10第十章地下水动态与均衡 (1)

10第十章地下水动态与均衡 (1)
10第十章地下水动态与均衡 (1)

第十章地下水动态与均衡

地下水动态:groundwater regime

地下水均衡:groundwater balance (budget)

10.1 地下水动态与均衡的概念

地下水动态––––地下水各种要素(水位、水量、化学组分、气体成分、温度、微生物等)随时间的变化,称为地下水动态

地下水均衡––––某一时段、某一范围内地下水水量(盐量、热量等)的收支状况,称为地下水均衡。

地下水动态与均衡的关系是:地下水动态是地下水均衡的外在表现,地下水均衡是地下水动态的内在原因。

地下水动态的研究包括:影响因素、类型及成果分析。

地下水均衡的研究包括:均衡区和均衡期的确定,均衡方程式的确定,各收支项的求取,均衡计算结果的校核与分析。

地下水要素之所以随时间发生变动,是含水层(含水系统)水量、盐量、热量、能量收支不平衡的结果。例如,当含水层的补给水量大于其排泄水量时,储存水量增加,地下水位上升;反之,当补给量小于排泄量时,储存水量减少,水位下降。

研究目的意义:

地下水动态监测及成果分析,可以解决一系列理论与实际问题:①检验并完善前期水文地质研究结论;②查明地下水资源数量、质量及其变化;③为数学模拟提供依据;④为拟定合理的地下水利用、防治方案及措施提供依据;⑤检验实施中的利用、防治方案及措施的合理性。

地下水均衡研究,可以为拟定合理的地下水利用、防治方案及措施提供定量依据,检验并完善利用、防治方案及措施。

目前:研究较多的是水位动态,水量均衡。

10.2 地下水动态的影响因素

1.影响地下水动态的因素

地下水动态的本源因素是随时间变动的因素,包括:气象(气候)因素、水文因素、生物因素、地质营力因素、天文因素等。

1)气象因素:

①降水→含水层水量增加→水位抬升→水质变淡;

②蒸发→潜水含水层水量减少→水位降低→水质变咸;

③气象因素具有季节性的变化,地下水动态也具有季节性变化;

④气候还存在多年的周期性变动,如周期为11年的太阳黑子影响丰水年与枯水年从而

使地下水位呈现多年周期性变化。

在分析气象因素对潜水位的影响时,必须区分潜水位的真变化与伪变化。潜水位变动伴随相应的潜水储存量的变化,这种水位变动是真变化。某些并不反映潜水水量增减的潜水位变化,便是伪变化。例如,当大气气压开始降低时,暴露于大气中的井孔中的地下水位却因气压降低而水位抬升。

对于重大的长期性地下水供排设施,应当考虑多年的地下水位与水量的动态变化。供水工程应根据多年资料分析地下水位最低时水量能否满足要求;排水要考虑多年最高地下水位时的排水能力。

2)水文因素:

地表水体补给地下水而引起地下水位抬升时,随着远离河流,水位变幅减小,发生变化的时间滞后。

影响范围一般在数公里~ 数百公里。此范围以外主要受气候因素的影响。

3)其他因素影响下的地下水动态

地震、固体潮、潮汐、外部荷载等都会引起地下水要素变化。

4)人为活动影响下的地下水动态

通过新增的补给源或排泄去路而影响地下水的动态。

如钻孔采水(开采地下水),矿坑排水,破坏了地下水的天然平衡,使地下水的动态发生变化。

新建水库,利用地表水灌溉,使地下水位上升,影响地下水的天然动态。

5)地质因素:

包气带的厚度与岩性:

①厚度:小,降水到达地下水的时间短→水位上升快;大,降水到达地下水的时间长→水位上升慢;

②岩性:

a. 渗透性:K小,水位滞后降水的时间长;K大,水位滞后降水的时间短;

b. 给水度:μ小,水位变幅大;μ大,水位变幅小。

10.3 地下水动态类型

参照阿利托夫斯基等(1956)的分类,提出如下地下水天然动态类型:入渗—径流型、径流—蒸发型、入渗—蒸发型、入渗—弱径流型。

1.入渗—径流型动态,接受降水及地表水补给,以径流方式排泄;地下水化学作用以溶滤为主。

动态的特点是:年水位变幅大而不均,由补给区到排泄区,年水位变幅由大到小。水质季节变化不明显,水土向淡化方向演变。

2.径流—蒸发型动态,以侧向径流补给为主,以蒸发方式排泄;地下水化学作用以浓缩为主。

动态的特点是年水位变幅小而均匀,水质缺乏明显季节变化,水土向盐化方向演变。3.入渗—蒸发型动态,以接受当地降水补给为主,径流微弱,就地蒸发排泄;地下水化学作用为溶滤—浓缩间杂发生。

4.入渗—弱径流型动态,以接受当地降水补给为主,径流和蒸发均微弱,地下水化学作用以溶滤为主。

上述四大类型,难以完全概括我国复杂的地下水动态,需要根据实际情况加以变换应用。

10.4 天然条件下的地下水均衡

1.概念

地下水均衡––––指某个地区,某一时段内,地下水水量(盐量、热量)收入与支出之间的数量关系。

均衡区––––进行均衡计算所选定的地区。一般为一个完整的水文地质单元或者为一个完整的地下水系统。

均衡期––––进行均衡计算的时间段称作均衡期。一般为一年,或若干年。

水均衡(水量平衡)研究的实质:用质量守恒定律去分析参与水循环的各要素之间的数量关系。

正均衡––––地下水水量的收入大于支出,表现为地下水储存量的增加,称为正均衡。

负均衡––––支出大于收入,地下水储存量减少,称作负均衡。

均衡状态:收入=支出,地下水储存量保持平衡。

进行均衡研究的目的:分析收入项,支出项→列出水均衡方程式→补给量(资源评价)→正、负均衡?→求某些未知项(或参数:μ、S等)。

关于水均衡的研究:目前主要是水量均衡的研究。

2.水均衡方程式(天然状态下)

1)一般收入项(A)包括:

①大气降水量(X);

②地表水流入量(Y1);

③地下水流入量(W1)等。

2)支出项(B):

①地表水流出量(Y2);

②地下水流出量(W2);

③蒸发量(Z2)。

3)均衡期水的储存量的变化量为Δω

4)则水均衡方程式为:

A–B=Δω,其中:

μΔh,对于潜水

Δω

SΔh,对于承压水

式中:Δω为单位时间、单位面积储存量的变化量。

5)根据具体情况列均衡方程:

有些项可以省略,方程可以简化。

10.5 人为活动影响下的地下水均衡

人类活动对地下水均衡的影响

水量均衡方程式:考虑人为影响下补给量(收入)、排泄量(支出)。

10.6 大区域地下水均衡研究中的一些问题

4.大区域地下水均衡研究需要注意的问题

注意避免上、下游之间,潜水、承压水之间,以及地下水与地表水之间水量的重复计算。思考题

1.地下水动态?

2.地下水均衡?

3.均衡区?

4.均衡期?

5.正均衡?

6.负均衡?

7.

8.均衡方程?

9.试比较:接受降水及河流补给时,地下水位的响应有哪些共同点与不同点?

10.河流补给地下水时,潜水和承压水水位的响应有何不同?为什么?

11.“河流对地下水水质和温度的影响范围,通常小于对地下水位的影响范围。”原因是什

么?

12.“同一含水层接受补给时,补给区的水位变幅大,排泄区的水位变幅小”,为什么?

13.潜水位的真、伪变化?

14.地下水要素之所以随时间发生变动,是含水层、、、

15.收支不平衡的结果。

16.潜水动态受季节影响明显,雨季补给量排泄量,潜水位;旱季补给

量排泄量,潜水位。

17.供水工程应根据多年资料分析地下水位最时水量能否满足要求;排水要考虑

多年最地下水位时的排水能力。

18.陆地上某一地区天然状态下地下水量收入项一般包括、、。

19.陆地上某—地区天然状态下地下水量支出项一般包括、、。

20.影响地下水动态的因素主要有哪些?

21.影响地下水动态的气象因素主要有哪些?如何影响?

22.影响潜水动态的地质因素有哪些?如何影响?

23.写出潜水均衡方程?并说明各项的意义?

24.说明地下水动态的形成机制?

25.潜水动态分几种类型?各类型有何特征?

26.人类活动是如何影响地下水动态的?

27.研究地下水动态与均衡有哪些意义?

28.水均衡研究的实质?

29.运用水均衡方法进行大区域地下水均衡研究需要注意的问题?

30.某水源地位于一正方形区域内,边长为10公里,区域面积为100平方公里。多年平均

降水量为800毫米,降水入渗系数为0.2。地下水位埋深大,无蒸发。周边均为补给边界,单宽流量为每天每米5立方米,水源地开采量为每年1千万立方米,该水源地是正均衡还是负均衡?

31.某水源地开采区为正方形,边长为15公里,区域面积为225平方公里。多年平均降水

量为740毫米,降水入渗系数为0.2,开采区西部和北部约180平方公里的地区,地下水位埋深2—3米,蒸发强度为每天每平方米0.00008立方米,其它区无蒸发,南部和西部为补给边界,其单宽流量分别为每天每米5立方米和每天每米10立方米,北部和东部为隔水边界,水源地开采量为每天700000立方米,进行均衡计算,确定该水源地是正均衡还是负均衡。

地下水动态的形成因素及类型

地下水动态的形成因素及类型 地下水动态是指地下水的水位、水温、水量及水化学成分等要素随时间和空间有规律的变化。它是自然和人为因素,如气候、水文、地质、土壤、生物及人类活动等对地下水综合作用的过程。 地下水均衡是指地下水的水量或盐分含量在某个时期和某个地段内数量上的增减变化关系。地下水的动态与均衡是一个有机联系的整体,动态是均衡的外部表征,而均衡则是导致动态变化的内在机理。 一、地下水动态的形成因素 (一)自然因素 自然因素中的气候和水文因素对潜水或浅层水的动态形成起着主要的作用。地质因素对深层水的影响则是很大的。土壤和生物因素只对距地表很浅的潜水动态的形成起一定的作用。 1、气候因素:是地下水动态形成的主要影响因素,具有普遍性、分带性及周期特点。地过浅部的地下水普遍明显地受气候因素的制约,呈现出分带规律。其中,降水和蒸发直接地影响着地下水的补给和排泄,所以随着时间的变化,地下水位、水量及水质也跟随着变化。气温不仅影响降水形式和蒸发强度,也会引起地下水温的变化,并使水的化学成分、矿化度和物理性质发生变化,但气温只能影响地过浅部的地下水。一般在20-30m以下就受地温的控制。 2、水文因至少:对地下水动态的形成和影响,从区域上来看是局部的。当地表水与地下水有水力联系时,其联系方式有: 1)地表水长期地补给地下水。例如,河流上游的岩溶发育渗漏段;河流流过山前扇形地的渗透段;河流下游的高河床段等。 2)地下水长期地补给地表水。例如,河流的上游地段;干旱区多数的内陆湖泊。 3)丰水期地表水补给地下水,枯水期地下水补给地表水。例如,河流中游、小型山间盆地附近等。 在岸边附近,地表水对地下水的动态影响比较明显,尤其是在靠近地表水体的地段,其地下水变化较大而又快。反之,则变化小而缓慢。动太变化的影响范围取决于地表水动态变幅的大小及近岸含水层岩性结构等因素,受到波胩的宽度常常由数百米至1000—2000米。 地表水渗补地下水会使水质发生淡化或恶化,故对水化学动态有一定的影响。 3、地质因素:地质因素中除灾变性、偶然发生的急剧变动(如地震、火山、滑坡等作用)外,其它的地质作用大都是极其缓慢而不明显的,只在地质历史的演进中表现出来,而且没有周期性变化的特点。 4、土壤和生物因素 1)土壤因素:当潜水埋藏很浅,并参与成壤作用时,土壤的成分对潜水的化学成分的改变是相当明显的,例如在土壤盐渍化和沼泽化地区,土壤与潜水相互作用,使潜水的含盐情况表现出季节与多年的变化。 2)生物因素:主要是指被对潜水动态的影响,在补给和排泄两个方面均有反映。例如在丛林区,植被不仅促成水分的积聚和强化渗入,同时也涉及到补给期的长短,另外,丛林植被通过根系吸收大量的地下水,再从叶面蒸发出去使潜水位降低。 5、人为因素:近代人类频繁活动引起的地下水天然动态的改变。 二、地下水动态类型 1、分水岭型:在大气降水渗入,蒸发和地下迳流的影响下形成。 2、沿崖型:主要受地表水体(河流、湖泊和海洋)的影响而形成。

动态规划讲解大全(含例题及答案)

动态规划讲解大全 动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。1957年出版了他的名著Dynamic Programming,这是该领域的第一本著作。 动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。 虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。 动态规划程序设计是对解最优化问题的一种途径、一种方法,而不是一种特殊算法。不象前面所述的那些搜索或数值计算那样,具有一个标准的数学表达式和明确清晰的解题方法。动态规划程序设计往往是针对一种最优化问题,由于各种问题的性质不同,确定最优解的条件也互不相同,因而动态规划的设计方法对不同的问题,有各具特色的解题方法,而不存在一种万能的动态规划算法,可以解决各类最优化问题。因此读者在学习时,除了要对基本概念和方法正确理解外,必须具体问题具体分析处理,以丰富的想象力去建立模型,用创造性的技巧去求解。我们也可以通过对若干有代表性的问题的动态规划算法进行分析、讨论,逐渐学会并掌握这一设计方法。 基本模型 多阶段决策过程的最优化问题。 在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。当然,各个阶段决策的选取不是任意确定的,它依赖于当前面临的状态,又影响以后的发展,当各个阶段决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线,如图所示:(看词条图) 这种把一个问题看作是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问题就称为多阶段决策问题。 记忆化搜索 给你一个数字三角形, 形式如下: 1 2 3 4 5 6 7 8 9 10 找出从第一层到最后一层的一条路,使得所经过的权值之和最小或者最大. 无论对与新手还是老手,这都是再熟悉不过的题了,很容易地,我们写出状态转移方程:f(i, j)=a[i, j] + min{f(i+1, j),f(i+1, j + 1)} 对于动态规划算法解决这个问题,我们根据状态转移方程和状态转移方向,比较容易地写出动态规划的循环表示方法。但是,当状态和转移非常复杂的时候,也许写出循环式的动态规划就不是那么

地下水期末复习题

一、填空题 1、将岩土中的空隙作为地下水储存场所与运动通道来研究时,可将空隙分为三 大类;包括松散岩土中_孔隙_、坚硬岩石中的_裂隙_及可溶性岩石中的_溶隙__。 2、岩石中空隙中的液态水根据水分子受力状况可分为结合水、毛细水、 重力水。 3、自然界水分的转化是通过水循环实现的,而在水循环过程中降水、蒸 发、径流是三个主要环节,称为水分循环的三要素。 4、承压水是充满于两个隔水层间的含水层中,具有静水压力的重力水。 如未充满水则称为无压层间水。 5、地表水与地下水相互转化,互为补排关系,可以通过地下水等水位线来 判明。 6、渗透系数K值的大小取决于组成含水层颗粒大小及胶结密实程度。 7、达西定律是揭示水在多孔介质中渗流规律的实验规律,也称现行渗 透定律。 9、由于岩土空隙的形状、尺度和连通性不一,地下水在不同空隙中或同一空 隙的不同部位,其运动状态是各不相同的,地下水的运动状态可以区分为层流和稳流两种流态。 10、在有垂直入渗补给的河渠间潜水含水层中,通过任一断面的流量不相等。 11、有入渗补给的河渠间含水层中,只要存在分水岭,且两河水位不相等时, 则分水岭总是偏向高水位一侧。如果入渗补给强度W>0时则浸润曲线的形状为椭圆曲线,当W<0时则为双曲线,当W=0时则为抛物线。 二、判断题 1、空隙度与颗粒大小无关。(√) 2、分选性愈差,大小愈悬殊,孔隙度愈小(√) 3、表征岩土容水状况的水分指标,除容水度外,还有饱和度和饱和差。(√) 4、决定地下水流向的是位置的高低。(×) 5、某含水层的渗透系数很大,故可以说该含水层的出水能力很大。(√)

6、弹性贮水系数既适用于承压含水层,也适用于潜水含水层。(√) 7、达西定律是层流定律。(×) 8、弹性贮水系数既适用于承压含水层,也适用于潜水含水层。(√) 9、达西定律公式中不含有时间变量,所以达西公式只适用于稳定流。(×) 10、在均质各向异性含水层中,各点的渗透系数都相等。(√) 三、选择题 1、决定地下水流向的是:(C ) A.压力的大小 B.位置的高低 C.水头的大小 D.含水层类型 2、大气降水入渗转化为地下水时,其间土壤含水率有明显降低的是:(B ) A.饱和区 B.过渡区 C.传导区 D.湿润区 3、对地下水动态的影响起主导作用的因素是:(A ) A.气候因素 B.水文因素 C.地质因素 D.植被因素 4、在底版水平,无入渗、无蒸发的河间潜水含水层中,当渗流为稳定流,两 侧河水位相等时,浸润曲线的形状为:(B) A.双曲线 B.水平直线 C.抛物线 D.椭圆形曲线 5、在有入渗补给,且存在分水岭的河间含水层中,已知左河水位标高为H1, 右侧水位标高为H2,两河间距为L,当H1>H2时,分水岭:(B) A.位于L/2处 B.靠近左河 C.靠近右河 D.不存在 6、当河渠间含水层无入渗补给,但有蒸发排泄(设其蒸发强度为ε)时,则 计算任一断面的单宽流量公式只要将式:中的W用( 3 )代替即可。 1)ε;(2)0;(3)-ε;(4)ε十W 四、名词解释 1、地下水文学: 是研究地下水的形成、运动、量和质、开发利用以及管理的一门学科。 2、持水性: 岩土在重力作用下仍能保持一定水量的性能。 1、地下水动态: 由地下水补给和排泄不平衡引起的地下水水位、流量等的变动,以及地下水温、水化学等水文因素的变动过程,是为地下水动态。

地下水动态长期观测

地下水动态长期观测 一、地下水动态长期观测的目的与任务 (一)相明各种不同因素的综合作用对地下水的水位、水量、物理性质、化学成分以及细菌成分的影响变化。通过地下水动态长期观测,可以了角地下水开采量和水位降深之间的关,以利于合理的调整开采水量,或者有计划地对地下水进行人工回灌。(二)相清地下水与地表水体之间的动态联系。 (三)提供地下水资源评价所需要的水文地质参数。通过长期观测工作后,相明不同水文地质单元、不同含水层的地下水动态规律,得出地下水动态要素随时间和空间变化的资料,以利于地下水资源计算和提出水资源管理措施等。 二、长期观测站网的建立和组织 根据研究地下水动态的具体任务不同,水文地质观测站网一般分为两种: 区域性的水文地质观测站网:也叫基本网,积累主要水文地质单元中地下水动态的多年观测资料,以查明区域性地下水动态规律。 专门性的水文地质观测站网:是为专门目的或特殊要求而建立的观测站网,常常是在水文地质勘察工作中按要解决的具体问题而组织观测的。 (一)观测点的选择 观测点是观测站网的基本单位,应充分利用已有钻孔、水井及泉作为观测点,而且一定要选择水文地质条件有代表性而且井(孔)结构、地层剖面和井深都清楚,无人为干扰,能作长期使用的井(孔)。一般不专门施工坦目的的观测孔。利用泉作观测点要注意泉水协态的代表性和典型性以及其涌水量观测是否方便等。 (二)观测占的结构与安装 长期观测孔的结构可以分为完整孔与不完整孔。后者的深度最少要达最低水位以下数米。孔径一般不要小于200mm。对第四系含水层的潜水或承压水观测孔,在上部要安装观测套管,含水层部位要安装过滤管,底部要安装沉淀管,孔口要加保护帽。对分层观测的井(孔)要严格进行止水,保证止水的位置正确。分层观测井(孔)可采用同孔并列或同心式观测管设置。基岩观测孔可直接将观测管固定在孔底基岩面上,下部不再下管。观测孔安装时,在下管前要实测井深,为了防止从孔口掉入杂物,应将孔口管高出地面0.5m,并在孔口加盖上锁。另外,还要防管周围严封,并在孔口装置固定的水准点。 泉的观测安装是根据泉出露处的地形和涌水量大小,本着易于量测水温、水量,装置可就简单而固定即可。 (三)观测点网的布设 观测点网的布置应根据不同的观测目的结合观测区的地质、水文地质、地貌条件,以最少的点控制较大面积为原则,具体布设如下: 1、观测线要通过大型集中供水区,应在区中心布置两排观测点,分别平行与垂直地下水流 向。主要观测线要延伸到区域地下水区域下降漏斗范围之外。如果两个水源地很邻近或水源地的附近有矿区,可以两个漏斗之间的中心线方向布置观测线。 2、在河谷地区,应垂直河流延至分水岭之间布置观测线,线上各观测点应分别控制不同的 地貌和水文地质单元,并在不同单元的交界处适当加密观测点距。 3、在山前冲洪积扇地区,观测线应沿扇轴方向布置,观测孔要分别控制迳流带、溢出带和 垂直交替带。为了解扇间地带的水文地质条件也可通过不同的相邻的冲洪扇方向布置横向辅助观测线。 4、为了查明和含水层之间的水力联系,要分层设置观测孔。对于不同成因类型的含水层也

浅层地下水动态及其影响因素

浅层地下水动态及其影响因素 前言研究目的与意义 阐述海岸带地下水动态监测之作用与意义(其一,对土壤盐分运移的影响;其二,对植被空间分布和演替的影响;其三,对农田排水),评述前人在该地区的工作,结合拟展开的工作,重点分析已有的不足,点名本次工作的意义 2 材料与方法 地下水监测井空间布点的原则、监测的方法,所可能获得数据和分析方法1.监测井的布设 根据不同的土地利用方式在黄河三角洲海积冲积平原区布置了7口地下水动态监测井,其中有5口井分布于东营市垦利县的黄河口镇,剩下的2口井位于河口区的孤岛镇(图1和表1)。之中的3口井中安装有地下水动态监测系统(型号为ecolog OTT 800),能够实时监测浅层地下水的水位温度和盐分动态,设备以30分钟为间隔监测地下水动态,每天监测48次,通过GPRS信号向位于中国科学院烟台海岸带研究所内的服务器发送数据,分别在每天的0时、6时、12时、18时各发送一次相应时间间隔内的12个数据文件。每个数据文件包含7组内容,分别为地下水位(m),地下水温度(℃),电池电压(伏特V,可以指示设备电量及工作状态),地下水电导率(ms/cm),地下水盐度(ppt),地下水总溶解固体(TDS,g/L)和数据传送的GPRS移动信号。其中电压和移动信号每6小时测一次,地下水盐度和TDS是由电导率根据经验公式计算出的,此过程在监测设备内完成。其余5口井还未安装在线监测设备。

图1监测井井位分布图 在黄河口镇中心轴线沿着黄河由东至西布置5口井,分别为井2、井7、井3、井1和井4,它们之间直线距离分别为3.67Km、1.89Km、9.74Km和1.63Km。井2位于中国科学院黄河三角洲湿地生态环境试验站内,井1在黄河农场的大田内,这两口井都设有地下水动态监测设备(ecolog OTT800),安装时间分别为2013年10月和2014年5月。井3、井4、井7位于承包农户的农田内。相应的位置关系可见表1。 孤岛镇的两口观测井(井5、井6)毗邻,直线距离约260m,距黄河故道约2km。井5旁为稻田,安装有地下水动态监测系统(ecolog OTT800),安装时间为2014年7月; 井6则在荒地内,主要植物为芦苇。

2设计动态规划算法的主要步骤为

2设计动态规划算法的主要步骤为: (1)找出最优解的性质,并刻划其结构特征。(2)递归地定义最优值。(3)以自底向上的方式计算出最优值。(4)根据计算最优值时得到的信息,构造最优解。 3. 分治法与动态规划法的相同点是:将待求解的问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。 两者的不同点是:适合于用动态规划法求解的问题,经分解得到的子问题往往不是互相独立的。而用分治法求解的问题,经分解得到的子问题往往是互相独立的。 贪心选择算法与动态规划算法的异同点:同:都要求问题具有最优子结构性质;异:动态规划算法为自底向上的方式解各子问题,贪心算法为自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每做一次贪心选择问题就转换为规模更小的字问题。 6. 分治法所能解决的问题一般具有的几个特征是:(1)该问题的规模缩小到一定的程度就可以容易地解决; (2)该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质; (3)利用该问题分解出的子问题的解可以合并为该问题的解; (4)原问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。 P:也即是多项式复杂程度的问题。 NP就是多项式复杂程度的非确定性问题。 NPC(NP Complete)问题 ADT 抽象数据类型 分析问题→设计算法→编写程序→上机运行和测试 算法特性1. 确定性、可实现性、输入、输出、有穷性 算法分析目的2. 分析算法占用计算机资源的 情况,对算法做出比较和评价,设计出额更好 的算法。 3. 算法的时间复杂性与问题的规模相关,是 问题大小n的函数。 算法的渐进时间复杂性的含义:当问题的规模 n趋向无穷大时,影响算法效率的重要因素是 T(n)的数量级,而其他因素仅是使时间复杂度 相差常数倍,因此可以用T(n)的数量级(阶) 评价算法。时间复杂度T(n)的数量级(阶)称为 渐进时间复杂性。 最坏情况下的时间复杂性和平均时间复杂性有什么不同? 最坏情况下的时间复杂性和平均时间复杂性 考察的是n固定时,不同输入实例下的算法所 耗时间。最坏情况下的时间复杂性取的输入实 例中最大的时间复杂度: W(n) = max{ T(n,I) } , I∈Dn 平均时间复杂性是所有输入实例的处理时间 与各自概率的乘积和: A(n) =∑P(I)T(n,I) I∈Dn 为什么要分析最坏情况下的算法时间复杂 性?最坏情况下的时间复杂性决定算法的优 劣,并且最坏情况下的时间复杂性较平均时间 复杂性游可操作性。 1.贪心算法的基本思想? 是一种依据最优化量度依次选择输入的分级处理方法。基本思路是:首先根据题意,选取一种量度标准;然后按这种量度标准对这n个输入排序,依次选择输入量加入部分解中。如果当前这个输入量的加入,不满足约束条件,则不把此输入加到这部分解中。 贪心选择算法与动态规划算法的异同点:同:都要求问题具有最优子结构性质;异:动态规划算法为自底向上的方式解各子问题,贪心算法为自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每做一次贪心选择问题就转换为规模更小的字问题。

10第十章地下水动态与均衡 (1)

第十章地下水动态与均衡 地下水动态:groundwater regime 地下水均衡:groundwater balance (budget) 10.1 地下水动态与均衡的概念 地下水动态––––地下水各种要素(水位、水量、化学组分、气体成分、温度、微生物等)随时间的变化,称为地下水动态 地下水均衡––––某一时段、某一范围内地下水水量(盐量、热量等)的收支状况,称为地下水均衡。 地下水动态与均衡的关系是:地下水动态是地下水均衡的外在表现,地下水均衡是地下水动态的内在原因。 地下水动态的研究包括:影响因素、类型及成果分析。 地下水均衡的研究包括:均衡区和均衡期的确定,均衡方程式的确定,各收支项的求取,均衡计算结果的校核与分析。 地下水要素之所以随时间发生变动,是含水层(含水系统)水量、盐量、热量、能量收支不平衡的结果。例如,当含水层的补给水量大于其排泄水量时,储存水量增加,地下水位上升;反之,当补给量小于排泄量时,储存水量减少,水位下降。 研究目的意义: 地下水动态监测及成果分析,可以解决一系列理论与实际问题:①检验并完善前期水文地质研究结论;②查明地下水资源数量、质量及其变化;③为数学模拟提供依据;④为拟定合理的地下水利用、防治方案及措施提供依据;⑤检验实施中的利用、防治方案及措施的合理性。 地下水均衡研究,可以为拟定合理的地下水利用、防治方案及措施提供定量依据,检验并完善利用、防治方案及措施。 目前:研究较多的是水位动态,水量均衡。 10.2 地下水动态的影响因素 1.影响地下水动态的因素 地下水动态的本源因素是随时间变动的因素,包括:气象(气候)因素、水文因素、生物因素、地质营力因素、天文因素等。 1)气象因素: ①降水→含水层水量增加→水位抬升→水质变淡; ②蒸发→潜水含水层水量减少→水位降低→水质变咸; ③气象因素具有季节性的变化,地下水动态也具有季节性变化;

地下水动态均衡研究方法

地下水动态均衡研究方法 来源:地大热能2015-07-24 地下水动态长期以,观测网的布置: 动态观测网分区域性基本观测网和专门性观测网两种。 1、选择不同气候带中有代表性的各种水文地质单元,设置由泉、井、孔等观测点组成的观测肉。 2、以主干观测线控制各单元中的主要动态类型,按当地水文地质变化最大的方向布置观测线。对次要的、有差异性的地段和特殊变化点上设辅助性观测点。也常布置垂直地表水体的观测线。 3、观测肉应与均衡研究结合起来。 主要技术要求常用的观测点为钻孔和泉。此外还有其它地下水、地表水或气象要素等的观测点。观测孔结构取决于含水层性质、观测层数和内容。如松散层应下过滤器,一孔观测多层则在求分层止水,孔径应保证能定置进各层测水位管。孔深应保证观测到最低水位。选泉点应考虑测流方便,并能安设测流装置。有时还应建防污设施。所有观测点应有水文地质特征、观测和利用等历史资料。经常的观测项目有地下水水位,泉、自溢孔和生产井的流量,水温及水化学成分等。必要时还需观测地表水及气象要素等。 观测频度取决于观测内容及要素变化快慢。通常,水位、水温、流量每5日观测1次。地表河和地下河流洪峰时期,可加密至每日两次。同一水文地抩单元力求对和点同时观测,否则应在季节代表性日期内统一观测。如区域过大,观测频度高,可免于统一观测。 地下水动态与均衡的研究 来源:地大热能2015-07-24 动态均衡研究还可以用来 (1)确定含水层参数、补给强度、越流因素、边界性质及水力联系等; (2)评价地下水资源,尤其是对大区域和一些岩溶地区的水资源评价主要是用水均衡法; (3)预报水源地的水位、调整开采方案和管理制度,拟定新水源地的管理措施及对措施未来效果的评价; (4)土壤次生盐渍化及沼泽化,矿坑涌水水源及突水,水库廻水的浸没,地下水污染进行监测与预测,以及相应防治措施的拟定和效果评价; (5)预报地震。影响地下水动态的因素地下水动态要以定义为地下水各要素随时间变化的规律。其中包括水位,流量,流速,流向,

地下水动态观测技术规范

地下水动态观测技术规范 减小字体增大字体本标准是根据煤炭工业部《煤炭资源勘探地表水、地下水长期观测及水样采取规程》(1980年版)中的有关章条和其他国家标准、行业标准中的有关规定,结合近15年来生产实践的经验制定的煤炭行业标准,在技术内容上与引用标准等效。本标准对地下水观测方法的自动化问题,由于目前煤矿区应用较少,故未作规定,但应尽可能采用先进的观测仪表及自动控制技术。 本标准由煤炭工业部科技教育司提出。 本标准由煤矿安全标准化技术委员会归口。 本标准起草单位:煤炭科学研究总院西安分院。 本标准主要起草人:王梦玉。 本标准委托煤炭科学研究总院西安分院负责解释。 1 范围 本标准适用于矿区地下水动态长期观测,是制定地下水动态长期观测规划、设计、工程质量检查、观测报告编写、审查的依据。 2 引用标准 下列标准包含的条文,通过在标准中引用而构成为本标准的条文。本标准发布时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。GB/T 12719—91 矿区水文地质工程地质勘探规范 供水水文地质勘察规范冶金工业部(1979) 煤炭资源地质勘探地表水、地下水长期观测及水样采取规程煤炭工业部(1980) 矿区水文地质工程地质普查勘探规范地质矿产部(1982) 矿井水文地质规程煤炭工业部(1984) 煤矿防治水工作条例煤炭工业部(1993年修订) 3 一般要求

3.1 在矿区进入详查阶段即应选择有代表性的井、泉、钻孔、生产矿井、地表水等进行观测,勘探阶段应进一步充实和完善观测工作,勘探结束后应移交给矿山部门继续进行。 3.2 在矿区存在地表水体的情况下,地下水与地表水应统一进行观测,提供完整的地下水动态长期观测资料。 3.3 水文地质条件复杂的矿区,应尽可能在一个完整的水文地质单元内,分别选择地下水补给、迳流与排泄区有代表性的观测点组成观测网。 3.4 对矿区供水和矿坑充水有意义的含水层、地表水体,以及矿坑突水点等,必须设立观测点,进?卸 て诠鄄狻? 3.5 地下水动态长期观测应包括水位、流量、水温、水化学成分、气体成分、物理性质等项目。一般每10d应观测一次水位、流量、水温,雨季、矿坑突水期应加密观测。水质成分和气体成分可取季节性和人为影响时期的代表水样分析化验,但每年不得少于2次。并且观测工作应在同一天进行。 3.6 在进行地下水动态长期观测的同时,应收集有关的气象资料,必要时可建立矿区简易气象站。 3.7 地下水观测准确度,水位应准确至厘米,流量应准确至公升,水温应准确至0.5℃。3.8 地下水动态长期观测设施应采取有效保护措施,观测所使用的工具、仪表应经常检查、校对和维修。 4 地下水的观测 4.1 观测网的布置 4.1.1 矿区地下水动态可划分为气象型、气象—水文型、水文型。长期观测工作应按不同类型的特点,布置观测网。 4.1.2 观测网由观测点、线组成,一般应能覆盖从补给区至排泄区的整个地下水系统。对与矿坑充水和矿区供水有关的含水层、构造带、地表水体等应能进行观测。在地下水系统范围过大的情况下,观测网允许以矿区为主缩小范围,但必须能控制矿坑排水后的降落漏斗。

动态规划法求解生产与存储问题

动态规划 一·动态规划法的发展及其研究内容 动态规划是运筹学的一个分支,是求解决策过程最优化的数学方法。20世纪50年代初美国数学家等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理,把多阶段问题转化为一系列的单阶段问题,逐个求解 创立了解决这类过程优化问题的新方法——动态规划。1957年出版的他的名著《Dynamic Proggramming》,这是该领域的第一本著作。 动态规划问世以来,在经济管理·生产调度·工程技术和最优控制等方面得到了广泛的应用。例如最短路线·库存管理·资源分配·设备更新·组合·排序·装载等问题,采用动态规划法求解比用其他方法更为简便。 二·动态规划法基本概念 一个多阶段决策过程最优化问题的动态规划模型通常包括以下几个要素: 1.阶段 阶段(stage)是对整个过程的自然划分。通常根据时间顺序或是空间特征来划分阶段,对于与时间,空间无关的“静态”优化问题,可以根据其自然特征,人为的赋予“时段”概念,将静态问题动态化,以便按阶段的顺序解优化问题。阶段变量一般用k=….n.表示。

1.状态 状态(state)是我们所研究的问题(也叫系统)在过个阶段的初始状态或客观条件。它应能描述过程的特征并且具有无后效性,即当某阶段的状态给定时,这个阶段以后的过程的演变与该阶段以前各阶段的状态无关。通常还要求状态是可以直接或者是间接可以观测的。描述状态的变量称为状态变量(State Virable)用s 表示,状态变量的取值集合称为状态集合,用S表示。变量允许取值的范围称为允许状态集合(set of admissble states).用x(k)表示第k阶段的状态变量,它可以是一个数或者是一个向量。用X(k)表示第k阶段的允许状态集合。 n 个阶段的决策过程有n+1个状态变量,x(n+1)是x(n)的演变的结果。 根据演变过程的具体情况,状态变量可以是离散的或是连续的。为了计算方便有时将连续变量离散化,为了分析的方便有时又将离散的变量视为连续的。 2.决策 当一个阶段的状态确定后,可以做出各种选择从而演变 到下一阶段的某个状态,这种选择手段称为决策 (decision),在最优控制问题中也称为控制(control)描述决策的变量称为决策变量(decision virable)。 变量允许取值的范围称为允许决策集合(set of

第11章 动态规划

第11章 动态规划 一个随事件或阶段推移的系统叫做动态系统,动态规划是解决多阶段决策过程最优化的一种数学方法。一个系统依据某种方式分为许多个不同的阶段,这些阶段不仅有着次序推移性,而且相互间有着依赖和影响。这样,在多阶段决策过程中,每个阶段决策的选择,不仅要依据次序来考查某阶段的效果,而且要顾及此决策对以后各阶段决策的影响。一般情况下,为得到整个系统的最优选择,必须放弃对某个阶段来说最佳的决策。对各个阶段所做的决策形成确定整个系统的决策序列,称这样的决策序列为系统的一个策略。对应某一确定的策略,整个系统依据某种数量指标衡量其决策的优劣。多阶段决策过程就是在所有允许策略集合中。确定一个达到最有指标的最优策略。这种衡量系统的指标一般取最大值或最小值的策略。因此,多阶段决策过程也是一个可以构成多个变量的最优化问题。动态规划就是解决此类多阶段决策过程的最优化方法。虽然动态规划主要解决多阶段决策的动态系统,但是可分阶段的静态系统问题也能作为特例用它有效地求解。 §11.1 动态规划的基本原理 本章通过构造数学模型,形成具有特殊的动态系统过程,将基于某种方式把整个过程分成若干个互相联系的阶段,在其每个阶段都需要作出决策,从而使整个过程达到最佳效果。同时,各个阶段决策的选择依赖于该阶段的状态以及前阶段或后阶段的变化。各个阶段决策确定后,组成一个决策序列,从而形成了整个过程具有前后关联的链状结构的多阶段决策过程,称为序贯决策过程。 先用下面的最短路问题(问题可分成阶段性)来说明动态规划的基本思想。 例 1,最短路问题。图11—1所示是一个路线网络图,连线上的数字表示两点之间的距离(或费用),要求寻找一条由A 到E 的路线,使距离最短(或费用最省)。 对于这样的一个比较简单的问题,可直接使用枚举法例举所有从A 到E 得路线,确定 出所应走的路线是距离最短或费用最少,用 动态规划的思想,如果已找到由A 到E 得最 短路线是A —B 1—C2—D 2—E (记作L ),那 么当寻求L 中的任何一点(如C 2)到E 得最 短路时,它必然是L 子路线 C 2—D 2—E(记 作L 1)。否则,如D 2到E 的最短路是另一条 路线L 2,则把A —B 1—C 2与L2连接起来, 就会得到一条不同于L 的从A 到E 得最短 路,根据最短路的这一特性,可以从最后一 段开始,用逐步向前递推的方法,一次求出路段上各点到E 的最短路,最后得到A 到E 得最短路。上述这种由系统的最后阶段逐段向初始阶段求最优的过程称为动态规划的解法。该过程揭示了动态规划的基础思想,为便于对动态规划的思想和方法进行数学描述,下面先引入动态规划的基本概念并建立最优目标函数。 (1)分阶段:适当地依据具体情况将系统分成若干个相互联系的阶段,并将各个段按顺序或逆序加以编号(常用K ),描述阶段的变量称为阶段变量。如例1可分为5个阶段,k=1,2,3,4,5. (2)状态:状态表示系统在某一阶段所处的位置。描述过程状态的变量称为状态变量,第k 阶段的状态变量常用s k 表示,状态变量的集合用S k 表示。如在例1中,第一阶段有一个状态就是初始位置A ,第三阶段有3个状态,即集合S3=}{1,2,3C C C . (3)决策:当系统处于某一阶段的某个状态时,可以作出不同的决定(或选择),从而确定下一阶段的状态,这种决定称为决策。如在例1第二阶段中,从状态B2出发,其允许决

地下水动态长期观测技术规范

前言 本标准是根据煤炭工业部《煤炭资源勘探地表水、地下水长期观测及水样采取规程》(1980年版)中的有关章条和其他国家标准、行业标准中的有关规定,结合近15年来生产实践的经验制定的煤炭行业标准,在技术内容上与引用标准等效。本标准对地下水观测方法的自动化问题,由于目前煤矿区应用较少,故未作规定,但应尽可能采用先进的观测仪表及自动控制技术。 本标准由煤炭工业部科技教育司提出。 本标准由煤矿安全标准化技术委员会归口。 本标准起草单位:煤炭科学研究总院西安分院。 本标准主要起草人:王梦玉。 本标准委托煤炭科学研究总院西安分院负责解释。 1 范围 本标准适用于矿区地下水动态长期观测,是制定地下水动态长期观测规划、设计、工程质量检查、观测报告编写、审查的依据。 2 引用标准 下列标准包含的条文,通过在标准中引用而构成为本标准的条文。本标准发布时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB/T 12719—91 矿区水文地质工程地质勘探规范 供水水文地质勘察规范冶金工业部(1979) 煤炭资源地质勘探地表水、地下水长期观测及水样采取规程煤炭工业部(1980) 矿区水文地质工程地质普查勘探规范地质矿产部(1982) 矿井水文地质规程煤炭工业部(1984) 煤矿防治水工作条例煤炭工业部(1993年修订) 3 一般要求 3.1 在矿区进入详查阶段即应选择有代表性的井、泉、钻孔、生产矿井、地表水等进行观测,勘探阶段应进一步充实和完善观测工作,勘探结束后应移交给矿山部门继续进行。 3.2 在矿区存在地表水体的情况下,地下水与地表水应统一进行观测,提供完整的地下水动态长期观测资料。 3.3 水文地质条件复杂的矿区,应尽可能在一个完整的水文地质单元内,分别选择地下水补给、迳流与排泄区有代表性的观测点组成观测网。 3.4 对矿区供水和矿坑充水有意义的含水层、地表水体,以及矿坑突水点等,必须设立观测点,进行动态长期观测。 3.5 地下水动态长期观测应包括水位、流量、水温、水化学成分、气体成分、物理性质等项目。一般每10d应观测一次水位、流量、水温,雨季、矿坑突水期应加密观测。水质成分和气体成分可取季节性和人为影响时期的代表水样分析化验,但每年不得少于2次。并且观测工作应在同一天进行。 3.6 在进行地下水动态长期观测的同时,应收集有关的气象资料,必要时可建立矿区简易气象站。 3.7 地下水观测准确度,水位应准确至厘米,流量应准确至公升,水温应准确至0.5℃。 3.8 地下水动态长期观测设施应采取有效保护措施,观测所使用的工具、仪表应经常检查、校对和维修。 4 地下水的观测 4.1 观测网的布置

动态规划理论(精华)

动态规划理论 一.动态规划的逆向思维法 动态规划是一种思维方法,没有统一的、具体的模式。动态规划可以从多方面去考察,不同的方面对动 态规划有不同的表述。我们不打算强加一种统一的表述,而是从多个角度对动态规划的思维方法进行讨 论,希望大家在思维具体问题时,也能够从多个角度展开,这样收获会更大。 逆向思维法是指从问题目标状态出发倒推回初始状态或边界状态的思维方法。如果原问题可以分解成 几个本质相同、规模较小的问题,很自然就会联想到从逆向思维的角度寻求问题的解决。 你也许会想,这种将大问题分解成小问题的思维不就是分治法吗?动态规划是不是分而治之呢?其实, 虽然我们在运用动态规划的逆向思维法和分治法分析问题时,都使用了这种将问题实例归纳为更小的、 相似的子问题,并通过求解子问题产生一个全局最优值的思路,但动态规划不是分治法:关键在于分解 出来的各个子问题的性质不同。 分治法要求各个子问题是独立的(即不包含公共的子问题),因此一旦递归地求出各个子问题的解后, 便可自下而上地将子问题的解合并成原问题的解。如果各子问题是不独立的,那么分治法就要做许多不 必要的工作,重复地解公共的子问题。 动态规划与分治法的不同之处在于动态规划允许这些子问题不独立(即各子问题可包含公共的子问题) ,它对每个子问题只解一次,并将结果保存起来,避免每次碰到时都要重复计算。这就是动态规划高效

的一个原因。 动态规划的逆向思维法的要点可归纳为以下三个步骤: (1)分析最优值的结构,刻画其结构特征; (2)递归地定义最优值;0 (3)按自底向上或自顶向下记忆化的方式计算最优值。 【例题1】背包问题描述: 有一个负重能力为m的背包和n种物品,第i种物品的价值为v,重量为w。在不超过背包负重能力的前 提下选择若干个物品装入背包,使这些的物品的价值之和最大。每种物品可以不选,也可以选择多个。 假设每种物品都有足够的数量。 分析: 从算法的角度看,解决背包问题一种最简单的方法是枚举所有可能的物品的组合方案并计算这个组合 方案的价值之和,从中找出价值之和最大的方案。显然,这种靠穷举所有可能方案的方法不是一种有效 的算法。 但是这个问题可以使用动态规划加以解决。下面我们用动态规划的逆向思维法来分析这个问题。 (1)背包问题最优值的结构 动态规划的逆向思维法的第一步是刻画一个最优值的结构,如果我们能分析出一个问题的最优值包含 其子问题的最优值,问题的这种性质称为最优子结构。一个问题的最优子结构性质是该问题可以使用动 态规划的显著特征。 对一个负重能力为m的背包,如果我们选择装入一个第 i 种物品,那么原背包问题就转化为负重能力 为 m-w 的子背包问题。原背包问题的最优值包含这个子背包问题的最优值。若我们用背包的负重能力来 划分状态,令状态变量s[k]表示负重能力为k的背包,那么s[m]的值只取决于s[k](k≤m)的值。因此背包

地下水的动态与均衡地下水动态与均衡的概念地下水

第九章地下水的动态与均衡 第一节地下水动态与均衡的概念 地下水动态的概念:含水层(含水系统)在与外界环境相互作用过程中,含水层(含水系统)地下水各要素(如地下水位、水量、水化学成份、水温等)随时间的变化状况,称为地下水动态。 地下水均衡的概念:某时段某地段地下水物质、能量的收支状况称为地下水均衡。 第二节地下水动态 一、地下水动态的形成机制 含水层(含水系统)地下水各要素(如地下水位、水量、水化学成份、水温等)之所以随时间发生变化,是含水层(含水系统)中物质、能量收支不平衡的综合表现。 因此,地下水动态是含水层(含水系统)对外部环境施加的激励所产生的响应,也可理解为含水层(含水系统)将输入信息变换后产生的输出信息。 下面以降雨(图9-1)为例说明地下水动态的形成机制: 动态变化:降水→ 补给地下水系统→ 水位上升。 ↑↑ 脉冲式激励波状响应 图9—1 输入与输出的对应关系 a—时间滞后;b—时间延迟 地下水动态(对外界响应)特点:在时间上表现为滞后和延迟(图9-1),以及叠加。 叠加现象:是指外界多次激励(或输入)时,引起系统响应(或输出)的变化是多次激励响应的累加结果(图9-2)。

图9-2说明,地下水水位对外界输入(降水)响应的信息传输的迭合特点,称为叠加现象。 图9-2 信息传输中的迭合 地下水动态描述:地下水某要素随时间的变化(动态)程度可用稳定性来恒量:动态稳定,是指变化幅度小;动态不稳定,是指变化幅度大。 二、地下水动态的影响因素 影响地下水动态(稳定性)的因素主要有三类: (1)是外部环境对含水层(含水系统)的信息输入:如降水、地表水的补给---气象(气候)因素、水文因素; (2)是变换输入信息的含水系统的结构,主要涉及赋存地下水的地质环境条件,地质因素。 (3)人为因素,包括开采、人工回灌、灌溉、库渠渗漏、污水排放等等。 (一)气象(气候)因素 气象(气候)是对地下水动态影响最为普遍的因素。决定了一个地区动态的基本形态。 气象(气候)要素周期性地发生昼夜、季节与多年变化。其中季节变化最为显著且最有意义。 从图9-3,可以分析季节变化对潜水动态影响。

动态规划方法的matlab实现及其应用

动态规划方法的matlab实现及其应用 (龙京鹏,张华庆,罗明良,刘水林) (南昌航空大学,数学与信息科学学院,江西,南昌) 摘要:本文运用matlab语言实现了动态规划的逆序算法,根据状态变量的维数,编写了指标函数最小值的逆序算法递归计算程序。两个实例的应用检验了该程序的有效性,同时也表明了该算法程序对众多类典型的动态规划应用问题尤其是确定离散型的应用问题的通用性,提供了求解各种动态规划问题的有效工具。关键词:动态规划基本方程的逆序算法 MATLAB实现 MATLAB Achieve For Dynamic Programming and Its Application (JingpengLong,HuaqingZhang,MingliangLuo,ShuilinLiu) (School of Mathematics and Information Science,Nanchang Hangkong University,Nanchang,China) Abstract:This article achieves the reverse algorithm of dynamic programming by using the matlab language,and prepares the recursive calculation program of reverse algorithm which thetargetfunctionvalueisthesmallest.Theapplicationoftwoexamplesshowthattheprogram is effective,and this algorithm program is general to many typical application of dynamic programming,especially the application of deterministic discrete.This algorithm program provides a effective tool to the solution of a variety of dynamic programming problems. Key words:dynamic programming;reverse algorithm;Matlab achievement 动态规划是一类解决多阶段决策问题的数学方法, 在工程技术、科学管理、工农业生产及军事等领域都有广泛的应用。在理论上,动态规划是求解这类问题全局最优解的一种有效方法,特别是对于实际中某些非线性规划问题可能是最优解的唯一方法。然而,动态规划仅仅决多阶段决策问题的一种方法,或者说是考查问题的一种途径,而不是一种具体的算法。就目前而言,动态规划没有统一的标准模型,其解法也没有标准算法,在实际应用中,需要具体问题具体分析。动态规划模型的求解问题是影响动态规划理论和方法应用的关键所在,而子问题的求解和大量结果的存储、调用更是一个难点所在。然而, 随着计算机技术的快速发展,特别是内存容量和计算速度的增加,使求解较小规模的动态规划问题成为可能,从而使得动态规划的理论和方法在实际中的应用范围迅速增加。 目前,在计算机上实现动态规划的一般求解方法并不多见,尤其是用来解决较复杂的具体问题的成果甚少。本文从实际出发,利用数学工具软件matlab 的强大功能, 对动态规划模型的求解方法做了尝试,编写出了动态规划逆序算法的matlab程序,并结合“生产与存储问题”[1] 和“背包问题”[1]进行了应用与检验,实际证明结果是令人满意的。 1 动态规划的基本模型 实际中,要构造一个标准的动态规划模型,通常需要采用以下几个步骤: ①划分阶段按照问题的时间或空间特征,把问题分为若干个阶段。这些阶段必须是有序的或者是可排序的(即无 后向性) ,否则,应用无效。 ②选择状态将问题发展到各个阶段时所处的各种客观情况用不同的状态表示,即称为状态。状态的选择要满足无后效性和可知性,即状态不仅依赖于状态的转移规律,还依赖于允许决策集合和指标函数结构。 ③确定决策变量与状态转移方程当过程处于某一阶段的某个状态时,可以做出不同的决策,描述决策的变量称为决策变量。在决策过程中,由一个状态到另一个状态的演变过程称为状态转移。状态转移就是根据上一阶段的状态和决策来导出本阶段的状态。 ④写出动态规划的基本方程动态规划的基本方程一般根据实际问题可分为两种形式,逆序形式和顺序形式。这里只考虑逆序形式。动态规划基本方程的逆序形式为 f s k k( ) = opt gv s x{ ( k k k( , )+f s k+1( k+1))} x D s k∈ k k( ) k nn= , ?1, ,1 边界条件 f s n+1( n+1) = 0或f s v s x n n() = n n n( , ) 其中第k 阶段的状态为s k,其决策变量x k表示状s k的决策,状态转移方程为s k+1 =T s x k k k( , ), 态处于k 阶段的允许决策集合记为D s k k( ) , v s x k k k( , ) 为指标函数。

相关文档
最新文档