羟基化反应
氯化物的水解羟基化

11.2 氯化物的水解羟基化
(1)脂肪族氯化物的水解
RCl + NaOH
ROH + NaCl
在氯化物碱性水解的同时,也可能伴随有碱 性脱氯化氢生成烯烃的平行反应发生,例如:
CnH2n+1Cl + NaOH
CnH2n + NaCl + H2O
3
(2)芳香族氯化物的水解
Cl
H2O
Ca3(PO4)2/SiO2,400~450℃
12
(6)应用实例-2-萘酚的制备
H2SO4 160℃
NaOH
SO3H
Na2SO3
ONa
SO2 H2O
SO3Na OH
13
11.5 烃类氧化法制酚
异丙苯法制苯酚包括以下三步反应:
+ CH2 CH CH3
CH3
氧化
CH + O2
CH3
CH3 COOH CH3
酸分解
烷基化
CH3 COOH CH3
CH3 CH CH3
Fe2 + H2O2
. Fe3 + OH + OH
+ OH
H OH
Fe3
OH + Fe2 + H
17
11.1 概述
• 一、定义
• 向有机化合物分子中引入羟基的反应 称为羟基化反应,羟基化反应的产物是醇 类和酚类化合物(ROH或ArOH)。
1
二、羟基化的目的及用途
醇类和酚类化合物广泛应用于精细化工生产中。 含4~11个碳原子的脂肪醇是制备多种增塑剂的重要 原料,而十二醇以上的高级脂肪醇则用于制备表面活 性剂、化妆品和润滑剂等精细化学品。酚类化合物则 广泛用于合成树脂、农药、医药、染料、塑料等精细 化学品中。
精细有机合成12第十二章羟基化-文档资料

O H O H C H C H C H C l + N a O H 3 2 C H C H C H O H+ N a C l 3 2 O C H C H +a H O C H C l+ 2 2 N 3
• 由此可见,当氯衍生物与碱作用时,亲核取代与 消除反应都有可能发生,何者为主与许多因素有 关,如温度、介质、水解剂等,其中对反应选择 性起决定作用的是水解剂的选择。进行取代反应 要求采用亲核性较强的弱碱(如Na2CO3)作水解剂, 进行消除反应时要求采用亲核性较弱的强碱(如 NaOH)作水解剂。
– (4)碱的浓度和用量
• 磺酸盐碱熔时,磺酸盐与碱熔剂的理论用量比是 1:2(物质的量比),但实际上碱必须过量。
• 二、碱熔方法 • 1. 用熔融碱的常压碱熔(常压高温碱熔)
• 此法主要用于磺基活泼的情况,也可用于单磺酸 或多磺酸中的磺基完全被羟基置换。用这种方法 可以制得苯系和萘系许多酚类,重要的有苯酚、 间苯二酚、混合甲酚、1- 萘酚、2- 萘酚等。
• 2. 2-氨基-5-萘酚-7-磺酸(J酸)的生产
• J酸也是重要的染料中间体,它是由吐氏酸经磺 化、酸性水解和碱熔而制得的。 其化学反应过 程如下:
S O H 3 N H 2 S O H 3
发 烟 硫 酸 H O S
3
N H 2 S O H 3
酸 性 水 解 中 和 盐 析
磺 化
N a O S 3
NaO3S
NH2
NaOH
NaO3S
NH2
SO3Na
ONa
H3O
+
HO3S
NH2
OH
J酸
• 3. 用稀碱液的加压碱熔(加压中温碱熔)
烯烃双官能团化

烯烃双官能团化1. 简介烯烃是一类含有碳-碳双键的有机化合物,具有较高的反应活性和化学多样性。
双官能团化是指在烯烃分子中同时引入两个官能团,从而扩展其化学反应性和应用领域。
本文将介绍烯烃双官能团化的基本概念、常见反应类型及其应用。
2. 烯烃双官能团化的基本概念烯烃双官能团化是指在烯烃分子中引入两个不同的官能团,通常通过化学反应实现。
这种反应可以在烯烃分子的一个碳-碳双键上引入一个官能团,同时在另一个双键上引入另一个官能团。
通过这种方式,可以在烯烃分子中引入多种官能团,从而赋予其更多的化学反应性和应用价值。
3. 常见的烯烃双官能团化反应3.1 羟基化反应羟基化反应是将烯烃中的一个碳-碳双键转化为一个羟基官能团的反应。
常用的羟基化试剂有过氧化氢、水和苯酚等。
羟基化反应可以通过不同的催化剂和反应条件实现,例如过渡金属催化的氢氧化反应和非金属催化的水合反应。
羟基化反应在合成醇、酚和醚等化合物中具有广泛的应用。
3.2 卤素化反应卤素化反应是将烯烃中的一个碳-碳双键转化为一个卤素官能团的反应。
常用的卤素化试剂有氯、溴和碘等。
卤素化反应可以通过不同的催化剂和反应条件实现,例如卤化氢的加成反应和卤素化试剂的直接反应。
卤素化反应在合成卤代烃和卤代醇等化合物中具有广泛的应用。
3.3 羧基化反应羧基化反应是将烯烃中的一个碳-碳双键转化为一个羧基官能团的反应。
常用的羧基化试剂有酸酐、酸氯和酸酯等。
羧基化反应可以通过不同的催化剂和反应条件实现,例如过渡金属催化的氧化反应和非金属催化的酸酐反应。
羧基化反应在合成酸和酯等化合物中具有广泛的应用。
3.4 氨基化反应氨基化反应是将烯烃中的一个碳-碳双键转化为一个氨基官能团的反应。
常用的氨基化试剂有氨和胺等。
氨基化反应可以通过不同的催化剂和反应条件实现,例如金属催化的氨化反应和非金属催化的胺化反应。
氨基化反应在合成胺和氨基化合物中具有广泛的应用。
4. 烯烃双官能团化的应用烯烃双官能团化反应可以扩展烯烃的化学反应性和应用领域,为有机合成提供了重要的工具和方法。
羟基与羟基反应

羟基与羟基反应
羟基(-OH)是一种官能团,具有很强的亲水性和反应性。
在有机合成和天然产物中,羟基经常作为反应物或官能团参与反应。
羟基与羟基反应是一种常见的化学现象,其产物具有很高的选择性和多样性。
羟基与羟基反应的基本原理是通过互相取代或消除而生成新的化合物。
在反应中,羟基的氢原子被另一个羟基的氧原子所取代,或者两个羟基通过消除一个水分子而互相取代。
这种反应通常发生在具有不同化学反应性的化合物之间,例如酚、醇、酮等。
羟基与羟基反应的产物种类繁多,且具有很高的选择性。
这是因为在反应中,羟基的反应性主要取决于其所在分子的化学结构。
例如,在反应中,-OH基团对-O-键的取代会导致醇的生成,而-OH基团对-OH键的取代则会生成醚。
同样,-OH基团与-OH基团之间的取代反应可以生成酸。
羟基与羟基反应的另一个重要特点是反应条件的影响。
反应温度、反应物浓度以及反应物的结构等因素都会影响羟基与羟基反应的速率和产物的选择性。
在实际应用中,羟基与羟基反应常常需要在特定的反应条件下进行,以获得理想的产物。
羟基与羟基反应在自然界中也具有广泛的应用。
例如,在植物中,羟基与羟基反应与光合作用和水分运输密切相关。
同时,羟基与羟基反应还存在于许多天然产物中,如醇、酚、香料等。
这些天然产物对人类和动植物的健康都有着重要的意义。
总之,羟基与羟基反应是一种重要的化学现象,其产物具有很高的选择性和多样性。
在实际应用中,羟基与羟基反应需要在特定的反应条件下进行,以获得理想的产物。
固化剂与羟基反应机理 方程式

固化剂与羟基反应机理方程式
固化剂和羟基反应的机理可以通过以下方程表示:
固化剂 + 羟基→ 固化产物
其中,固化剂可以是多种化合物,例如异氰酸酯、环氧化合物等。
羟基是指含有一个或多个氢氧根离子(OH-)的化合物。
固化剂和羟基发生反应时,一般会形成共价键,使固化剂与羟基化合物结合在一起,形成固化产物。
具体的反应机理取决于具体的固化剂和羟基化合物。
以环氧固化剂和羟基化合物为例,其反应机理可以表示为:
环氧固化剂 + 羟基化合物→ 环氧基与羟基发生开环反应→ 开环产物 + 羟基
开环反应是指环氧基与羟基之间的亲核加成反应,形成开环产物。
该反应需要在碱性条件下进行,常常使用碱催化剂来促进反应。
可以看出,固化剂与羟基的反应机理是复杂的,涉及多个步骤和反应中间体。
具体的反应机理需要根据具体的化合物和反应条件进行深入研究和分析。
羟基化

HO3S OH
J酸
NH2
1
• 该法是在碱熔锅中加入45%的碱液和固碱,在 190~200℃和0.3~0.4MPa时,加入氨基J酸钠盐, 再在190~200℃保温反应6h,然后进行中和,酸 析得J酸。
– 思考:写出分别由氯苯和苯磺酸为原料制备 间硝基苯酚的合成方法。
1
第三节 有机化合物的水解
• 一、卤化物的水解 • 1. 脂肪族卤化物的水解
SO3Na ONa 2 NaOH
+
+
Na2SO3
+
H-OH
8
• 2. 用浓碱液的常压碱熔(常压中温碱熔)
• 萘系的某些多磺酸、氨基和羟基多磺酸可用70 ~ 80 %苛性钠溶液进行常压碱熔。反应温度是常压 下碱液的沸点(180 ~ 270℃)。此法可使萘多磺 酸中的一个磺基被羟基置换,而氨基和其他磺基 则不受影响。
第十二章 羟基化
1
第一节 概述
• 一、羟基化反应及其重要性
• 羟基化是指向有机化合物分子中引入羟基制得醇、 酚等物质的反应。 • 羟基化产物在精细化工中具有广泛的用途,主要 用于生产合成树脂、各种助剂、染料、农药、表 面活性剂、香料和食品添加剂等。另外,通过酚 羟基的转化反应还可以制得烷基酚醚、二芳醚、 芳伯胺和二芳基仲胺等许多含其他官能团的重要 中间体和产物。
NH2 + H2O + H2SO4
15%~ 20%硫 酸 200℃, 1.2~ 1.5MPa
OH + NH4HSO4
2
• 2. 碱性水解
• 在磺酸基碱熔时,如果提高碱熔温度,可以使萘 环上α 位的磺酸基和α 位的氨基同时被羟基所置 换。此法只用于变色酸(1,8-二羟基萘-3,6-二磺 酸)的制备。反应式如下:
羟基化反应.

一.概述: 1. 定义
羟基化反应:向分子中引入—OH的反应 2. 用途:用于制备醇、酚等
3. 引入-OH的方法
(1)加成 亲电加成
CH2=CH2 + H2SO4 → CH3CH2OSO3H CH2=CH2 + H2O → CH3CH2OH
亲核加成
O C
+ RMgX
H2O CHCH3 OH
量比 1 : 2.3
30min 90%~95%
H+,H2O
OH
60~80℃
(2)H酸的制备
新合成路线(日本)
四.芳伯胺和重氮盐的羟基化 1、 -OH置换-NH2 ① 芳伯胺酸性水解法 在稀硫酸、磷酸和盐酸中进行,用于萘胺及衍生物的 水解
② 碱性水解,在碱性熔融条件下将-NH2转化成-OH 变色酸
(3)碱熔时间和温度 碱熔的温度主要决定于磺酸的结构。
不活泼磺酸,用熔融碱在300~340℃进行常压碱 熔。一般在熔融碱中加完磺酸盐后数10分钟即到 终点。 温度过高或时间过长,都会增加副反应,但温 度太低会产生凝锅事故。
比较活泼的磺酸,可选用70%~80%的苛性钠溶 解,在180~270℃之间进行碱熔。 更活泼的萘系多磺酸,则可在20%~30%稀碱溶 液中进行加压碱熔,反应时间:10-20h.
HOCH2R + X -
主要讨论SN2,即双分子亲核取代/消除历程
SN2历程 E2历程
决速步骤 决速步骤
SN2、E2何者为主,是控制或提高反应选择性须解 决的问题
影响SN2选择性因素: 底物的结构 介质的性质(溶剂) 水解剂的碱性
提高SN2反应选择性,需满足: A. 底物结构为1°RX(直链) B. 低极性溶剂 C. 水解试剂碱性相对较弱,亲核性强 D. 温度高 底物卤代烃结构对SN2、E2反应选择性的影响:
羟基的衍生化反应

羟基的衍生化反应
羟基(-OH):
1、取代反应(包括分子间脱水,酯化)
2、分子内脱水,即消去
3、氧化(可以氧化成醛基,再进一步氧化成羧基)
醇羟基:
1.与活泼金属(如钠)置换.
2.与氢卤酸溶液取代,生成卤代烃和水.
3.在浓硫酸催化、加热时,可以分子内脱水生成烯烃.
4.在浓硫酸催化、加热(温度与上一个不同)时,可以分子间脱水形成醚.
5.在铜或银催化下,与被氧气氧化生成醛.
6.与羧酸(或无机含氧酸)在浓硫酸催化下酯化,形成酯.
7.被强氧化剂(如酸性高锰酸钾溶液、酸性重铬酸钾溶液)氧化,形成羧酸. 酚羟基:
1.与活泼金属(如钠)置换.
2.与碳酸根反应,生成酚氧负离子和碳酸氢根.
3.与氢氧化钠反应生成酚氧负离子和水.
4.被氧化剂氧化为醌.
5.与铁离子配位,形成六配位的紫色络合物.
*6.与羧酸酐反应形成酚酯(与羧酸不发生反应)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)RX水解 R-Cl+NaOH→ROH+NaCl
(3) 取代 芳磺基的水解或碱熔
SOON a H+
OH +H2SO4
OH
(4) 还原
RCOOR' Na + C2H5OH RCH2OH + R'OH
[H]
RCHO
RCH2OH
(5)氧化
+ KMnO4(稀) + OH-
HOCH2R + X -
主要讨论SN2,即双分子亲核取代/消除历程
SN2历程 E2历程
决速步骤 决速步骤
SN2、E2何者为主,是控制或提高反应选择性须解 决的问题
影响SN2选择性因素: 底物的结构 介质的性质(溶剂) 水解剂的碱性
提高SN2反应选择性,需满足: A. 底物结构为1°RX(直链) B. 低极性溶剂 C. 水解试剂碱性相对较弱,亲核性强 D. 温度高 底物卤代烃结构对SN2、E2反应选择性的影响:
HH HO OH
本章重点:通过亲核取代反应合成醇、酚的方法 包括:氯化物的水解
芳磺基的羟基置换 芳伯胺经重氮盐所发生的水解 芳环上的直接引入-OH
二.卤化物的水解——羟基化
1、氯化物的水解 历程:亲核取代 例如:
RX+NaOH→ROH+NaCl C5H11Cl+NaCl→C5H11OH+NaCl
③ NaHSO3水解 即某些芳伯胺在NaHSO3水溶液中,常压沸腾回流 100~104℃然后再加碱处理,即可完成-NH2被-OH的 置换反应
适用于易互变异构为亚胺式、容易和亚硫酸氢 钠形成加和物的萘系胺类衍生物
2、-OH置换重氮基(一般用重氮硫酸盐进行)
N2+. HSO4- H2O
量比 1 : 2.3
30min 90%~95%
H+,H2O
OH
60~80℃
(2)H酸的制备
新合成路线(日本)
四.芳伯胺和重氮盐的羟基化 1、 -OH置换-NH2 ① 芳伯胺酸性水解法 在稀硫酸、磷酸和盐酸中进行,用于萘胺及衍生物的 水解
② 碱性水解,在碱性熔融条件下将-NH2转化成-OH 变色酸
1、反应历程和动力学 亲核置换历程
反应历程分两步: (1)OH-负离子加成到与磺酸盐负离子相连的C原
子上,产生带有两个负电荷的中间络合物
决速步骤
(2)此中间络合物再同OH-反应得到酚盐负离子
其中,(1)是决速步骤,反应表现为二级反应
若中间体络离子转化成酚盐负离子为决速步骤,则 反应为三级反应
例如
(4) 碱的浓度和用量: 高温碱熔时,一般使用90%以上的熔融碱。 芳磺酸/碱的量比(mol) ,理论上1:2,实际上 1:2.5。 中温碱熔,一般使用70%-80%浓碱液,且碱过 量较多,有时可达1:6-8
4. 应用实例 (1)2−萘酸酚的制备
SO3Na
285~320℃
ONa
+NaOH(熔融)
RX水解反应中微量醚生成的原因:
举例 ①丙烯的次卤取代制环氧丙烷
CH3CH=CH2 + HO Cl
-HCl
石灰乳 CH3
CH CH2 O
CH3CHCH2Cl OH
②由环氧氯丙烷制甘油
(2)芳香族卤代烃的水解
Cl 350~370℃
+ 2NaOH (10%水溶液) 20MP a,Cu催 化剂
ONa
一般难发生。但当芳环上连有强吸电子基团时,反 应易发生
反应中,邻硝基氯苯与NaOH的量比为1:2.5,反 应时间为8h,反应完成后酸化至pH=4.5
O2N
Cl NO2
NO2
Na2CO3 35℃
O2N
ONa NO2
NO2
O2N
OH NO2
NO2
注意:卤代烃的水解反应为两相反应,加强机械搅 拌有利于反应进行。
RX结构不同,水解速度不同 水解反应中氯化物的活性:
常用的水解试剂: NaOH 、Ca(OH)2、Na2CO3 与水解竞争副反应:β——消除反应
2、氯化物水解过程与反应选择性的控制 (1)脂肪族RX水解反应历程:SN1、SN2 竞争反应:β——消除反应,历程:E1、E2
RX + OH -
R HO C X
3.应用实例 ①由环氧氯丙烷制甘油 ②由硝基苯制硝基苯酚
Cl NO2 10%NaOH
1MPa,145~150℃
OH NO2
三.芳磺酸盐的碱熔
1、定义:芳磺酸盐在高温下与苛性碱作用,从而使 SO3H被-OH置换的反应。
反应特点: 需高温(溶解态苛性钠/钾),T>300℃ 大量使用强酸、强碱 H2SO4、NaOH(s) 废酸多,不适用于芳环上含-NO2、-Cl等基团的芳 磺酸的碱熔 用途: 酚类生产,如H-酸、J-酸、γ-酸等
芳环上有供电子基,如−OH、−NH2能使磺酸钝 化,不利于碱熔。 因此,间氨基苯磺酸的碱熔需用活泼性较强的 苛性钾-苛性钠混合物作碱熔剂。
(2)无机盐的影响
芳磺酸碱盐反应体系均会含有Na2SO4、NaCl等无 机盐。这些无机盐在熔融苛性碱中几乎不溶解,所 以若无机盐含量太少,反应体系就会变得很稠,物 料的流动性变差甚至局部过热甚至导致反应物焦化 或燃烧。 因此,碱熔时,磺酸盐中无机盐含量一般控制在 <10%。
羟基化反应
一.概述: 1. 定义
羟基化反应:向分子中引入—OH的反应 2. 用途:用于制备醇、酚等
3. 引入-OH的方法
(1)加成 亲电加成
CH2=CH2 + H2SO4 → CH3CH2OSO3H CH2=CH2 + H2O → CH3CH2OH
亲核加成
O C
+ RMgX
H2O CHCH3 OH
SO3H
SO3H
SO3H
二级反应
苯磺酸碱熔接近于三级 1——萘磺酸碱熔,则处于2-3级之间
3. 影响因素 (1)芳磺酸的结构
芳磺酸碱熔反应:亲核置换反应。 芳环上有吸电子基,易于碱熔; 但硝基芳磺酸(高温下NO2的氧化作用会使反 应复杂化),氯代芳磺酸(−Cl比−SO3H更易被 OH-取代)不适合碱熔
(3)碱熔时间和温度 碱熔的温度主要决定于磺酸的结构。
不活泼磺酸,用熔融碱在300~340℃进行常压碱 熔。一般在熔融碱中加完磺酸盐后数10分钟即到 终点。 温度过高或时间过长,都会增加副反应,但温 度太低会产生凝锅事故。
比较活泼的磺酸,可选用70%~80%的苛性钠溶 解,在180~270℃之间进行碱熔。 更活泼的萘系多磺酸,则可在20%~30%稀碱溶 液中进行加压碱熔,反应时间:10-20h.