无功补偿外文翻译

合集下载

无功补偿

无功补偿

1.无功补偿1.1.FACTS简介柔性交流输电系统(以下简称FACTS)是美国电力研究所(Electric Power Research Institule,EPRI)N.G.Hnigornai 博士于1986年首先提出。

它具有控制速度快、控制灵活、可靠性高、可连续调节、可迅速改变潮流分布等优点。

近年来成为电力系统稳定控制的一个重要研究方向。

目前,主要的FACTS 装置包括三大类。

第一类为并联装置,如静止无功补偿器(Static Var Compensator,SVC),它能够根据无功功率的需求自动补偿;静止无功发生器(Static Var Generator,SVG),它是最新出现的一种并联补偿装置,这是本文研究的主要对象。

第二类为串联装置,如静止同步串联补偿器(Static Synchronous Series Compensator,SSSC)、晶闸管控制串联电容器(Thyristor Controlled Series Capacitor,TCSC)等。

第三类为混合装置,如统一潮流控制器(United Power Flow Conrtollor ,UPFC)相间潮流控制器(Interphase Power Controller,IPC)等。

图1.1 无功补偿装置发展概况传统的静态无功补偿装置是无功补偿电容器,它具有结构简单、经济、方便等优点。

但是,它的阻抗是固定的,不能跟随负荷无功需求变化,也就是不能实现对无功功率的动态补偿。

且目前由于电力公司推行无功“返送正计”,即过补偿视为欠补偿,不可调的静态无功补偿会使功率因数大幅下降,所以要研究可调无功补偿技术。

1.2.可调无功补偿技术方案近几年,结合国外的先进技术,我国在无功补偿与谐波综合治理提出了许多可调无功补偿方案,无论哪种方案,都是力求基波下补偿牵引负荷感性无功功率,提高功率因数,并滤除(或抵消)指定谐波。

主要方案有:(1)真空断路器投切电容器。

无功补偿控制器中英文简介

无功补偿控制器中英文简介

reactive power auto-compensation controller1. GeneralThe controller is suitable for automatically adjusting of low voltage distribution sytem capacitor compensating device to make power factor get user’s predetermined state, increase service efficiency of power transformer reduce line loss,and inprove the voltage of power supply.2.Normal working and installation conditions2.1 Ambient temperature: -25℃~ +55℃2.2 Relative humidity: 40℃≤20%;20℃≤90%2.3 Altitude: ≤2500m2.4 Environmental conditions: no noxious gas and vapour; no conductivity or explosive dust; no violent mechnical vibration.3. Main structural features3.1 The capacity of the switched capacitor is calculated according to the reactive power and the compensation precision is high.3.2 High measuring precision of power factor and wide display range.3.3 Initial phase presetting (same polarity or current signal polarity is adjusted by software).3.4 Provided with two control modes such as power factor control mode and reactivepower controI mode.3.5 Friendly hUman-machine interface with convenient operation.3.6 Various fully digitalized control parameters,adjustable and visual with convenient use.3.7 Provided with two working modes such as automatic and manual running.3.8 Provided with protection functions for over-voltage and under-voltage.3.9 Provided with protection function for power failure to avoid data loss.3.10 Low current signal input impedance, ≤0.01Ω.4. Ordering notesUsers should supply the number of circuits, rated voltage, and type of switch (contactor or combination switch).无功补偿控制器1 概述无功功率自动补偿控制器,适用于低压配电系统电容器补偿装置的自动调节( 以下简称控制器),使功率因数达到用户预定状态,提高电力变压器的利用效率,减少线损,改善供电的电压质量,从而提高了经济效益与社会效益。

电力专业常用英文单词翻译

电力专业常用英文单词翻译

电力专业常用英文单词翻译电力系统power system发电机generator励磁excitation励磁器excitor电压voltage电流current升压变压器step-up transformer母线bus变压器transformer空载损耗no-load loss铁损iron loss铜损copper loss空载电流no-load current有功损耗active loss无功损耗reactive loss输电系统power transmission system 高压侧high side输电线transmission line高压high voltage低压low voltage中压middle voltage功角稳定angle stability稳定stability电压稳定voltage stability暂态稳定transient stability电厂power plant能量输送power transfer交流AC直流DC电网power system落点drop point开关站switch station调节regulation高抗high voltage shunt reactor 并列的apposable裕度margin故障fault三相故障three phase fault分接头tap切机generator triping高顶值high limited value静态static (state)动态dynamic (state)机端电压控制AVR电抗reactance电阻resistance功角power angle有功(功率)active power电容器Capacitor电抗器Reactor断路器Breaker电动机motor功率因数power-factor定子stator阻抗impedance功角power-angle电压等级voltage grade有功负载: active load PLoad无功负载reactive load档位tap position电阻resistor电抗reactance电导conductance电纳susceptance上限upper limit下限lower limit正序阻抗positive sequence impedance 负序阻抗negative sequence impedance 零序阻抗zero sequence impedance无功(功率)reactive power功率因数power factor无功电流reactive current斜率slope额定rating变比ratio参考值reference value电压互感器PT分接头tap仿真分析simulation analysis下降率droop rate传递函数transfer function框图block diagram受端receive-side同步synchronization保护断路器circuit breaker摇摆swing阻尼damping无刷直流电机Brusless DC motor刀闸(隔离开关) Isolator机端generator terminal变电站transformer substation永磁同步电机Permanent-magnet Synchronism Motor异步电机Asynchronous Motor三绕组变压器three-column transformer ThrClnTrans双绕组变压器double-column transformer DblClmnTrans 固定串联电容补偿fixed series capacitor compensation 双回同杆并架double-circuit lines on the same tower单机无穷大系统one machine - infinity bus system励磁电流Magnetizing current补偿度degree of compensation电磁场:Electromagnetic fields失去同步loss of synchronization装机容量installed capacity无功补偿reactive power compensation故障切除时间fault clearing time极限切除时间critical clearing time强行励磁reinforced excitation并联电容器shunt capacitor<下降特性droop characteristics线路补偿器LDC(line drop compensation)电机学Electrical Machinery自动控制理论Automatic Control Theory电磁场Electromagnetic Field微机原理Principle of Microcomputer电工学Electrotechnics电路原理Principle of circuits电机学Electrical Machinery电力系统稳态分析Steady-State Analysis of Power System电力系统暂态分析Transient-State Analysis of Power System电力系统继电保护原理Principle of Electrical System's Relay Protection 电力系统元件保护原理Protection Principle of Power System 's Element 电力系统内部过电压Past Voltage within Power system模拟电子技术基础Basis of Analogue Electronic Technique数字电子技术Digital Electrical Technique电路原理实验Lab. of principle of circuits电气工程讲座Lectures on electrical power production电力电子基础Basic fundamentals of power electronics高电压工程High voltage engineering电子专题实践Topics on experimental project of electronics电气工程概论Introduction to electrical engineering电子电机集成系统Electronic machine system电力传动与控制Electrical Drive and Control电力系统继电保护Power System Relaying Protection主变压器main transformer升压变压器step-up transformer降压变压器step-down transformer工作变压器operating transformer备用变压器standby transformer公用变压器common transformer三相变压器three-phase transformer单相变压器single-phase transformer带负荷调压变压器on-load regulating transformer变压器铁芯transformer core变压器线圈transformer coil变压器绕组transformer winding变压器油箱transformer oil tank变压器外壳transformer casing变压器风扇transformer fan变压器油枕transformer oil conservator(∽drum变压器额定电压transformer reted voltage变压器额定电流transformer reted current变压器调压范围transformer voltage regulation rage 配电设备power distribution equipmentSF6断路器SF6 circuit breaker开关switch按钮button隔离开关isolator,disconnector真空开关vacuum switch刀闸开关knife-switch接地刀闸earthing knife-switch电气设备electrical equipment变流器current converter电流互感器current transformer电压互感器voltage transformer电源power source交流电源AC power source直流电源DC power source工作电源operating source备用电源Standby source强电strong current弱电weak current继电器relay信号继电器signal relay电流继电器current relay电压继电器voltage relay跳闸继电器tripping relay合闸继电器closing relay中间继电器intermediate relay时间继电器time relay零序电压继电器zero-sequence voltage relay差动继电器differential relay闭锁装置locking device遥控telecontrol遥信telesignalisation遥测telemetering遥调teleregulation断路器breaker, circuit breaker少油断路器mini-oil breaker,oil-mini-mum breaker 高频滤波器high-frequency filter组合滤波器combined filter常开触点normally opened contaact常闭触点normally closed contaact并联电容parallel capacitance保护接地protective earthing熔断器cutout,fusible cutout电缆cable跳闸脉冲tripping pulse合闸脉冲closing pulse一次电压primary voltage二次电压secondary voltage并联电容器parallel capacitor无功补偿器reactive power compensation device 消弧线圈arc-suppressing coil母线Bus,busbar三角接法delta connection星形接法Wye connection原理图schematic diagram一次系统图primary system diagram二次系统图secondary system diagram两相短路two-phase short circuit三相短路three-phase short circuit单相接地短路single-phase ground short circuit短路电流计算calculation of short circuit current自动重合闸automatic reclosing高频保护high-freqency protection距离保护distance protection横差保护transverse differential protection纵差保护longitudinal differential protection线路保护line protection过电压保护over-voltage protection母差保护bus differential protection瓦斯保护Buchholtz protection变压器保护transformer protection电动机保护motor protection远方控制remote control用电量power consumption载波carrier故障fault选择性selectivity速动性speed灵敏性sensitivity可靠性reliability电磁型继电器electromagnetic无时限电流速断保护instantaneously over-current protection跳闸线圈trip coil工作线圈operating coil制动线圈retraint coil主保护main protection后备保护back-up protection定时限过电流保护definite time over-current protection 三段式电流保护the current protection with three stages 反时限过电流保护inverse time over-current protection 方向性电流保护the directional current protection零序电流保护zero-sequence current protection阻抗impedance微机保护Microprocessor Protection。

霍霁雪 电力词汇分享2

霍霁雪 电力词汇分享2
Inspección técnica regional 区域技术勘察
Holgura 间隙/净空
Pórtico 柱廊/门廊
Linderos 边界
Equipos encapsulados 封装设备
Interruptores monopolares 单极开关
Seccionadores monopolares sin puesta a tierra 不接地单极隔离器
Redespachar 重新调度
Equipos de compensación estática 无功补偿设备
Ingeniería conceptual 概念工程
Acoplador 连接装置
Dirección de planificación 规划部
Estudios geográficos 地域勘察
一场霍霁雪翻译、校对
Resistencia 电阻
Ohm 欧姆
Corriente de falla 故障电流
Compensación estática 电容补偿
Flujo de carga 负载电流
Salida de la línea 线路输出端
Relé 继电器
Capacidad de cierre 关合电容
Corriente de corta duración 短期电流
Corriente momentánea 瞬时电流
Canalizaciones 管道
Líneas simple circuito 单回线路支线
Estructura metálica del tipo autosoportante en celosía 晶格类自撑型金属构架

外文翻译--实际中的谐波和无功补偿

外文翻译--实际中的谐波和无功补偿

附录1:外文翻译及资料A1.1实际中的谐波和无功补偿1.总述谐波在全世界的公共和工业网络中呈现一种增长的趋势。

这很明显的和工业和商业大厦中用到的非线性装载和设备有关。

这些非线性设备通常是可控硅整流器或二极管整流器,它们会造成电能质量的恶化,通常的以下的几种应用中会用到:-变速驱动(VSD)-为制造业和加工业-金属工业中的加热-大厦中的电梯、空调泵和风扇-工业和商业大厦中的不间断电源(UPS)-计算机和其他一些办公设备表1是典型DC驱动与6脉冲可控硅整流器整流器和表2是与6脉冲二极管整流器的典型的电压来源变换器驱动。

同样整流器在不同断电源(UPS)可以也被找到。

图3.用于开关方式电源的阶段整流器。

在表3是用于开关方式电源的带电容的阶段整流器。

这种电源是用途广泛在计算机,显示器和在许多其他电子设备。

整流器产生在谐波指令和频率下满足条件的谐波电流: 1±∙==p k f f n fn (1)这里:n f =谐波电流的频率f f =系统的基础频率n =谐波的指令k =1、2、3…p =整流器的脉冲数如果整流器被连接入大的总线,则谐波电流的振幅可以被计算如下: n l l n 1= (2)这里: n I =谐波电流的振幅‘n ’1I =整流器的基础电流n =谐波指令数 然而在真正的电网谐波电流比计算可能有比上面惯例(2)更高的振幅。

在下个章节有另外种类一些被测量的谐波电流整流器。

1.1在真正电网中的谐波电流表4是根本被测量的交流边,并且谐波电流直流驱动与它的装载信息。

能被看见第5谐波在这种情况下是28%对根本性的632A ,而它的根据惯例2的理论价值是20%。

图4 是带高负荷的直流驱动中的基波和谐波电流图 5 是低负荷直流驱动中的基波和谐波电流在表5有与表4一样,都是直流驱动,但是现有更低的负载,。

然而增加谐波的百分比之后基波电流从2261A被减少到1255A,例如第5谐波电流现在是基波电流的41%相当于515A.但是值得注意的是,谐波电流的绝对值是高在高装载情况之下。

电力词汇翻译

电力词汇翻译

电力系统 power system 发电机 generator 励磁 excitation励磁器 excitor 电压 voltage 电流 current升压变压器 step-up transformer 母线 bus 变压器 transformer空载损耗 no-load loss 铁损 iron loss 铜损 copper loss空载电流 no-load current 有功损耗 reactive loss 无功损耗 active loss输电系统 power transmission system 高压侧 high side 输电线 transmission line 高压 high voltage 低压 low voltage 中压 middle voltage功角稳定 angle stability 稳定 stability 电压稳定 voltage stability 暂态稳定 transient stability 电厂 power plant 能量输送 power transfer交流 AC 直流 DC 电网 power system落点 drop point 开关站 switch station 调节 regulation高抗 high voltage shunt reactor 并列的 apposable 裕度 margin故障 fault 三相故障 three phase fault 分接头 tap切机 generator triping 高顶值 high limited value 静态 static (state)动态 dynamic (state) 机端电压控制 AVR 电抗 reactance电阻 resistance 功角 power angle 有功(功率) active power 电容器 Capacitor 电抗器 Reactor 断路器 Breaker电动机 motor 功率因数 power-factor 定子 stator阻抗 impedance 功角 power-angle 电压等级 voltage grade有功负载: active load PLoad 无功负载 reactive load 档位 tap position电阻 resistor 电抗 reactance 电导 conductance电纳 susceptance 上限 upper limit 下限 lower limit正序阻抗 positive sequence impedance 负序阻抗 negative sequenceimpedance零序阻抗 zero sequenceimpedance无功(功率) reactive power 功率因数 power factor 无功电流 reactive current 斜率 slope 额定 rating 变比 ratio参考值 reference value 电压互感器 PT 分接头 tap仿真分析 simulation analysis 下降率 droop rate 传递函数 transfer function 框图 block diagram 受端 receive-side 同步 synchronization保护断路器 circuit breaker 摇摆 swing 阻尼 damping无刷直流电机 Brusless DC motor 刀闸(隔离开关) Isolator 机端 generator terminal变电站transformer substation永磁同步电机Permanent-magnet Synchronism Motor异步电机Asynchronous Motor三绕组变压器three-column transformer ThrClnTrans双绕组变压器double-column transformer DblClmnTrans固定串联电容补偿fixed series capacitor compensation双回同杆并架double-circuit lines on the same tower单机无穷大系统one machine - infinity bus system励磁电流 Magnetizing current 补偿度 degree of compensation电磁场:Electromagnetic fields 失去同步 loss of synchronization装机容量 installed capacity 无功补偿 reactive power compensation故障切除时间 fault clearing time 极限切除时间 critical clearing time强行励磁 reinforced excitation 并联电容器 shunt capacitor下降特性 droop characteristics 线路补偿器 LDC(line drop compensation)电机学 Electrical Machinery 自动控制理论 Automatic Control Theory电磁场 Electromagnetic Field 微机原理 Principle of Microcomputer电工学 Electrotechnics 电路原理 Principle of circuits电机学 Electrical Machinery电力系统稳态分析Steady-State Analysis of Power System电力系统暂态分析Transient-State Analysis of Power System电力系统继电保护原理Principle of Electrical System's Relay Protection电力系统元件保护原理Protection Principle of Power System 's Element 电力系统内部过电压Past Voltage within Power system模拟电子技术基础Basis of Analogue Electronic Technique数字电子技术Digital Electrical Technique电路原理实验Lab. of principle of circuits电气工程讲座Lectures on electrical power production电力电子基础Basic fundamentals of power electronics高电压工程High voltage engineering电子专题实践Topics on experimental project of electronics 电气工程概论Introduction to electrical engineering电子电机集成系统Electronic machine system电力传动与控制Electrical Drive and Control电力系统继电保护Power System Relaying Protection主变压器main transformer升压变压器step-up transformer降压变压器step-down transformer工作变压器operating transformer备用变压器standby transformer公用变压器common transformer三相变压器three-phase transformer单相变压器single-phase transformer 带负荷调压变压on-load regulating transformer器变压器铁芯transformer core变压器线圈transformer coil变压器绕组transformer winding变压器油箱transformer oil tank变压器外壳transformer casing变压器风扇transformer fan变压器油枕transformer oil conservator变压器额定电压transformer reted voltage变压器额定电流transformer reted current变压器调压范围transformer voltage regulation rage配电设备power distribution equipmentSF6断路器SF6 circuit breaker开关switch按button钮隔离开关isolator,disconnector真空开关vacuum switch刀闸开关knife-switch接地刀闸earthing knife-switch电气设备electrical equipment变流器current converter电流互感器current transformer电压互感器voltage transformer电源power source交流电源AC power source直流电源DC power source工作电源operating source备用电源Standby source强电strong current电weak current继电器relay信号继电器signal relay电流继电器current relay电压继电器voltage relay跳闸继电器tripping relay合闸继电器closing relay中间继电器intermediate relay时间继电器time relay零序电压继电器zero-sequence voltage relay差动继电器differential relay闭锁装置locking device遥控telecontrol遥信telesignalisation遥测telemetering调teleregulation断路器breaker,circuit breaker少油断路器mini-oil breaker,oil-mini-mum breaker高频滤波器high-frequency filter组合滤波器combined filter常开触点normally opened contaact常闭触点normally closed contaact并联电容parallel capacitance保护接地protective earthing熔断器cutout,fusible cutout电缆cable跳闸脉冲tripping pulse合闸脉冲closing pulse一次电压primary voltage二次电secondary voltage压并联电容器parallel capacitor无功补偿器reactive power compensation device消弧线圈arc-suppressing coil母线Bus,busbar三角接法delta connection星形接法Wye connection原理图schematic diagram一次系统图primary system diagram二次系统图secondary system diagram两相短路two-phase short circuit三相短路three-phase short circuit单相接地短路single-phase ground short circuit短路电流计算calculation of short circuit current自动重合automatic reclosing闸高频保护high-freqency protection距离保护distance protection横差保护transverse differential protection纵差保护longitudinal differential protection线路保护line protection过电压保护over-voltage protection母差保护bus differential protection瓦斯保护Buchholtz protection变压器保护transformer protection电动机保护motor protection远方控制remote control用电量power consumption载波carrier故障fault选择性selectivity速动性speed灵敏性sensitivity可靠性reliability电磁型继电器electromagnetic无时限电流速断保护instantaneously over-current protection 跳闸线圈trip coil工作线圈operating coil制动线圈retraint coil主保护main protection后备保护back-up protection定时限过电流保护definite time over-current protection 三段式电流保护the current protection with three stages 反时限过电流保护inverse time over-current protection方向性电流保护the directional current protection零序电流保护zero-sequence current protection阻抗impedance微机保护Microprocessor Protection。

浅谈无功补偿装置的工作原理及应用外文翻译.

浅谈无功补偿装置的工作原理及应用外文翻译.

河北科技师范学院外文翻译间歇性混乱运行开关功率变换器院(系、部名称:机电工程学院专业名称:电气工程及其自动化学生姓名:学生学号:指导教师:年月日河北科技师范学院教务处制间歇性混乱运行开关功率变换器在设计和施工过程中开关电源转换器,混乱的操作经常长时间间歇地观察正常运作。

在实践中,这种间歇性混沌操作就可消除融入设计相应的措施来打击假信号的干扰。

在本文中,我们解释导致间歇性混乱以一个受欢迎的形式的切换转换器,即电流型控制开关转换器建立电路模型用于研究现象具有耦合过程,通过伪信号耦合到当前遥感和斜坡补偿电路,导致边坡的调制补偿引起系统变得不稳定断断续续。

我们的分析表明,假信号耦合到斜坡补偿会导致间歇性混乱或次谐波操作。

关键词:开关电源转换器;电流型控制;间歇性混乱1 介绍间歇性混乱已被观察到开关电源。

尤其是当供给不适当保护,防止入侵的假讯号或寄生电感和电路存在,造成不必要的调制基本控制信号。

例如,在一个电流型控制功率转换器,电感电流采样和用于一个内环达到快速瞬态存在寄生电感、电容可能导致穗状或警告闯入的取样电感电流波形。

入侵也可以以不同的形式通过导电或辐射耦合路径。

有时,入侵者(假信号可以住在同一电路板或出席一个接近问题。

在本文中,我们展示了间歇性混乱运行在一个电流型控制开关转换器可适当进行建模和解释适应入侵的假讯号。

便于设计,我们确定临界参数,间歇性混乱操作和描述的方法来计算参数边界,间歇性混乱运行出现。

2概述的操作电流型控制提高转换器电流型控制的操作转换器可以这样描述如图1.指图1和略去了虚假的来源、提高转炉获得其周期切换方式,一个输入输出的作用,并定期重置时,电感电流等于参考水平。

通常,参考水平是衍生自1971年输出反馈在实践中。

此外,补偿斜坡信号强制合并消除固有的电流型变频器的控制。

在实践中,此外,补偿斜坡信号强制合并消除固有的电流型变频器的控制。

通常的排列图1显示的是和一些典型运行波形显示在图2。

电力专业英语13-无功补偿与电压调整

电力专业英语13-无功补偿与电压调整
电力专业英语 (13)
English for Electrical Industry
时间:2009 主讲:朱永强
声明:教学资料 请匆转载
Voltage Regulation and Var Compensation
Production and Absorption of Reactive Power 无功的产生和吸收
声明:内部资料 请匆转载
Methods of Voltage Regulation
Sources or sinks reactive power, such as shunt capacitors, shunt reactors, synchronous condensers, and static var compensators(SVCs) Line reactance compensators, such as series capacitors. (SC,TCSC) Regulating transformers, such as tap-changing transformers and boosters
声明:内部资料 请匆转载
Production and Absorption of Reactive Power
尝试翻译
Underground cables, owing to their high capacitance, have high natural loads.
解释说明 owing to because of
这是一个被动长句,主体结构为 problem is complicated。因为主语和 谓语的修饰较多,翻译时可以处理为两个句子,用因果关系连接。
参考译文
维持电压在所要求的限定范围内,这个问题的复杂性在于电力系统供 电给数目众多的负载,而且又是从很多发电机组得到电能。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西南交通大学本科毕业设计英文文献翻译年级: 2010级学号: **********: ***专业: 电气工程及其自动化****: ***2014年6月西南交通大学本科毕业设计(论文)第页2第2页Industrial enterprises of reactive power compensationFrom:Power System Analysis and DesignAbstractThe improvement of industrial enterprises is to improve the power factor of electric power efficiency,an important means of saving energy. In this paper,theoretical analysis and application examples of the industrial enterprises,the significance of reactive power compensation and the role and view of the current power system,industrial enterprises,the problems for the proposed improvements and measures.IntroductionIn industrial enterprises,the vast majority of electrical equipment belongs to perceptual load,these devices in operation to absorb a large number of reactive power. An increase in reactive power supply system power factor to lower system voltage drop to occur,electrical equipment not fully utilized,increasing line losses and lower-powered equipment,power supply capacity and so on. In situ reactive power compensation and thus improve the power factor of the Energy Conservation has extremely important significance.The choice of method of compensationCompensation for reactive power compensation is divided into centralized and decentralized compensation for three kinds of compensation and in situ. Focus on compensation,that is,high and low voltage power distribution set up by several groups within the capacitor,capacitor connected to the power distribution bus,the compensation for the distribution of power within the reactive power,and to reach the required value of the total power factor above. This method of compensation can compensate for high and low voltage bus routes prior to the reactive power,which is equivalent to the reactive power source to move the electricity distribution companies,allowing users to power the systemrequirements for reactive power has been reduction in the electricity sector to achieve the required power factor. And their distribution within the enterprise bus following the line of transformer and reactive power compensation can not play a role,there is still a large number of reactive power line flows within the enterprise and generate losses. Dispersion compensation is the capacitors were installed at various workshops at the switchboard,which will enable installation of distribution transformer and the substation to the plant lines can be due to a decrease in reactive load compensation effect. Local compensation is the reactive power compensation device directly connected to the induction motor terminals on the side or into the line. Focus on compensation methods used in the capacity of capacitor compensation or in-place than the grouping of compensation should be small,its utilization rate is even higher disadvantage is the change in distribution has not been compensated by the feeders,only lightened the load reactive power grid. Dispersion compensation in the way the utilization of capacitor compensation than the in situ high,so the total requirement of compensation is smaller than the spot is an economical and reasonable remedy. Reactive power compensation should follow the "overall planning,rational distribution,classification of compensation,in-place balance; focus on compensation and dispersion compensation combine to spread-based compensation; high compensation and low voltage compensation combined with low-pressure-based compensation; Regulator combined with lower losses,down are the main loss "principle [1]. Compensation capacity to determineIn the power grid in the reactive power consumption is a big,about 50% of the reactive power consumed in transmission,transformation and the device,50% of the consumed electricity users. In order to reduce reactive power consumption,it is necessary to reduce the reactive power in the grid where flow. The best way to start from the user to increase reactive power compensation,improve user load power factor,so that Generator reactive power can be reduced and the reduction of transmission,transformation and distribution equipment in the reactive power consumption,so as to achieve the purpose of reducing wear and tear [2]. Compensation for reactive power capacity of Qc for22121111cos cos c av Q P ϕϕ⎡⎤=---⎢⎥⎣⎦ Load changes can be decided according to the static or dynamic compensation mode. When the load change is relatively stable , we should use the static method of compensation , which can not only reduce the line losses , and investment; when the load change is large , dynamic compensation method should be used , stable voltage [3]. Reduce line lossesIs located at a rated voltage , active power is constant , due to power factor changes , the line loss rate of change ΔP% for the212cos %1()100%cos P ϕϕ⎡⎤=-⨯⎢⎥⎣⎦ As can be seen from Table 1 to improve the power factor in lowering power consumption , improving economic efficiency plays an important role.Table 1 Power factor and power loss percentage of the corresponding dataIf a constant active power condition , the original power factor cosφ1 of 0.59, compensated power factor cosφ2 of 0.98, its line loss rate reduction ΔΡ% to 64%. Dynamic compensation device ,Group to track the power capacitor compensation , power factor can be different from the stability provided in the context of the power factor to achieve adequate compensation purposes.Lines , transformer capacity increaseLines , transformer capacity increased ΔS for the12cos 1cos S S ϕϕ⎛⎫=⨯- ⎪⎝⎭Additional compensation device , may improve the power factor , power factor on the business of direct economic benefit is obvious. Because the state electricity system , starting from the rational use of energy , according to the power company to adjust the price due to high and low values. The compensation device for enterprise and the entire power system economic operation all have significant economic effects .To improve the voltage qualityTo improve the voltage quality is the dynamic reactive power compensation equipment installed around the role of place in the line voltage compensation has increased slightly . 12211100%U U tg x U Q R tg xϕϕ-=⨯=+ Where tgφ1 - compensation device is not installed before the φ1 angle tangent; tgφ2 - compensation equipment installed after the φ2 angle tangent; R , x --- line resistance , reactance.Industrial enterprises for the power system problems and solutionFig 1 for a diagram of power supply systems for heavy machine tool plant. At present , the total capacity of the plant transformer 17660kV A , a total of 20 transformers (1 # ~ 20, # transformers), each transformer capacity range of 50 ~ 1250 kV A , changing the ratio of 10kV / 014kV . Transformer low voltage side of the load is mainly motor , shown in the M1, M2 Mn shown. In general the rate of transformer load is basically maintained at 28% ~ 29%, and the maximum load of 7000kW.High and low voltage compensation to replace a combination of high concentration of compensationFrom the figure we can see the plant supply network focused on high-voltage power factor compensation is compensation that is only in the high-voltage busbar 10kV substation capacitor banks on the pick , while the low pressure has not taken any compensation measures. The fixed capacitor compensation method there have been compensation or due compensation , and right below the second power supply bus powerfactor compensation circuit does not work. As the low power factor caused by the line losses and transformer equipment is a big loss,so compensation as far as possible whengrading,installation of capacitors near the load. Therefore proposed that the high side to focus compensation and dispersion compensation for low-voltage side of a combination of method of compensationFigure 1Power Supply System of a Heavy Machine Tool Plant diagramTo change the power supply as much as possible to avoid the "big horse-drawn cart" phenomenonIn making our selection,we should consider leaving a certain margin,to prevent heavy damage to equipment when,so most of the time caused by equipment,and severe underrun underrun the formation of the "big horse-drawn cart" Run. As the plant load factor of the transformer is basically 28% ~ 29%,and shows the transformer capacity is too large,transformer capacity can not be fully utilized,not only a waste of investment in equipment has increased the power loss. Rational choice by the transformer capacity and electrical equipment to reduce or limit the light-load or no load time to prevent the "big horse-drawn cart" phenomenon.To avoid the no-load operation of equipmentAt present,the plant is running a serious load of some equipment. Improving thepower factor,the first consideration should be given a reasonable run the equipment to improve power factor of power the device itself. The plant main load is AC motor,its power factor load with it change,motor idling,the power factor of about 0.1 ~ 0.3 between the rated load at 0.8 ~ 0.85 between the motor and thus should be made near the. rated load state run. We should improve the motor power factor,the simplest way is to use capacitors and electric motors in parallel,so to avoid the no-load operation device is to improve the power factor equipment,an important way.Economic Benefit AnalysisTo the factory power supply system in two # transformers,for example,installation of capacitors in the low voltage side,so that high-pressure side of the plant to focus on compensation and dispersion compensation combination of low-voltage side of a compensation formula,shown in Figure 2. Graph 2 #transformer capacity of 800kV A,model S9 - 800 / 10,rated copper loss for the 715kW,transmission line model YJV22. Get price of 0.55 yuan / kWh. The power factor by the compensation prior to 0.59 to compensate for post-0.98,Table 2 is the use of measuring instruments measured in the field of transformer secondary side run-time data are analyzed by calculating the loss of reactive power compensation reduced energy efficiency.Figure 2 foundry supply diagramTable 2 transformer secondary-side run-time data tableThe energy-saving high-voltage power linesThroughout the year to save electricityΔW = 1P hWhere 1P l- the increase in electric power lines ,22112cos 31cos P I R ϕϕ⎡⎤⎛⎫⎢⎥=- ⎪⎢⎥⎝⎭⎣⎦ The number of annual operating hours , whichever 5000h. The calculation of annual energy savings 162217kW.h , within one year to reduce electricity consumption costs 81.92 million yuan.Transformer-savingThe loss of main transformer iron loss and copper loss. Transformer secondary side to improve the power factor , can reduce the total load current , thereby reducing the copper loss. Transformer copper loss of the year to save energy ΔW = (ΔPCu1 - ΔPCu2) h where ΔPCu1 - compensation for the actual run-time before the transformer copper loss of electric power ,211Cu CuN N I P P I ⎛⎫= ⎪⎝⎭ ΔPCu2 - compensated transformer copper loss of electric power ,21212cos cos Cu CuN P P ϕϕ⎛⎫= ⎪⎝⎭ The calculation of annual energy savings 3150kWh , within a year to save electricity transformer copper loss of 173,518 yuan.Power Factor Adjustment tariffUsers within a year to reduce spending more than the low power factor penalty: 800 × 0. 589 × 5000 × 0.55 × 17.22% (increase rate) = 221.31 million yuan of compensation within one year after the users get the power factor bonus: 800 × 0. 589 × 5000 × 0.55 × 2.7% (reduced rate) 3.15 million total of 251.81 million yuan from the two above calculations we can see an overall increase within one year of net income 341.73 million yuan , according to the capacity required to compensate for equipment investment 27.15 million yuan , 9 months will be able to recover their investments. This shows that the plant foundry for the specific circumstances of the transformer secondary side compensation for use of decentralized approach to reactive power compensation is feasible and can achieve long-term and significant economic effects.10kv无功补偿摘自——《电力系统分析和设计》摘要提升工业企业用电效率、节约电能的重要手段和方法就是改善电能消耗的功率因数。

相关文档
最新文档