用坐标表示平移同步练习题(含答案)

合集下载

七年级数学下册《用坐标表示平移》练习题及答案(人教版)

七年级数学下册《用坐标表示平移》练习题及答案(人教版)

七年级数学下册《用坐标表示平移》练习题及答案(人教版)一、单选题 1.在平面直角坐标系中,将点()1,1向右平移2个单位后,得到的点的坐标是( ) A .()3,1 B .()1,1- C .()1,3 D .1,12.在平面直角坐标系中,将点(),9A m m +向右平移4个单位长度,再向下平移2个单位长度,得到点B ,若点B 在第二象限,则m 的取值范围是( )A .114m -<<-B .74m -<<-C .7m <-D .4m >-3.已知平面内两点M 、N ,如果它们平移的方式相同,那么平移后它们之间的相对位置是( )A .不能确定B .发生变化C .不发生变化D .需分情况说明4.如图,线段AB 经过平移得到线段CD ,其中A 、B 的对应点分别是C 、D ,这四个点都在格点上,若线段AB 上有一点P (a ,b ),则点P 在CD 上的对应点P ′的坐标为:( )A .(a -4,b +2)B .(a -4,b -2)C .(a +4,b +2)D .(a +4,b -2)5.在平面直角坐标系中,点A (3,2)向左平移2个单位,向上平移1个单位后得到对应点B ,则点B 的坐标为( )A .(5,1)B .(5,3)C .(1,3)D .(1,1)6.如图,A ,B 两点的坐标分别为(-2,0),(0,1),将线段AB 平移到线段A 1B 1的位置.若A 1(b ,1),B 1(-1,a ),则b -a 的值是( )A .-7B .-5C .-3D .-17.在平面直角坐标系中,三角形的三个顶点的横坐标保持不变,纵坐标都减去5,则所得图形可看成是将原图形( )A .向左平移5个单位B .向右平移5个单位C .向上平移5个单位D .向下平移5个单位8.将点()2,1A 向右平移2个单位得到点'A ,再将点'A 关于x 轴反射得到点A ″,则点A ″的坐标是( )A .()2,3-B .()4,1-C .()4,1-D .()0,1-9.如图,把Rt ABC △放在平面直角坐标系内,其中90CAB ∠=︒ ,5BC =,点A ,B 的坐标分别为(1,0),(4,0),将ABC 沿x 轴向右平移,当点C 落在直线26y x =-上时,线段BC 平移的距离为( ).A .4B .5C .6D .810.在平面直角坐标系中,将点P(3,-2)向下平移4个单位长度,得到点P 的坐标为( )A .(-1,-2)B .(3,-6)C .(7,-2)D .(3,-2)二、填空题11.已知ABC 的顶点A 的坐标为(1,2),经过平移后的对应点A ′的坐标为(﹣1,3),则顶点B (﹣2,1)平移后的对应点B ′的坐标为_____.12.点(-2,3)向右平移2个单位后的坐标为__________.13.将点A(-2,-1)向右平移3个单位长度得到点B ,则点B 的坐标是________14.将点()2,1P -向左平移1个单位长度,再向上平移2个单位长度,得到点Q ,点Q 的坐标为________.15.如图所示,直角梯形ABCD 沿直线DC 方向平移可得直角梯形HFGE ,如果AB =4,BC =9,BI =1.2,HI =3那么阴影面积为_________.三、解答题16.如图,在平面直角坐标系网格中,三角形ABC 的顶点坐标分别是(1,2),(2,1),(3,2)A B C -- .将三角形ABC 平移,使顶点B 平移到坐标原点O 处,得到三角形11A OC .(1)1A 的坐标是________,1C 的坐标是________.(2)画出平移后的11OA C ∆ .(3)求11OA C ∆的面积.17.如图,在平面直角坐标系中描出下列各点:A (3,0),B (-4,3),C (-4, -2),并解答:(1)点A 到原点O 的距离是 个单位长度;(2)将点B 向下平移__________个单位,它会与点C 重合;(3)连接BC ,直线BC 与y 轴的位置关系是__________.18.如图,在平面直角坐标系中,已知ABC ∆的三个顶点坐标分别是2,1,1,()()2,3,3()A B C ---(1)将ABC ∆向上平移4个单位长度得到111A B C ∆,请画出111A B C ∆;(2)请画出与ABC ∆关于y 轴对称的222A B C ∆;(3)请写出12A A 、的坐标.19.如图,在下面的平面直角坐标系(每个小正方形网格的边长都是1)中,ABC 的顶点都在网格点上,其中点A 坐标为(2,2)-.(1)写出点B 、C 的坐标:B ______ ,C ______ ;(2)若将ABC 先向右平移2个单位长度,再向下平移1个单位长度,得到A B C ''',请你画出A B C '''.(3)求ABC 的面积.20.如图是某台阶的一部分,如果建立适当的坐标系,使A 点的坐标为(0,0),B 点的坐标为(1,1)(1)直接写出C ,D ,E ,F 的坐标;(2)如果台阶有10级,你能求得该台阶的长度和高度吗?参考答案 1.A 2.B3.C4.A5.C6.B7.D8.B9.A10.B11.(-4,2)12.(0,3)13.(1,-1)14.()1,115.8.416.【详解】解:(1)顶点B 平移到坐标原点O 处是先向左平移2个单位,再向下平移1个单位,即横坐标减2,纵坐标减1,点A 、C 的平移规律和点B 一样,所以11A (1,3),C (5,1)---(2)平移后的三角形11A OC 如图所示(3)如图,设线段11AC 与x 轴的交点为D11OA D OC D S S +12= 1=(1)点A 到原点O 的距离是3个单位长度;(3)2,3,),1(()2A A --.)解:如图所示,A B C '''即为所求;1113ABC S=【详解】解:(1)以所以C ,D ,E ,F 各点的坐标分别为C (2,2),D (3,3),E (4,4),F (5,5).(2)每级台阶高为1,宽也为1所以10级台阶的高度是10,长度为10.。

用坐标表示平移练习题

用坐标表示平移练习题

用坐标表示平移练习题一、选择题:1. 在平面直角坐标系中,如果点A的坐标为(3,4),点A向右平移3个单位,向下平移2个单位,那么新点的坐标是()。

A.(6,2)B.(0,2)C.(0,6)D.(6,6)2. 已知点P(2,-1),若将点P沿x轴正方向平移5个单位,其坐标变为()。

A.(7,-1)B.(-3,-1)C.(-3,1)D.(7,1)3. 点M(-1,3)沿y轴负方向平移4个单位,再沿x轴正方向平移2个单位,最终坐标为()。

A.(1,-1)B.(-3,-1)C.(1,7)D.(-3,7)二、填空题:1. 点B(-2,5)沿x轴正方向平移a个单位,沿y轴负方向平移b个单位,新坐标为(-2+a,5-b)。

若a=4,b=1,则新坐标为____。

2. 已知点N(1,-3),若将点N沿x轴负方向平移2个单位,再沿y轴正方向平移1个单位,其坐标变为(1-2,-3+1),即____。

三、计算题:1. 点Q的坐标为(-4,2),现在需要将点Q先沿x轴正方向平移m个单位,再沿y轴正方向平移n个单位。

若平移后点Q的坐标为(2,6),求m和n的值。

2. 已知点R(3,-2),若将点R沿x轴负方向平移,再沿y轴正方向平移,使得最终的坐标为(-1,3)。

求平移的距离。

四、解答题:1. 某几何图形由点A(1,2), B(3,4), C(-1,1), D(2,-1)组成。

现在需要将这个图形向右平移5个单位,向下平移3个单位。

请写出平移后各点的新坐标。

2. 一个矩形的顶点坐标为E(0,0), F(4,0), G(4,3), H(0,3)。

如果将这个矩形沿x轴正方向平移6个单位,沿y轴负方向平移2个单位,请计算平移后矩形的新顶点坐标。

五、应用题:1. 某建筑物的坐标为(-5,-5),现在需要将其向右平移10个单位,向下平移8个单位,以适应新的城市规划。

请计算新建筑物的坐标。

2. 一个矩形花园的顶点坐标为I(-3,-2), J(3,-2), K(3,2), L(-3,2)。

七年数学同步练习:7.2.2 用坐标表示平移(含答案)

七年数学同步练习:7.2.2 用坐标表示平移(含答案)
3、一般地,在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度。
二、达标体验
1、将点(-2,5)向右平移3个单位长度,再向下平移7个单位长度得到点(1,-2).
分析:-2+3=1;5-7= -2.
2、在平面直角坐标系中,将点(-2,3)平移后得到点B(-2,-3),则点A向下平移了6个单位长度。
分析:-2-(-2)=0;-3-3=-6.
3、在平面直角坐标系中,已知线段AB的两个端点的坐标分别为A(-4,-1),B(0,1),将线段AB平移后得到线段CD,点A,B的对应点分别为点C,D.若点C的坐标为(-2,2),则点D的坐标为(2,4).
3、一般地,在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向___(或向___)平移____个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向___(或向___)平移___个单位长度。
二、达标体验
1、将点(-2,5)向右平移3个单位长度,再向已知点M(a,b),N(c,d),请写出线段MN的中点P的坐标。
四、中考链接
11、(大连)在平面直角坐标系中,将点(2,3)向上平移1个单位长度,所得到的点的坐标是( ).
A.(1,3) B.(2,2) C(2,4) D.(3,3)
12、(安顺)将点A(-2,-3)向右平移3个单位长度得到点B,则点B所在的象限是( )
(1)画出三角形ABC及三角形A1B1C1;
(2)写出三角形A1B1C1各顶点的坐标.

人教版数学七年级下册7.2.2《用坐标表示平移》同步练习 (含答案)

人教版数学七年级下册7.2.2《用坐标表示平移》同步练习 (含答案)

人教版数学七下7.2.2《用坐标表示平移》同步练习一、选择题1.将点A(2,1)向左平移2个单位长度得到点A′,则点A′的坐标是( )A.(2,3)B.(2,-1)C.(4,1)D.(0,1)2.在平面直角坐标系中,将点(2,3)向上平移1个单位,所得到的点坐标是( )A.(1,3)B.(2,2)C.(2,4)D.(3,3)3.如图,如果将三角形ABC向左平移2格得到三角形A′B′C′,则顶点A′的位置用数对表示为( )A.(5,1)B.(1,1)C.(7,1)D.(3,3)4.如图,将三角形PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是( )A.(-2,-4)B.(-2,4)C.(2,-3)D.(-1,-3)5.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标是( )A.(2,5)B.(-8,5)C.(-8,-1)D.(2,-1)6.如果一个图案沿x轴负方向平移3个单位长度,那么这个图案上的点坐标变化为( )A.横坐标不变,纵坐标减少3个单位长度B.纵坐标不变,横坐标减少3个单位长度C.横纵坐标都没有变化D.横纵坐标都减少3个单位长度7.已知线段CD是由线段AB平移得到的,点A(-1,4)的对应点为点C(4,7),则点B(-4,-1)的对应点D的坐标为( )A.(1,2)B.(2,9)C.(5,3)D.(-9,-4)8.在如图所示的单位正方形网格中,三角形ABC经过平移后得到三角形A1B1C1,已知在AC上一点P(2.4,2)平移后的对应点为P1,则P1点的坐标为( )A.(1.4,-1)B.(1.5,2)C.(-1.6,-1)D.(2.4,1)9.点G(-2,-2),将点G先向右平移6个单位长度,再向上平移5 个单位长度,得到G′,则G′的坐标为( )A.(6,5)B.(4,5)C.(6,3)D.(4,3)10.将点A(a,-3)先向右平移2个单位长度,再向上平移4个单位长度得到点B(4,b),则a和b的值分别为( )A.(1,4)B.(4,1)C.(2,1)D.(1,2)二、填空题11.在平面直角坐标系中,已知点O(0,0),A(1,3),将线段OA向右平移3个单位,得到线段O1A1,则点O1的坐标是,A1的坐标是 .12.将点A(-3,1)向右平移5个单位长度,再向上平移6个单位长度,可以得到对应点A′的坐标为 .13.在平面直角坐标系中,三角形ABC的三个顶点的横坐标保持不变,纵坐标都减去2个单位长度,则得到的新三角形与原三角形相比向平移了个单位长度.14.已知三角形ABC,若将三角形ABC平移后,得到三角形A′B′C′,且点A(1,0)的对应点A′的坐标是(-1,0),则三角形ABC是向平移个单位得到三角形A′B′C′.15.在平面直角坐标系中,已知线段AB的两个端点的坐标分别是A(4,-1)、B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(-2,2),则点B′的坐标为 .三、作图题16.如图所示,一小船,将其向左平移6个单位长度,再向下平移5个单位长度,试确定A,B,C,D,E,F,G平移后对应点的坐标并画出平移后的图形.17.如图,在边长均为1个单位的正方形网格图中,建立了直角坐标系xOy,按要求解答下列问题:(1)写出△ABC三个顶点的坐标;(2)画出△ABC向右平移6个单位后的图形△A1B1C1;(3)求△ABC的面积.四、解答题18.如图所示,三角形ABC三点坐标分别为A(-3,4),B(-4,1),C(-1,2).(1)说明三角形ABC平移到三角形A1B1C1的过程,并求出点A1,B1,C1的坐标;(2)由三角形ABC平移到三角形A2B2C2又是怎样平移的?并求出点A2,B2,C2的坐标.19.如图,三角形ABC是由三角形A1B1C1平移后得到的,三角形ABC中任意一点P(x,y)经平移后对应点为P1(x-3,y-5),求A1、B1、C1的坐标.。

七年级数学(下)第七章《平面直角坐标系——用坐标表示平移》练习题含答案

七年级数学(下)第七章《平面直角坐标系——用坐标表示平移》练习题含答案

七年级数学(下)第七章《平面直角坐标系——用坐标表示平移》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图所示,将点A向右平移几个单位长度可得到点BA.3个单位长度B.4个单位长度C.5个单位长度D.6个单位长度【答案】B长度,故选B.2.如图所示,将点A向下平移5个单位长度后,将重合于图中的A.点C B.点FC.点D D.点E【答案】D【解析】本题主要考查了用坐标表示平移.注意左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.因为点A的纵坐标是2,向下平移5个单位长度,即2–5=–3,所以与点E重合,故选D.3.如图所示,将点A行向右平移3个单位长度,再向下平移5个单位长度,得到A';将点B先向下平移5个单位长度,再向右平移3个单位长度,得到B';则A'与B'相距A.4个单位长度B.5个单位长度C.6个单位长度D.7个单位长度【答案】A相距4个单位长度,故选A.4.如图所示,点G(–2,–2),将点G先向右平移6个单位长度,再向上平移5个单位长度,得到G′,则G′的坐标为A.(6,5) B.(4,5)C.(6,3) D.(4,3)【答案】D5.将线段AB在坐标系中作平行移动,已知A(-1,2),B(1,1),将线段AB平移后,其两个端点的坐标变为A(-2,1),B(0,0),则它平移的情况是A.向上平移了1个单位长度,向左平移了1个单位长度B.向下平移了1个单位长度,向左平移了1个单位长度C.向下平移了1个单位长度,向右平移了1个单位长度D.向上平移了1个单位长度,向右平移了1个单位长度【答案】B【解析】由点A,B的平移规律可知,此题规律是(x–1,y–1),照此规律可知线段AB向下平移了1个单位长度,向左平移了1个单位长度.故选B.6.三角形ABC三个顶点的坐标分别是A(2,1),B(1,3),C(3,0),将三角形ABC向左平移3个单位长度,再向下平移1个单位长度,则平移后三个顶点的坐标为A.(5,0),(4,2),(6,–1)B.(–1,0),(–2,2),(0,–1)C.(–1,2),(–2,4),(0,1)D.(5,2),(4,4),(6,1)【答案】B【解析】本题主要考查图形的平移及平移特征.分别将A、B、C三点的横坐标都减去3,纵坐标都减去1得(–1,0),(–2,2),(0,–1),故选B.二、填空题:请将答案填在题中横线上.7.将点(–3,1)向右平移4个单位长度,再向上平移2个单位长度,可以得到对应点__________.【答案】(1,3)【解析】–3+4=1,1+2=3,∴点A′的坐标是(1,3).故答案为:(1,3).8.在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向__________(或向__________)平移__________个单位长度.【答案】右;左;a【解析】在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或都减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度.9.已知三角形ABC,A(–3,2),B(1,1),C(–1,–2),现将三角形ABC平移,使点A到点(1,–2)的位置上,则点B,C的坐标分别为______,________.【答案】(5,–3);(3,–6)点C横坐标为:–1+4=3;纵坐标为:–2+(–4)=–6;∴B点的坐标为(5,–3),C点的坐标为(3,–6).10.已知点A(–4,–6),将点A先向右平移4个单位长度,再向上平移6个单位长度,得到A′,则A′的坐标为__________.【答案】(0,0)【解析】由题中平移规律可知:A′的横坐标为–4+4=0;纵坐标为–6+6=0;∴A′的坐标为(0,0).故答案为:(0,0).11.如图所示,在平面直角坐标系中,右边的图案是由左边的图案经过平移得到的,左边图案中左、右眼睛的坐标分别是(–4,2),(–2,2),右边图案中左眼的坐标是(3,4),则右边图案中右眼的坐标是__________.【答案】(5,4)【解析】由左图案中左眼的坐标是(-4,2),右图案中左眼的坐标是(3,4),可知左图案向右平移了7个单位长度,向上平移了2个单位长度变为右图案.因此右眼的坐标由(-2,2)变为(5,4).12.如图,一个机器人从原点O点出发,向正东方向走3米到达A1点,再向正北方向走6米到达A2点,再向正西方向走9米到达A3点,再向正南方向走12米到达A4点,再向正东方向走15米到达A5点,按如此规律走下去,当机器人走到A6点时,A6点的坐标是________.【答案】(9,12)【解析】根据题意建立如图所示的平面直角坐标系,题中机器人运动的过程,实质上是坐标系中点的平移过程,即A1(3,0)→A2(3,6)→A3(–6,6)→A4(–6,–6)→A5(9,–6)→A6(9,12).因此,在以O点为坐标原点,正北方向为y轴正方向的平面坐标系中,A6的坐标为(9,12).故答案为(9,12).三、解答题:解答应写出文字说明、证明过程或演算步骤.13.如图,有一条小船.若把小船平移,使点A平移到点B,请你在图中画出平移后的小船.【解析】平移后的小船如答图所示.14.如图所示,三角形A′B′C′是三角形ABC经过平移得到的,三角形ABC中任意一点P(x1,y1)平移后的对应点为P′(x1+6,y1+4).分别写出点A′,B′,C′的坐标.【解析】A′(2,3),B′(1,0),C′(5,1).15.坐标平面内有4个点A(0,2),B(–1,0),C(1,–1),D(3,1).(1)建立坐标系,描出这4个点;(2)顺次连接A,B,C,D,组成四边形ABCD,求四边形ABC D的面积.【解析】(1)根据题意,直接描点;坐标系及4个点的位置,如图所示;(2)分别过A、C两点作x轴的平行线,过B、D两点作y轴的平行线,围成矩形,利用“割补法”求四边形ABCD的面积.如图,用矩形EFGH围住四边形ABCD,则S四边形ABCD=S矩形EFGH–S三角形ABE–S三角形BCF–S三角形CDG–S三角形ADH=3×4–12×1×2–12×1×2–12×2×2–12×1×3=6.5.16.三角形ABC沿x轴正方向平移2个单位长度,再沿y轴负方向平移1个单位长度得到三角形EFG.(1)写出三角形EFG的三个顶点坐标;(2)求三角形EFG的面积.【解析】(1)如图所示:点E(4,1),点F(0,–2),点G(5,–3);(2)S三角形EFG=4×5–12×4×3–12×1×5–12×1×4=192.。

七年级下册练习及答案用坐标表示平移

七年级下册练习及答案用坐标表示平移

用坐标表示平移一、单选题(共29题;共58分)1.已知点A(3-p,2+p)先向x轴负方向平移2个单位,再向y轴负方向平移3个单位得点B(p,-p),则点B的具体坐标为()A. B. C. D.2.在平面直角坐标系中,点A(﹣1,5),将点A向右平移2个单位、再向下平移3个单位得到点A1;再将线段OA1绕原点O顺时针旋转90°得到OA2.则A2的坐标为()A. (﹣1,2)B. (2,1)C. (2,﹣1)D. (3,﹣1)3.将点P(2,1)沿x轴方向向左平移3个单位,再沿y轴方向向上平移2个单位,所得的点的坐标是()A. (1,1)B. (-1,3)C. (5,1)D. (5,3)4.已知△ABC,A(-3,2),B(1,1),C(-1,-2),现将△ABC平移,使点A到点(1,-2) 的位置上,则点B,C平移后对应点的坐标分别为()A. (-3,5),(-6,3)B. (5,-3),(3,-6)C. (-6,3),(-3,5)D. (3,-6),(5,-3)5.如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是()A. (﹣2,﹣4)B. (﹣2,4)C. (2,﹣3)D. (﹣1,﹣3)6.将△ABC的三个顶点的横坐标都加上6,纵坐标都减去5,则所得图形与原图形的关系是()A. 将原图形向x轴的正方向平移了6个单位,向y轴的正方向平移了5个单位B. 将原图形向x轴的负方向平移了6个单位,向y轴的正方向平移了5个单位C. 将原图形向x轴的负方向平移了6个单位,向y轴的负方向平移了5个单位D. 将原图形向x轴的正方向平移了6个单位,向y轴的负方向平移了5个单位7.如图,在平面直角坐标系中,将点A(﹣2,3)向右平移3个长度单位,那么平移后对应的点A′的坐标是()A. (﹣2,﹣3)B. (﹣2,6)C. (1,3)D. (﹣2,1)8.点M(﹣3,﹣5)是由N先向上平移4个单位,再向左平移3个单位而得到,则点N的坐标为()A. (0,﹣9)B. (﹣6,﹣1)C. (1,﹣2)D. (1,﹣8)9.点P(x,y)在第一象限,且x+y=8,点A的坐标为(6,0),设△OPA的面积为S.当S=12时,则点P的坐标为()A. (6,2)B. (4,4)C. (2,6)D. (12,﹣4)10.在平面直角坐标系中,已知线段AB的两个端点分别是A(-4,-1),B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(-2,2)则点B′的坐标为()A. (4,3)B. (3,4)C. (-1,-2)D. (-2,-1)11.过点A(﹣3,2)和点B(﹣3,5)作直线,则直线AB()A. 平行于y轴B. 平行于x轴C. 与y轴相交D. 与y轴垂直12.在平面直角坐标系中,已知线段AB的两个端点分别是A(- 4 ,-1).B(1,1) 将线段AB平移后得到线段A ’B’,若点A’的坐标为(-2 , 2 ) ,则点B’的坐标为()A. ( 3 , 4 )B. ( 4 , 3 )C. (-1 ,-2 )D. (-2,-1)13.在平面直角坐标系中,将点关于原点对称得到点,再将点向左平移2个单位长度得到点,则点的坐标是()A. B. C. D.14.已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P 在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为()A. (3,4)或(2,4)B. (2,4)或(8,4)C. (3,4)或(8,4)D. (3,4)或(2,4)或(8,4)15.如图,在平面直角坐标系中,点B在x轴上,△AOB是等边三角形,AB=2,则点A的坐标为( )A. (2,)B. (1,2)C. (1,)D. (,1)16.在平面直角坐标系中,将点(1,2)先向左平移2个单位长度,再向下平移3个单位长度,则平移后得到的点是()A. (﹣1,﹣1)B. (﹣1,5)C. (3,﹣1)D. (3,5)17.在平面直角坐标系内,线段CD是由线段AB平移得到的,点A(﹣2,3)的对应点为C(2,5),则点B(﹣4,﹣1)的对应点D的坐标为()A. (﹣8,﹣3)B. (4,2)C. (0,1)D. (1,8)18.在平面直角坐标系xOy中,已知点P(2,2),点Q在y轴上,△PQO是等腰三角形,则满足条件的点Q共有()A. 5个B. 4个C. 3个D. 2个19.如果点P(m+3,m+1)在x轴上,则点P的坐标为()A. (0,2)B. (2,0)C. (4,0)D. (0,-4)20.已知点A(-2 ,4),将点A 往上平移2个单位长度,再往左平移3个单位长度的到点A′,则点A′的坐标是()A. (-5,6)B. (1,2)C. (1,6)D. (-5,2)21.若将点A(m+2,3)先向下平移1个单位,再向左平移2个单位,得到点B(2,n﹣1)则()A. m=2,n=3B. m=2,n=5C. m=﹣6,n=3D. m=﹣6,n=522.已知点A(m+1,-2)和点B(3,m-1),若直线AB∥x轴,则m的值为()A. -1B. -4C. 2D. 323.在平面直角坐标系中,已知点,,平移线段,使点落在点处,则点的对应点的坐标为()A. B. C. D.24.若点A的坐标是,AB=4,且AB平行于y轴,则点B的坐标为()A. B. 或 C. D. 或25.过点和作直线,则直线()A. 与轴平行B. 与轴平行C. 与轴相交D. 与轴,轴均相交26.如图,把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,则顶点C(0,-1)对应点的坐标为()A. (0,0)B. (1,2)C. (1,3)D. (3,1)27.在平面直角坐标系中,点向左平移个单位长度得到的点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限28.点先向左平移3个单位长度,再向上平移2个单位长度得到的点的坐标是()A. B. C. D.29.在平面直角坐标系中,点先向左平移个单位,再向下平移个单位,得到的()A. B. C. D.二、填空题(共20题;共25分)30.抛物线y=x2+4x+3向下平移4个单位后所得的新抛物线的表达式是________.31.将点P(a+1,2a)向上平移8个单位得到点在第二象限,则a的取值范围是________.32.在平面直角坐标系中,点A的坐标为(﹣1,3),线段AB∥x轴,且AB=4,则点B的坐标为________ .33.在平面直角坐标系中,若点M(2,4)与点N(x,4)之间的距离是3,则x的值是________.34.在平面直角坐标系中,过三点A(0,0),B(2,2),C(4,0)的圆的圆心坐标为________.35.将线段AB平移1cm得到线段A'B',则点A到点A'的距离是________ cm.36.在平面直角坐标系xOy中,点A、B的坐标分别为(3,m)、(3,m+2),若线段AB与x轴有交点,则m的取值范围是________.37.如图,在平面直角坐标系中,已知点A(2,1),点B(3,-1),平移线段AB,使点A落在点A1(-2,2)处,则点B的对应点B1的坐标为________ 。

人教版七年级下第七章平面直角坐标系(用坐标表示平移)同步练习题含答案

人教版七年级下第七章平面直角坐标系(用坐标表示平移)同步练习题含答案
故选C.
【点睛】此题主要考查了求反比例函数解析式,根据平移方式求点的坐标,正确求出P点平移后的点的坐标是解题的关键.
13.D
【分析】根据在平面直角坐标系中坐标与图形变化-平移的规律进行判断.
【详解】解:点P(2,3)平移后变为点P1(3,-1),表示点P向右平移1个单位,再向下平移4个单位得到点P1.
故选D.
【点睛】本题考查了坐标与图形变化-平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)
∴平移方法为向右平移1个单位,向上平移1个单位,
∴a=0+1=1,b=0+1=1,
∴a22b=1²-2×1=-1;
故答案为:-1.
【点睛】本题考查了平面直角坐标系-点的平移,根据题意得出平移方式是解本题的关键.
3.
【分析】把点 向右平移5个单位,纵坐标不变,横坐标增加5,据此解题.
【详解】解:把点 向右平移5个单位得到点 ,则点 的坐标为 ,即 ,
二、单选题
5.如图,用平移三角尺的方法可以检验出图中平行线共有( )
A.3对B.4对C.5对D.6对
6.在平面直角坐标系中,将点 向右平移 个单位得到点 ,则点 关于 轴的对称点的坐标为()
A. B. C. D.
7.□ 的顶点坐标分别是为 , , ,则点 的坐标是()
A. B. C. D.
8.已知关于 的一元二次方程 的两根分别记为 , ,若 ,则 的值为()
(2)通过证明 ,即可求证;

人教版七年级下册7.2.2 用坐标表示平移(含答案).doc

人教版七年级下册7.2.2 用坐标表示平移(含答案).doc

7.2.2用坐标表示平移一、选择题1.在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是( )A.(3,1) B.(-1,1) C.(1,3) D.(1,-1)2.在平面直角坐标系中,将点P(-3,2)向下平移4个单位得到点P′,则点P′所在的象限为( ) A.第一象限B.第二象限C.第三象限D.第四象限3.在平面直角坐标系中,将点A(1,-2)向上平移3个单位长度,再向左平移2个单位长度,得到点B,则点B的坐标是( )A.(-1,1) B.(3,1) C.(4,-4) D.(4,0)4.如图,把三角形ABC先向右平移3个单位,再向上平移2个单位得到三角形DEF,则顶点C(0,-1)的对应点坐标为( )A.(0,0) B.(1,2) C.(1,3) D.(3,1)5.如图,点A(2,1),将线段OA先向上平移2个单位长度,再向左平移3个单位长度,得到线段O′A′,则点A的对应点A′的坐标是( )A.(-3,2) B.(0,4) C.(-1,3) D.(3,-1)6.如图,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(0,1),将线段AB平移,使其一个端点到C(3,2),则平移后另一端点的坐标为( )A.(1,3) B.(5,1) C.(1,3)或(3,5) D.(1,3)或(5,1)7.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(-1,0),(0,3).现将该三角板向右平移使点A与点O重合,得到三角形OCB′,则点B的对应点B′的坐标是( )A.(1,0) B.(3,3) C.(1,3) D.(-1,3)二、填空题8.点N(-1,3)可以看作由点M(-1,-1)向平移个单位所得到的.9.已知点M(3a-9,1-a),将点M向左平移3个单位长度后落在y轴上,则a=. 10.如图,三角形OAB的顶点A,B的坐标分别为(3,5),(4,0),把三角形OAB沿x轴向右平移得到三角形CDE.如果CB=1,那么点D的坐标为.11.如图,在平面直角坐标系中,把一个点从原点开始向上平移1个单位,再向右平移1个单位,得到点A1(1,1);把点A1向上平移2个单位,再向左平移2个单位,得到点A2(-1,3);把点A2向下平移3个单位,再向左平移3个单位,得到点A3(-4,0);把点A3向下平移4个单位,再向右平移4个单位,得到点A4(0,-4)……按此做法进行下去,则点A10的坐标为.12.如图①是一个斜角坐标系,水平放置的轴称为横轴(记作a轴),斜向放置的轴称为斜轴(记作b轴).类似于直角坐标系,对于斜角坐标平面内的任意一点P,过点P分别作b轴、a轴的平行线交a轴、b轴于点M,N,若点M,N分别在a轴、b轴上所对应的实数为m与n,则称有序实数对(m,n)为点P的坐标.如图②,三角形ABC中,A(1,4),C(3,5),如果平移三角形ABC 得到三角形A′B′C′,使点A′与点C重合,在三角形ABC内部,有一任意点D(x,y),则平移后点D的对应点D′的坐标为________________.三、解答题13.如图,三角形ABC的顶点坐标分别为A(-2,3),B(-3,0),C(-1,-1).将三角形ABC 平移后得到三角形A′B′C′,且点A的对应点是A′(2,3),点B,C的对应点分别是B′,C′.(1)点A,A′之间的距离是;(2)请在图中画出三角形A′B′C′.14.如图,已知坐标平面内的三个点A(1,3),B(3,1),O(0,0).(1)平移三角形ABO至三角形A1B1O1,当点A1和点B重合时,求点O1的坐标;(2)平移三角形ABO至三角形A2B2O2,需要至少向下平移超过单位,并且至少向左平移超过个单位,才能使三角形A2B2O2位于第三象限.15.在平面直角坐标系中,三角形A′B′C′是由三角形ABC平移后得到的,已知三角形ABC内部的一点P(x0,y0)经平移后的对应点为P′(x0+5,y0-2).(1)三角形A′B′C′是由三角形ABC如何平移得到的?(2)若已知A(-1,2),B(-4,5),C(-3,0),请写出A′,B′,C′的坐标;(3)在(2)的条件下,求三角形A′B′C′的面积.16.如图,第一象限内有两点P(m-3,n),Q(m,n-2),将线段PQ平移,使点P,Q分别落在两条坐标轴上,求点P平移后的对应点的坐标.17.如图,在平面直角坐标系中,A(1,4),B(3,2),O为坐标原点,且OC∥AB,OC=AB.试用平移的知识求C点的坐标,并求四边形ABCO的面积.参考答案一、选择题1.在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是( A)A.(3,1) B.(-1,1) C.(1,3) D.(1,-1)2.在平面直角坐标系中,将点P(-3,2)向下平移4个单位得到点P′,则点P′所在的象限为( C) A.第一象限B.第二象限C.第三象限D.第四象限3.在平面直角坐标系中,将点A(1,-2)向上平移3个单位长度,再向左平移2个单位长度,得到点B,则点B的坐标是( A)A.(-1,1) B.(3,1) C.(4,-4) D.(4,0)4.如图,把三角形ABC先向右平移3个单位,再向上平移2个单位得到三角形DEF,则顶点C(0,-1)的对应点坐标为( D)A.(0,0) B.(1,2) C.(1,3) D.(3,1)5.如图,点A(2,1),将线段OA先向上平移2个单位长度,再向左平移3个单位长度,得到线段O′A′,则点A的对应点A′的坐标是( C)A.(-3,2) B.(0,4) C.(-1,3) D.(3,-1)6.如图,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(0,1),将线段AB平移,使其一个端点到C(3,2),则平移后另一端点的坐标为( D)A.(1,3) B.(5,1) C.(1,3)或(3,5) D.(1,3)或(5,1)7.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(-1,0),(0,3).现将该三角板向右平移使点A与点O重合,得到三角形OCB′,则点B的对应点B′的坐标是( C)A.(1,0) B.(3,3) C.(1,3) D.(-1,3)二、填空题8.点N(-1,3)可以看作由点M(-1,-1)向平移个单位所得到的.【答案】上 49.已知点M(3a-9,1-a),将点M向左平移3个单位长度后落在y轴上,则a=. 【答案】410.如图,三角形OAB的顶点A,B的坐标分别为(3,5),(4,0),把三角形OAB沿x轴向右平移得到三角形CDE.如果CB=1,那么点D的坐标为.【答案】(6,5)11.如图,在平面直角坐标系中,把一个点从原点开始向上平移1个单位,再向右平移1个单位,得到点A1(1,1);把点A1向上平移2个单位,再向左平移2个单位,得到点A2(-1,3);把点A2向下平移3个单位,再向左平移3个单位,得到点A3(-4,0);把点A3向下平移4个单位,再向右平移4个单位,得到点A4(0,-4)……按此做法进行下去,则点A10的坐标为.【答案】(-1,11)12.如图①是一个斜角坐标系,水平放置的轴称为横轴(记作a轴),斜向放置的轴称为斜轴(记作b轴).类似于直角坐标系,对于斜角坐标平面内的任意一点P,过点P分别作b轴、a轴的平行线交a轴、b轴于点M,N,若点M,N分别在a轴、b轴上所对应的实数为m与n,则称有序实数对(m,n)为点P的坐标.如图②,三角形ABC中,A(1,4),C(3,5),如果平移三角形ABC 得到三角形A′B′C′,使点A′与点C重合,在三角形ABC内部,有一任意点D(x,y),则平移后点D的对应点D′的坐标为________________.【答案】(x+2,y+1)三、解答题13.如图,三角形ABC的顶点坐标分别为A(-2,3),B(-3,0),C(-1,-1).将三角形ABC 平移后得到三角形A′B′C′,且点A的对应点是A′(2,3),点B,C的对应点分别是B′,C′.(1)点A,A′之间的距离是;(2)请在图中画出三角形A′B′C′.解:(1)4(2)如图所示,三角形A′B′C′即为所求.14.如图,已知坐标平面内的三个点A(1,3),B(3,1),O(0,0).(1)平移三角形ABO至三角形A1B1O1,当点A1和点B重合时,求点O1的坐标;(2)平移三角形ABO至三角形A2B2O2,需要至少向下平移超过单位,并且至少向左平移超过个单位,才能使三角形A2B2O2位于第三象限.解:(1)点O1的坐标为(2,-2).(2)3 315.在平面直角坐标系中,三角形A′B′C′是由三角形ABC平移后得到的,已知三角形ABC内部的一点P(x0,y0)经平移后的对应点为P′(x0+5,y0-2).(1)三角形A′B′C′是由三角形ABC如何平移得到的?(2)若已知A(-1,2),B(-4,5),C(-3,0),请写出A′,B′,C′的坐标;(3)在(2)的条件下,求三角形A′B′C′的面积.解:(1)三角形ABC先向右平移5个单位长度,再向下平移2个单位长度(或先向下平移2个单位长度,再向右平移5个单位长度)得到三角形A′B′C′.(2)A′(4,0),B′(1,3),C′(2,-2).(3)将三角形A ′B ′C ′补成如图所示的长方形,则S 三角形A ′B ′C ′=3×5-12×5×1-12×2×2-12×3×3=6.16.如图,第一象限内有两点P (m -3,n ),Q (m ,n -2),将线段PQ 平移,使点P ,Q 分别落在两条坐标轴上,求点P 平移后的对应点的坐标.解:设平移后点P ,Q 的对应点分别是P ′,Q ′.分两种情况:①P ′在y 轴上,Q ′在x 轴上,则P ′的横坐标为0,Q ′的纵坐标为0.∵0-(n -2)=-n +2,∴n -n +2=2.∴点P 平移后的对应点的坐标是(0,2).②P ′在x 轴上,Q ′在y 轴上,则P ′的纵坐标为0,Q ′的横坐标为0.∵0-m =-m ,∴m -3-m =-3.∴点P 平移后的对应点的坐标是(-3,0).综上可知,点P 平移后的对应点的坐标是(0,2)或(-3,0).17.如图,在平面直角坐标系中,A (1,4),B (3,2),O 为坐标原点,且OC ∥AB ,OC =AB .试用平移的知识求C 点的坐标,并求四边形ABCO 的面积.解:∵把A 点向左平移1个单位长度,再向下平移4个单位长度可得到原点O (0,0),又∵OC ∥AB ,OC =AB ,∴OC 可由AB 向左平移1个单位长度,再向下平移4个单位长度得到.∴点B (3,2)向左平移1个单位长度,再向下平移4个单位长度得到点C (2,-2).分别过A ,C 作x 轴的平行线,过B 作y 轴的平行线,交点为D ,E ,F ,G ,如图所示.S 四边形ABCO =S 长方形DEFG-S 三角形AOD -S 三角形COE -S 三角形BCF -S 三角形ABG =3×6-12×1×4-12×2×2-12×1×4-12×2×2=10.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.2.2用坐标表示平移
夯基达标
1.填空
⑴在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x ﹢a,y)(或),将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y﹢b)(或)。

⑵在平面直角坐标系中,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向(或向)平移个单位长度;如果把一个图形各个点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向(或向)平移个单位长度;
2.在平面直角坐标系中,把点P(-1,-2)向上平移4个单位长度所得点的坐标是。

3.将点A(4,3)向平移个单位长度后,其坐标的变化是( 6, 3 ) 。

4.已知点A(-4,-6),将点A先向右平移4个单位长度,再向上平移6个单位长度,得到A′,则A′的坐标为________.
5. 已知△ABC,A(-3,2),B(1,1),C(-1,-2),现将△ABC平移,使点A到点(1,-2) 的位置上,则点B,C的坐标分别为______,________.
6.△ABC中,如果A(1,1),B(-1,-1),C(2,-1),则△ABC的面积为________.
7.如图,一小船,将其向左平移6个单位长度,再向下平移5个单位长度,试确定A、B、
C、D、E、F、G平移后对应点的坐标并画出平移后的图形.
8. 如图所示,△A′B′C′是△ABC经过平移得到的,△ABC中任意一点P(x1,y1)平移后的对应点为
+6,y1+4),求A′,B′,C′的坐标.
P′(x
拓展演练
1. 坐标平面内有4个点A(0,2),B(-1,0),C(1,-1),D(3,1).
(1)建立坐标系,描出这4个点;
(2)顺次连接A,B,C,D,组成四边形ABCD,求四边形ABCD的面积.
2. 如图所示,△BCO 是△BAO 经过某种变换得到的,则图中A 与C 的坐标之间的关系是什么?如果△AOB 中任意一点M 的坐标为(x,y),那么它的对应点N 的坐标是什么?
3.在坐标平面内描出点A(2,0),B(4,0),C(-1,0),D(-3,0).
(1)分别求出线段AB 中点,线段AC 中点及线段CD 中点的坐标,则线段AB 中点的坐标与点A,B 的坐标之间有什么关系?对线段AC 中点和点A,C 及线段CD 中点和点C,D 成立吗?
(2)已知点M(a,0),N(b,0),请写出线段MN 的中点P 的坐标.
聚焦中考
1.(2009,哈尔滨)如图,在每个小正方形的边长均为1个单位
长度的方格纸中,有一个△ABC ,△ABC 的顶点与小正方形的顶
点重合.在方格纸中,将△ABC 向下平移5个单位长度,向右
平移3各单位长度得到△A 1B 1C 1,请画出△A 1B 1C 1
2. 如图.直角坐标系中,△ABC 的顶点都在网格点上.其中,A 点坐标为(2,一1),则△ABC 的面积为_____平方单位.
6.2.2用坐标表示平移
夯基达标
1.⑴(x ﹣a ,y ) (x ,y ﹣b )
⑵右 左 a 上 下 a
2.(﹣1,2)
3.右 2
4.(0,0)
5. (5,-3) (3,-6)
6.3
7. 把小船向右平移6个单位长度,再向下平移
5个单位长度,先确定关键点A 、B 、C 、D 、
E 、
F 、
G ,并把关键点分别向右平移6个单位
长度,向下平移5个单位长度.根据点的坐标的
变化规律,由A(1,2),B(3,1),C(4,1),D(5,2),E(3,2),F(3,4),G(2,3)可得平移后对应点为A ′(-5,-3),B ′(-3,-4)、C ′(-2,-4)、D ′(-1,-3)、E ′(-3,-3)、F ′(-3,-1)、G ′(-4,-2).描出这些对应点并按原来的顺次连结起来,可得平移后图形,如图。

8. A′(2,3),B′(1,0),C′(5,1)
拓展演练
1. (1)略 (2)四边形ABCD 的面积为6.5.
2. A 与C 的横坐标相同,纵坐标互为相反数,N 点的坐标为(x,-y).
3. 提示:(1)线段AB 中点的坐标为(242
+,0),即(3,0);对AC 中点和点A,C 及线段CD 中点和点C,D 都成立. (2)线段MN 的中点P 的坐标为(2
a b +,0) 聚焦中考
1.如图:
2. 5。

相关文档
最新文档