 动力性计算 (20)2.1发动机使用外特性 (20)2.2车轮滚动半径 (20)2.3滚动阻力系数f (20)2.4空气阻力系数和空气阻力 (20)2.5机械效率 (20)2.6计算动力因数 (20)2.7确定最高车速 (22)2.8确定最大爬坡度 (22)2.9确定加速时间 (23)3.燃油经济性计算 (23)4.制动性能计算 (23)4.1最大减速度 (23)4.2制动距离S (23): (24)4.3上坡路上的驻坡坡度i1max: (24)4.4下坡路上的驻坡坡度i2max5. 稳定性计算 (24)5.1纵向倾覆坡度: (24)5.2横向倾覆坡度 (24)N 结束语 (24)参考文献 (26)第一部分差速器设计及驱动半轴设计1 车型数据1.1参数表参数名称数值单位汽车布置方式前置后驱总长4320 mm总宽1750 mm轴距2620 mm前轮距1455 mm后轮距1430 mm整备质量1480 kg总质量2100 kg发动机型式汽油直列四缸排量 1.993 L最大功率76.0/5200 KW最大转矩158/4000 NM压缩比8.7:1离合器摩擦式离合器变速器档数五档手动轮胎类型与规格185R14 km/h转向器液压助力转向前轮制动器盘后轮制动器鼓前悬架类型双叉骨独立悬架后悬架类型螺旋弹簧最高车速140 km/h2 普通圆锥齿轮差速器设计汽车在行驶过程中左,右车轮在同一时间内所滚过的路程往往不等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 绪论1.1 课题国内外研究背景汽车行业发展初期,汽车差速器作为汽车必不可少的部件之一被汽车专家誉为“小零件大功用”。

当汽车转弯行驶时,内、外两侧车轮在同一时间内要移动不同的距离,外轮移动的距离比内轮大。

差速器的功用就是把主减速器传过来的动力再传给左、右两个半轴,并且在转弯过程中允许左、右两个半轴以不同转速来旋转。

在本世纪六七十年代,当世界经济进入一个高速增长期,但是2008年爆发的全球金融危机又让汽车产业在危机过程中有了发展的机遇。

当前我们国家的重型汽车的差速器产品技术基本上都是来自美国、德国、日本等几个传统的工业强国,目前我国现有技术几乎是在引进国外技术的基础上发展起来的,并且已经具备了一定的规模。

然而目前我国的差速器没有自己的核心技术产品,创新能力仍然很弱,影响了整个汽车行业的发展。

在差速器的发展上还有很长的路要走。

1.1.1 差速器目前发展态势当前汽车基本上是在朝着经济性和动力性的方向发展,但是怎样能够使尽可能提高自己产品燃油经济性以及动力性是每个汽车厂家一直在攻克的课题。

具体说来,汽车身上的每个零件都在不停地变化。

差速器也是一样的。

国外有些差速器生产企业的研究水平已经很高。

伊顿公司汽车集团是全球化的汽车零部件制造供应商之一,在牵引力控制、安全排放控制、发动机以及变速箱等领域居全球领先地位。

当前国内差速器起步算是较晚,所以目前发展最主要是靠引进国外产品来满足自身的需求。

当然了,我们还是要努力抓住市场机遇,在保证现有差速器生产和改进的基础上,还是要充分认识到发展与改革的关系,特别是要认识到创新对发展的巨大推动作用。

我们要紧随世界潮流,才能让我们的产品向高技术含量,智能化等方向发展,才能开发出适合我国自身国情,具有自主知识产权的新型的差速器。

当前国内外主要差速器典型结构类型1)导球式限滑差速器结构及工作原理导球式限滑差速器的原理其实就是利用滚球沿具有一定轨迹的导槽运动代替了齿轮传动来实现差速与限滑功能,它的具体的结构组成如图1-1所示图1-1 导球式限滑差速器结构图1—壳体2—端盖3—滚球保持架4—滚球5—传力盘6—止推垫片7—平垫片转矩的输入部件即滚球保持架3与壳体1连接在一起,滚球4是在保持架的导槽内运动且是可以将力传递给两侧的传力盘5,传力盘即将转矩传给半轴。

传力盘的表面上具有一定轨迹导槽,这个可以使滚球按照一定的轨迹来运动。

在导槽槽形设计过程中它跟滚球有一定接触角,可以用来传递对传力盘的压力。

止推垫片6是一个壳体、端盖及传力盘之间的摩擦元件。

平垫片7用于调整初始限滑转矩。

2)普通防滑差速器作用、结构与工作原理防滑差速器也可以称之为差速锁,即在差速器壳体与一侧半轴齿轮之间装有多片式离合器,在离合器一侧连接的是差速器壳体和半轴齿轮。

如果差速器是在正常工作,即在平整的路面直线行驶或者转向时,离合器则是处在分离状态。

如果这时有一侧车轮在附着力小的路面上打滑,这时两侧车轮转速差过大,控制离合器应该适当接合在一起,差速器壳则是通过离合器驱动一侧半轴齿轮。

当然如何控制好防滑差速器也有它的难点,而这正好是在于差速器内离合器的控制,很显然,在汽车正常转向时,离合器是万万不能够被接合的,如果当高速转向时离合器接合,后果会很严重,可能会翻车!3)无单边滑动摆块式差速器通过各种实验表明结,这种差速器跟常规差速器相比,具有加工成本低、结构简单在道路试验中还能够安全可靠地实现差速工作,在泥泞、湿滑,凹凸不平等不良路面上还能够有效避免车轮单侧打滑的现象,具有良好的防打滑性能!4)托森差速器托森差速器是由美国格里森公司设计的一种转矩敏感型车用差速器。

在本质上而言,托森差速器仍旧是利用行星轮系的差动原理设计的一种差速器,可是这种差速器充分利用蜗轮蜗杆传动副的高摩擦性和自锁性,使锁紧系数和转矩比比普通差速器都有所大幅提高。

托森差速器的锁止介入没有时间上的延迟,也不会消耗总扭矩数值的大小,它没有传统锁止差速器所配备的多片式离合器,磨损非常小,可以实现了免维护。

除了本身性能上的优势,托森差速器还具备其他方面的优势,比如它可以与很多常用变速器、分动器实现匹配,与车辆上ABS、TCS、ESP等电子设备共容,相辅相成的为整车安全和操控服务。

但是托森差速器还有两个难以解决的问题,一是造价高,所以一般托森差速器都用在高档车上;二是重量太大,装上它后对车辆的加速性是一份拖累。

它作为一种主流的差速器用在汽车上时间也超过了20年。

不过由于它的机械稳定性很出众,多年以来发展并不快,2011年只发展到第三代“托森C”。

新的C代托森差速器普遍用在了奥迪B7代的RS4、S8和Q7的“Quattro”全时四驱系统上。

新的托森中央差速器最大的变化是前后扭矩分配比一般控制在40:60,前轴扭矩比重可在15%到65%之间变动,后轴扭矩比重可在35%到85%之间变动。

作为最主要的四驱轿车生产商,奥迪一直在坚持使用托森差速器,除了A3和TT之外,其他所有奥迪车的“quattro”使用的都是托森中央差速器。

但是托森差速器并不是只用在奥迪车上,使用托森差速器的公司越来越多,有福特、通用、丰田、马自达、路虎、大众以及雷克萨斯等公司。

只是前、后、中央的使用位置不同,用的也不是同一代。

总之,托森差速器是一个很精密并且很富创造力的发明,它始终都保持着纯机械的特性。

在当今,各大汽车厂商都在迅速、不断推出各种电子设备装置的,但是它却能一直保持着在很多方面的领先优势,这不得不让我们对“托森差速器”以及它的设计师充满敬佩。

托森差速器的结构组成:差速器外壳组成、主动部分由空心轴。

它们是借花链固连一体。

发动机输出转矩可以经空心轴传入差速器外壳。

但是它的从动部分是由前后轴蜗杆, 驱动轴凸缘盘和差速器齿轮轴组成。

而它的前轴蜗杆与差速器齿轮轴连为一体, 可以跟前驱动桥相连;驱动轴凸缘盘与后轴蜗杆连为一体,并与后驱动桥相连。

1.1.2 差速器未来发展近年来,我国的差速器行业已经顺利完成了有小到大的转变,在这个调整和转型的关键时刻,提高汽车车辆差速器的精度、可靠性是中国差速器行业的紧迫任务。

近几年中国汽车差速器市场发展迅速,产品出口持续夸张,国家产业政策鼓励汽车差速器产业向高科技产品方向发展,这就使得汽车差速器行业的发展需求增大。

差速器的种类趋于多元化,功用趋于完整化。

目前汽车上最常用的差速器是对称锥齿轮式差速器,当然还有功能多样的差速器,比如:轮间差速器、防滑差速器、托森差速器等。

目前中国汽车最常用的差速器是对称锥齿轮式差速器,具有质量较小、结构简单等优点。

众所周知,全球化汽车零部件制造供应商是伊顿公司汽车集团,在同类差速器产品中伊顿公司居领导地位。

最近伊顿开发了新型的锁式差速器,它的工作原理及与其他差速器的不同之处:当一侧轮子打滑时,普通开式差速器几乎是不可能提供任何有效扭矩给车辆,而伊顿的锁式差速器则可以在发现车轮打滑后,锁定动力传递百分之百的扭矩到不打滑车轮,从而可以克服各种困难路面给车辆带来的限制。

在连续弹坑、V型沟等试验中,两辆驱车在装有伊顿锁式差速器后,它的越野性能及通过性能甚至超过了四轮驱动的车辆。

因为只要驱动轮的任何一侧发生打滑空转以后,伊顿锁式差速器会马上锁止动力,并把全部动力转到另一有附着力的轮上,使车辆依然能正常向前或向后行驶。

1.2 课题研究意义当汽车在它的行驶过程中左,右两侧车轮在同一时间内所滚过的路程一般是不等的。

即外侧车轮滚过的距离大于内侧的车轮;汽车在不平路面上行驶时,澡成两侧车轮滚过的路程不等有的时候也会由于路面波形不同所致;即使在有的时候是在平直路面上行驶,这时当轮胎负荷、轮胎气压、胎面磨损程度不同以及制造误差等因素发生变化时,也会导致左、右车轮因滚动半径的不同而使左、右车轮行程不等。

倘若驱动桥的左、右车轮是属于刚性连接,则在行驶的过程中将不可避免地产生驱动轮在路面上滑移或者滑转。

其导致的后果一方面轮胎磨损、消耗功率与燃料,另一方面也是不可能按照我们所要求的绕转向瞬时中心转向,这将会必然导致转向和操纵性能恶化。

为了防止这些现象的发生,在汽车传动系统的左、右驱动轮间都会装有差速器,这样也就保证了驱动桥两侧车轮在行程不等时具有不同的旋转角速度,从而最终满足了汽车行驶运动学要求。

图1-1 差速器结构原理图本课题最终决定选择对称式圆锥行星齿轮差速器为设计类型,对称式圆锥行星齿轮差速器属于非常普通的类型,具有结构简单、工作平稳、制造方便、质量较小、用于公路汽车上也很可靠等优点,故对称式圆锥行星齿轮差速器被广泛用于各类车辆上。

所以,能够设计研究出非常好的对称式圆锥行星齿轮差速器,是一件非常有意义的事情。

然而目前国内的大部分差速器产品很大一部分都是通过引进而开发的类型,说实话,自主创新能力不够,并没有什么核心技术产品,还有的一些则是通过进口而来的产品。

现在虽然我国已经对差速器有了比较深入系统的研究,但是并没有形成较大规模的工业化生产设计以及生产制造,所以在这条路上我们还有很长的道路要走。

1.3 课题主要内容从王老师那儿接到任务书开始,便在图书馆或网上进行了大量的各种中外文献查阅,从而充分了解并认识到差速器目前在国内外的研究动态,以及未来它的发展趋势。

仅此而已是远远不够的,在有了初步的了解之上,又参见了《汽车设计上》的差速器结构介绍,以及本校南苑实验室差速器零件实物,以及在老师的建议下,最终选择普通对称式锥齿轮差速器结构类型为设计方案。

自己在确定了结构设计方案之后,对所设计类型差速器的各个主要零部件进行了详细的设计计算及校核。

在最后确定了各个参数之后,并利用Pro/E软件对差速器进行了各零部件的三维建模及装配分析。

然后利用CAD等软件绘出了各个零部件的二维零件图及装配总成图。

2 差速器结构方案的选择2.1 对称锥齿轮式差速器目前我国各类型汽车上大量采用的差速器是对称锥齿轮式差速器,它具有结构简单、质量较小等优点,故应用相当广泛。

其中它又可以分为普通锥齿轮式差速器、强制锁止式差速器和摩擦片式差速器等。

当然有时是为了增加差速器的内摩擦力矩,在半轴齿轮7与差速器壳1之间装上了摩擦片2。

从图中可知,两根行星齿轮轴5它们是互相垂直的,而在轴两端制成V 形面4与差速器壳孔上的V 形面相配,这两个行星齿轮轴5的V 形面都是反向安装的。

在它们每个半轴齿轮背面有主、从动摩擦片2和压盘3,而主、从动摩擦片2分别经花键与差速器壳1和压盘3相连。

图2-1 摩擦片式差速器1—差速器壳体 2—摩擦片 3—压盘 4—V 形面5—行星齿轮轴 6—行星齿轮 7—半轴齿轮在传差速器在递转矩的时候,差速器的壳是可以通过斜面对行星齿轮轴产生沿行星齿轮轴线方向的轴向力,而这个轴向力可以推动行星齿轮使压盘将摩擦片压紧。

当左、右半轴转速不等时,主、从动摩擦片间产生相对滑转,从而产生摩擦力矩。

相关文档
最新文档