傅里叶变换公式-傅里叶变换定义公式
傅里叶变换三部曲(二)·傅里叶变换的定义

傅⾥叶变换三部曲(⼆)·傅⾥叶变换的定义Part1:傅⾥叶级数的复数形式设f(x)是周期为l的周期函数,若f(x)∼a02+∞∑n=1(a n cosnπxl+bn sinnπxl),an=1l∫l−lf(x)cosnπxl d x,(n=0,1,2,…)bn=1l∫l−lf(x)sinnπxl d x.(n=1,2,…)记ω=πl,引进复数形式:cos nωx=e i nωx+e−i nωx2,sin nωx=e i nωx−e−i nωx2i级数化为f(x)∼a02+∞∑n=1(a ne i nωx+e−i nωx2+bne i nωx−e−i nωx2i)=a02+∞∑n=1(a n−ib n2e i nωx+a n+ib n2e−i nωx)令c0=a02,cn=a n−ib n2,dn=a n+ib n2,则c0=12l∫l−lf(x)d x,c n=12l∫l−lf(x)(cos nωx−isin nωx)d x=12l∫l−lf(x)e−i nωx d x,d n=12l∫l−lf(x)(cos nωx+isin nωx)d x=12l∫l−lf(x)e i nωx d x≜c−n=¯c n,(n=1,2,…)合并为c n=12l=∫l−lf(x)e−i nωx d x,(n∈Z)级数化为+∞∑n=−∞c n e−i nωx=12l+∞∑n=−∞∫l−l f(x)e−i nωx d x e i nωx我们称c n为f(x)的离散频谱(discrete spectrum),|c n|为f(x)的离散振幅频谱(discrete amplitude spectrum),arg c n为f(x)的离散相位频谱(discrete phase spectrum).对任何⼀个⾮周期函数f(t)都可以看成是由某个由某个周期为l的函数f(x)当l→∞时得来的.Part2:傅⾥叶积分和傅⾥叶变换傅⾥叶积分公式设f T(t)是周期为T的周期函数,在[−T2,T2]上满⾜狄利克雷条件,则f T(t)=1T∞∑n=−∞∫T2−T2f T(t)e−j nωt d t e j nωt,ω=2πT(上式中j是虚数单位,在傅⾥叶分析中我们不⽤i⽽通常记作j)由limT→∞f T(t)=f(t)知,f(t)=limT→∞1T∞∑n=−∞[∫T2−T2f T(t)e−j nωt d t]e j nωt记Δω=2πT,则Δω→0⇔T→∞,则f(t)=limT→∞1T∞∑n=−∞[∫T2−T2f T(t)e−j nωt d t]e j nωt=limΔω→012π+∞∑n=−∞∫T2T2f T(t)e−j nωt d t e j nωtΔω[][][]令F T(nω)=∫T2−T2f T(t)e−j nωt d t,则f(t)=limΔω→012π+∞∑n=−∞F T(nω)e j nωtΔω,F T(t)→∫+∞−∞f(t)e−jωt d t≜F(ω)(T→∞),由定积分定义f(t)=12π∫+∞−∞F(ω)e jωt dω,即f(t)=12π∫+∞−∞∫+∞−∞f(t)e−jωt d t e jωt dω上述公式称为傅⾥叶积分公式.傅⾥叶积分存在定理若f(t)在任何有限区间上满⾜狄利克雷条件,且在R上绝对可积,则12π∫+∞−∞∫+∞−∞f(t)e−jωt d t e jωt dω=f(t),t为连续点,f(t−)+f(t+)2,t为间断点.傅⾥叶变换设f(t)满⾜傅⾥叶积分存在定理,定义F(ω)=∫+∞−∞f(t)e−jωt d t 为f(t)的傅⾥叶变换(Fourier Transform)(实际上是⼀个实⾃变量的复值函数),记作F(ω)=F[f(t)]类似地,定义f(t)=12π∫+∞−∞F(ω)e−jωt dω为F(ω)的傅⾥叶逆变换(Inverse Fourier Transform),记作f(t)=F−1[F(ω)]在⼀定条件下,有F[f(t)]=F(ω)⇒F−1[F(ω)]=f(t);F−1[F(ω)]=f(t)⇒F[f(t)]=F(ω). f(t)与F(ω)在傅⽒变换意义下是⼀个⼀⼀对应,称f(t)与F(ω)构成⼀个傅⽒变换对,记作f(t)F↔F(ω)在不引起混淆的情况下,简记为f(t)↔F(ω).f(t)称为原象函数(original image function),F(ω)称为象函数(image function).在频谱分析中,F(ω)⼜称为f(t)的频谱(密度)函数(spectrum function),|F(ω)|称为f(t)的振幅频谱(amplitude spectrum),arg F(ω)称为f(t)的相位频谱(phase spectrum).下⾯我们来求⼏个常见信号函数的傅⽒变换.例1 求矩形脉冲函数(rectangular pulse function)R(t)=1,|t|≤1, 0,|t|>1的傅⽒变换及其频谱积分表达式.解:F(ω)=F[R(t)]=∫+∞−∞R(t)e−jωt d t=∫1−1R(t)e−jωt t=e−jωt−jω1−1=−e−jω−e jωjω=2sinωω;R(t)=12π∫∞−∞F(ω)e jωt dω=1π∫+∞F(ω)cosωt dω=1π∫+∞2sinωωcosωt dω=2π∫+∞sinωcosωtωdω=1,|t|<1, 12,|t|=1, 0,|t|>1因此可知,当t=0时,有[] []{{ []{∫+∞0sin t xd t =π2例2 求指数衰减函数(exponential decay function)E (t )=0,t <0,e −βt ,t ≥0的傅⽒变换及其频谱积分表达式,其中β>0为常数.解:F (ω)=F [E (t )]=∫+∞−∞E (t )e −j ωt d t=∫+∞0e −βt e −j ωtd t =∫+∞0e (β+j ω)t d t =1β+j ωβ−j ωβ2+ω2E (t )=12π∫+∞−∞F (ω)e j ωt ω=12π∫+∞−∞β−j ωβ2+ω2e j ωtω=1π∫+∞βcos ωt +ωsin ωtβ2+ω2d ω=0,t <0,12,t =0,e −βt ,t >0Part3:单位脉冲函数我们记电流脉冲函数q (t )=0,t ≠0,1,t =0,严格地,由于q (t )在t =0出不连续,所以q (t )在t =0点是不可导的.但是,如果我们形式地计算这个导数,有q ′(0)=limΔt →0q (0+Δt )−q (0)Δt=limΔt →0−1Δt=∞我们引进这样⼀个函数,称为单位脉冲函数(unit pulse function)或狄拉克(Dirac)函数,简记为δ−函数,即δ(t )=0,t ≠0,∞,t =0,⼀般地,给定⼀个函数序列δε(t )=0,t <0,1ε,0≤t ≤ε,0,t >ε则有δ(t )=lim ε→0δε(t )=0,t ≠0,∞,t =0于是∫+∞−∞δ(t )d t =limε→0∫+∞−∞δεd t =limε→0∫ε01εd t =1若设f (t )为连续函数,则δ−函数有以下性质:∫+∞−∞δ(t )f (t )d t =f (0);∫+∞−∞δ(t −t 0)f (t )d t =f (t 0)于是我们可得:F [δ(t )]=∫+∞−∞δ(t )e −j ωt t =e −j ωt t =0=1于是δ(t )与常数1构成了⼀对傅⾥叶变换对.例3: 证明:e j ω0t ↔2πδ(ω−ω0)其中ω0是常数.证:{{{{{{|f(t)=F−1[F(ω)]=12π∫+∞−∞2πδ(ω−ω0)e jωt dω=e jωtω=ω=e jω0t在物理学和⼯程技术中,有许多重要函数不满⾜傅⽒积分定理中的绝对可积条件,即不满⾜条件∫+∞−∞|f(t)|d t<∞例如常数,符号函数,单位阶跃函数以及正,余弦函数等, 然⽽它们的⼴义傅⽒变换也是存在的,利⽤单位脉冲函数及其傅⽒变换就可以求出它们的傅⽒变换.所谓⼴义是相对于古典意义⽽⾔的,在⼴义意义下,同样可以说,原象函数f(t)和象函数F(ω)构成⼀个傅⽒变换对.例求正弦函数f(t)=sinω0t的傅⽒变换.解:F(ω)=F[f(t)]=∫+∞−∞f(t)e−jωt d t=∫+∞−∞e jω0t−e−jω0t2je−jωt d t=12j∫+∞−∞e−j(ω−ω0)t−e−j(ω+ω0)t d t=jπδ(ω+ω0)−δ(ω−ω0)同样我们易得F(cosω0t)=πδ(ω+ω0)+δ(ω−ω0)例证明:单位阶跃函数(unit step function)u(t)=0,t<0, 1,t>0的傅⽒变换为F[u(t)]=1jω+πδ(ω)证:F−11jω+πδ(ω)=12π∫+∞−∞1jω+πδ(ω)e jωt dω=12π∫+∞−∞[πδ(ω)]e jωt dω+12π∫+∞−∞1jωe jωt dω=12+12π∫+∞−∞cosωt+jsinωtjωdω=12+12π∫+∞−∞sinωtωdω=12+1π∫+∞sinωtωdω∫+∞0sinωtωdω=π2,t>0,−π2,t<0⇒F−11jω+πδ(ω)=12+1π−π2=0,t<012,t=0,12+1ππ2=1,t>0=u(t).本⽂完|()[][]{[][][][][][] { []{()()。
傅里叶变换数学公式

傅里叶变换数学公式
傅里叶变换是一种数学工具,用于将一个函数或信号在时间域上的表达转换为在频率域上的表达。
其公式如下:
设函数或信号为f(t),其傅里叶变换为F(ω),则有:
F(ω) = ∫f(t)e^(-iωt)dt
其中,ω表示频率,i表示虚数单位。
傅里叶变换可以将函数或信号分解为不同频率的正弦和余弦函数的叠加,从而用频谱来描述其特性。
傅里叶变换在信号和图像处理、通信、物理学等领域中广泛应用。
通过将信号从时域转换到频域,我们可以分析信号的频域特性,识别某些频率成分,实现滤波、降噪、压缩等操作。
傅里叶变换的逆变换可以将频域表达转换回时域表达,公式如下:f(t) = (1/2π)∫F(ω)e^(iωt)dω
傅里叶变换是一项重要的数学工具,对于理解信号特性和处理各种波动现象具有重要意义。
信息光学中的傅里叶变换

为了克服这些局限性,未来的研究将更加注重发展新型的 光学器件和技术,如光子晶体、超表面和量子光学等。这 些新技术有望为傅里叶光学的发展带来新的突破和机遇, 推动光学领域的技术进步和应用拓展。同时,随着人工智 能和机器学习等领域的快速发展,将人工智能算法与傅里 叶光学相结合,有望实现更高效、智能的光波信号处理和 分析。
信息光学中的傅里叶变换
目录
• 傅里叶变换基础 • 信息光学基础 • 信息光学中的傅里叶变换 • 傅里叶变换在信息光学中的应用
实例 • 傅里叶变换的数学工具和软件包
01
傅里叶变换基础
傅里叶变换的定义
傅里叶变换是一种数学工具,用于将 一个信号或函数从时间域或空间域转 换到频率域。在信息光学中,傅里叶 变换被广泛应用于图像处理和通信系 统的 编程语言,具有广泛的应 用领域。
R语言是一种统计计算语 言,广泛应用于数据分析 和可视化。
ABCD
C的开源科学计算软件包 如FFTW等可用于计算傅 里叶变换,并支持并行计 算以提高效率。
R语言的科学计算库如 fftw等可用于计算傅里叶 变换,并支持多种数据类 型和可视化方式。
光的波动理论
光的波动理论认为光是一种波动现象,具有波长、频率、相 位等特征,能够发生干涉、衍射等现象。
光的波动理论在光学领域中具有基础性地位,是研究光的行 为和性质的重要工具。
光的量子理论
光的量子理论认为光是由粒子组成的,这些粒子被称为光子。该理论解释了光的 能量、动量和角动量等物理量的本质。
光的量子理论在量子力学和量子光学等领域中具有重要应用,为现代光学技术的 发展提供了理论基础。
04
傅里叶变换在信息光学中的 应用实例
图像处理中的傅里叶变换
图像去噪
第三章 傅里叶变换 重要公式

∞
F (ω
n=−∞
−
nω s
)
9
(2)频域冲激抽样
设 f (t ) ←→ F (ω )
∞
频域冲激抽样 F(ω)δω (ω) = F(ω) ∑δ (ω − nω1 ) n=−∞
( ω1
=
2π T1
)
时域中以 1 为周期地重复 T1
频域中以间隔ω1 冲激抽样
∑ ∑ 1
ω1
∞ n=−∞
f
(t
−
nT1
第三章 傅里叶变换
重要概念与重要公式
一、傅里叶级数 1、三角函数形式的傅里叶级数 任何周期信号 f (t) 可以分解为
∞
∑ (1) f (t) = a0 + an cos (nω1t ) + bn sin (nω1t ) n=1
傅里叶系数:
∫ ( ) a0
=
1 T1
f t0 +T1
t0
t
dt
∫
cn
c0 = a0 =an2 + bn2
n = 1, 2,3,
ϕn
= − arctan bn an
n
= 1, 2,3,
∞
∑ (3) f (t) = d0 + dn sin (nω1t +θn ) n=1
d
n
d0 = a0 =an2 + bn2
n =1, 2,3,
= θn
a= rctan an n bn
整数倍)的线性组合。 2、信号的频谱
为了直观地表示出信号所含各频率分量振幅的大小,以频率 f(或角频率ω )
为横坐标,以各次谐波的振幅 cn 或虚指数函数的幅度 Fn 为纵坐标,按频率高低 依次排列起来的线图,称为信号的幅度频谱,简称幅度谱。图中每条竖线代表该 频率分量的幅度,称为谱线。
序列傅里叶变换公式

序列傅里叶变换公式
傅里叶变换是一种重要的信号分析工具,可以将一个时域上的连续函数或离散序列转换到频域上。
对于连续函数,其傅里叶变换公式为:
F(w) = ∫[−∞,+∞] f(t)e^(-jwt) dt
其中,F(w)表示频域上的复数函数,f(t)表示时域上的连续函数,ω为角频率。
对于离散序列,其傅里叶变换公式为:
F(k) = Σ[n=0,N-1] f(n)e^(-j2πkn/N)
其中,F(k)表示频域上的复数序列,f(n)表示时域上的离散序列,N表示序列的长度,k为频域上的整数频率。
傅里叶变换的公式可以将时域上的信号转换为频域上的复数函数或序列,从而可以分析信号的频谱特性,包括频率成分、幅度、相位等信息。
这对于信号处理、通信系统设计、图像处理等领域都有着广泛的应用。
傅里叶变换常用公式大全

傅里叶变换常用公式大全傅里叶变换是一种重要的数学工具,用于将信号从时域转换到频域。
在信号处理、图像处理和通信领域广泛应用。
本文将介绍一些傅里叶变换中常用的公式,以帮助读者更好地理解和应用傅里叶变换。
1. 傅里叶变换的定义公式傅里叶变换的定义公式如下:F(ω) = ∫[f(t) * e^(-jωt)]dt其中F(ω)表示信号f(t)在频率ω处的傅里叶变换。
2. 傅里叶变换的逆变换公式傅里叶变换的逆变换公式如下:f(t) = ∫[F(ω) * e^(jωt)]dω其中f(t)表示频域信号F(ω)的逆变换。
3. 傅里叶级数展开公式傅里叶级数展开公式将一个周期信号表示为一系列正弦和余弦函数的和。
公式如下:f(t) = a₀ + Σ[aₙ * cos(nω₀t) + bₙ * sin(nω₀t)]其中a₀, aₙ, bₙ为系数,n为正整数,ω₀为基本角频率。
4. 傅里叶级数系数计算公式傅里叶级数系数的计算公式如下:a₀ = 1/T₀ * ∫[f(t)]dtaₙ = 2/T₀ * ∫[f(t) * cos(nω₀t)]dtbₙ = 2/T₀ * ∫[f(t) * sin(nω₀t)]dt其中T₀为周期。
5. 傅里叶变换的线性性质公式傅里叶变换具有线性性质,公式如下:F(a * f(t) + b * g(t)) = a * F(f(t)) + b * F(g(t))其中a和b为常数。
6. 傅里叶变换的频移性质公式傅里叶变换具有频移性质,公式如下:F(f(t - t₀)) = e^(-jωt₀) * F(f(t))其中t₀为时间偏移量。
7. 傅里叶变换的频率缩放公式傅里叶变换具有频率缩放性质,公式如下:F(f(a * t)) = (1/|a|) * F(f(t/a))其中a为常数。
8. 傅里叶变换的频域微分公式傅里叶变换的频域微分公式如下:F(d/dt[f(t)]) = jωF(f(t))其中d/dt表示对时间t的导数。
傅里叶变换常用公式

傅里叶变换常用公式1.傅里叶变换定义:F(w) = ∫[f(t)e^(-jwt)] dt2.傅里叶逆变换定义:f(t) = ∫[F(w)e^(jwt)] dw / (2π)傅里叶逆变换定义了将频域函数F(w)转换回时域函数f(t)的方式。
3.单位冲激函数的傅里叶变换:F(w) = ∫[δ(t)e^(-jwt)] dtδ(t)是单位冲激函数,其傅里叶变换结果为14.周期函数的傅里叶级数展开:f(t) = ∑[a(n)cos(nω0t) + b(n)sin(nω0t)]f(t)可以用无穷级数形式表示,其中ω0为基本角频率,a(n)和b(n)为系数。
5.周期函数的傅里叶变换:F(w)=2π∑[δ(w-nω0)]周期函数f(t)的频谱是一系列频率为nω0的冲激函数。
6.卷积定理:FT[f*g]=F(w)G(w)f*g表示函数f(t)和g(t)的卷积,FT表示傅里叶变换,*表示复数乘法。
卷积定理说明卷积在频域中的运算等于对应的傅里叶变换相乘。
7.积分定理:∫[f(t)g(t)] dt = 1/2π ∫[F(w)G(-w)] dw积分定理表明函数f(t)和g(t)的乘积在时域中的积分等于它们在频域中的乘积的逆变换。
8.平移定理:g(t) = f(t - t0) 对应的傅里叶变换 F(w) = e^(-jwt0) G(w)平移定理说明在时域中将函数f(t)右移t0单位,等价于在频域中将F(w)乘以e^(-jwt0)。
9.缩放定理:g(t) = f(at) 对应的傅里叶变换 G(w) = 1/,a, F(w/a)缩放定理说明在时域中将函数f(t)横向拉伸为af(t),等价于在频域中将F(w)纵向压缩为1/,a,F(w/a)。
除了以上列举的公式,傅里叶变换还有许多性质和定理,如频移定理、频域微分定理、频域积分定理等,这些公式和定理在信号处理中非常有用,可以加速计算和简化问题的分析。
傅里叶变换公式

傅里叶变换公式傅里叶变换是数学中一种重要的变换方法,用于将一个函数从时域表示(函数在时间上的表示)转换为频域表示(函数在频率上的表示)。
它是由法国数学家约瑟夫·傅里叶于19世纪提出的,广泛应用于信号处理、图像处理、通信、音频处理等领域。
F(ω) = ∫f(t)e^(-jωt)dt其中,F(ω)表示频率为ω的正弦波在函数f(t)中的振幅,即将函数f(t)分解为振幅谱F(ω)。
e代表自然对数的底数,j表示虚数单位,ω为频率。
这个公式的意义在于将一个函数f(t)转换成一系列振幅谱F(ω),表示不同频率正弦波在函数中所占的比重。
由于函数f(t)是由无数个不同频率的正弦波叠加而成的,因此通过傅里叶变换,我们可以分析一个函数中不同频率的成分。
这个过程也被称为频域分析。
傅里叶变换公式中的积分符号表示对整个时域进行积分,求出对应频率的振幅谱。
e^(-jωt)表示频率为ω的正弦波,振幅谱F(ω)表示频率为ω的正弦波在函数f(t)中的振幅。
通过在不同频率上进行积分,我们可以得到整个函数在频域上的表示。
傅里叶变换公式的应用非常广泛。
在信号处理领域,我们经常需要对信号进行频谱分析,以了解信号的频率成分。
例如,通过分析音频信号的频谱,我们可以分辨出不同乐器在音乐中的音高,从而实现音乐的识别和分类。
在图像处理领域,傅里叶变换可用于图像滤波、边缘检测等任务,提取图像中不同频率的特征。
此外,傅里叶变换还具有一些重要的性质,如线性性、位移性、尺度性等,这些性质使得傅里叶变换成为一种强大的工具。
例如,线性性质使得我们可以将傅里叶变换应用于信号的线性叠加,通过对不同频率的信号进行叠加,得到整体信号的频域表示。
总之,傅里叶变换是一种重要的数学工具,它能够将函数从时域表示转换为频域表示,帮助我们更好地理解信号和图像。
通过傅里叶变换,我们可以分析信号中不同频率的成分,实现信号处理、图像处理、通信等领域中的一系列任务。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章信号分析
本章提要
⏹信号分类
⏹周期信号分析--傅里叶级数
⏹非周期信号分析--傅里叶变换
⏹脉冲函数及其性质
信号:反映研究对象状态和运动特征的物理量信号分析:从信号中提取有用信息的方法
和手段
§2-1 信号的分类
●两大类:确定性信号,非确定性信号
确定性信号:给定条件下取值是确定的。
进一步分为:周期信号,
非周期信号。
x (质量-弹簧系统的力学模型
非确定性信号(随机信号):给定条件下
取值是不确定的 ● 按取值情况分类:模拟信号,离散信号
数字信号:属于离散信号,幅值离散,并用二进制表示。
● 信号描述方法 时域描述 如简谐信号
频域描述
以信号的频率结构来描述信号的方法:将信号看成许多谐波(简谐信号)之和,每一个谐波称作该信号的一个频率成分,考察信号含有那些频率的谐波,以及各谐波的幅值和相角。
<page break>
§2-2 周期信号与离散频谱
一、周期信号傅里叶级数的三角函数形式
周期信号时域表达式
T:周期。
注意n的取值:周期信号“无始无终”
#
●傅里叶级数的三角函数展开式
(n=1, 2, 3,…)
傅立叶系数:
式中T--周期;ω0--基频, ω0=2π/T。
●三角函数展开式的另一种形式:
周期信号可以看作均值与一系列谐波之和--谐波分析法
频谱图
●周期信号的频谱三个特点:离散性、谐波性、收敛性
● 例1:求周期性非对称周期方波的傅立叶级数并画出频谱图
解:
解:
信号的基频
傅里叶系数
n次谐波的幅值和相角
最后得傅立叶级数
频谱图
二、周期信号傅里叶级数的复指数形式
●
或
●傅立叶级数的复指数形式
●复数傅里叶系数的表达式
其中a n,n
同,只是n包括全部整数。
●一般c n是个复数。
因为a n是n的偶函数,b n是n的奇函数,因此#
即:实部相等,虚部相反,c n与c-n共轭。
●c n的复指数形式
共轭性还可以表示为
,
即:c n与c-n模相等,相角相反。
●傅立叶级数复指数也描述信号频率结构。
它与三角函数形式的关系
对于n>0
(等于三角函数模的一半)
(与三角函数形式中的相角相等)
●用c n画频谱:双边频谱
第一种:幅频谱图:|c n|-ω,相频谱图: ϕn- ω
第二种:实谱频谱图:Re c n- ω,虚频谱图:Im c n- ω;也就是a n- ω和-b n- ω.
#
<page break>
§2-3 非周期信号与连续频谱
分两类:
a.准周期信号
定义:由没有公共周期(频率)的周期信号组成
频谱特性:离散性,非谐波性
判断方法:周期分量的频率比(或周期比)不是有理数
b.瞬变非周期信号
几种瞬变非周期信号
数学描述:傅里叶变换
一、傅里叶变换
演变思路:视作周期为无穷大的周期信号式(2.22)借助(2.16)演变成:
定义x(t)的傅里叶变换X(ω)
X(ω)的傅里叶反变换x(t):
●傅里叶变换的频谱意义:一个非周期信号可以分解为角频率ω连续变化的无数谐波
的叠加。
称X(ω)其为函数x(t)的频谱密度函数。
●对应关系:
X(ω)描述了x(t)的频率结构
X(ω)
●以频率f (Hz)为自变量,因为f =w/(2p),得
X( f )的指数形式
●频谱图
幅值频谱图和相位频谱图:
)
(ωϕ幅值频谱图
相位频谱图
实频谱图Re X (ω)和虚频谱图Im(ω) 如果X (ω)
是实函数,可用一X (ω)图表示。
负值理解为幅值为X (ω)的绝对值,相角为π或π-。
二、 傅里叶变换的主要性质 (一)叠加性
(二)对称性
(注意翻转) (三)时移性质
(幅值不变,相位随 f 改变±2πft0)(四)频移性质
(注意两边正负号相反)
(五)时间尺度改变特性
(六)微分性质
(七)卷积性质
(1)卷积定义
(2)卷积定理
三、脉冲函数及其频谱
(一)脉冲函数:
)(t
)
定义δ函数(要通过函数值和面积两方面定义)
函数值:
脉冲强度(面积)
(二)脉冲函数的样质
1.脉冲函数的采性(相乘)样质:
x )
()(00t t t x -δ函数值:
强度:
结论:1.结果是一个脉冲,脉冲强度是x (t )在脉冲发生时刻的函数值
2.脉冲函数与任意函数乘积的积分等于该函数在脉冲发生时刻的的值。
2. 脉冲函数的卷积性质: (a) 利用结论2
(b) 利用结论2
结论:平移
x(t
(三)脉冲函数的频谱
均匀幅值谱
由此导出的其他3个结果
(利用时移性
质)
(利用对称性
质)
(对上式,
再用频移性质)
(四)正弦函数和余弦函数的频谱
)(f ∆
)
(f ∆余弦函数的频谱
正弦函数的频谱
<page break>。