工程热力学(蒸汽动力装置及循环)
沈维道《工程热力学》(第4版)名校考研真题-蒸汽动力装置循环(圣才出品)

第10章蒸汽动力装置循环一、选择题在蒸汽动力循环中,为达到提高循环热效率的目的,可采用回热技术来提高工质的()[宁波大学2008研]A.循环最高温度B.循环最低温度C.平均吸热温度D.平均放热温度【答案】C【解析】在蒸汽动力循环中,采用回热技术可以提高工质的平均吸热温度,从而达到提高循环热效率的目的。
二、判断题1.回热循环的热效率比郎肯循环高,但比功比朗肯循环低。
()[天津大学2004研] 【答案】对2.抽气回热循环由于提高了效率,所以单位质量的水蒸气做功能力增加。
()[同济大学2006研]【答案】错【解析】抽气回热循环中部分未完全膨胀的蒸汽从汽轮机中抽出,去加热低温冷却水,这样就使得相同的工质情况下,抽气回热循环做功小于普通朗肯循环,因而单位质量的水蒸气做功能力降低。
3.实际蒸汽动力装置与燃气轮装置,采用回热后平均吸热温度与热效率均提高。
()[湖南大学2007研]【答案】对【解析】对实际的蒸汽的动力装置于燃气轮机装置来说,采用回热后,平均吸热温度升高,于是热效率也得到提高。
三、简答题1.朗肯循环采用回热的基本原理是什么?[天津大学2004研]解:基本原理是提高卡诺循环的平均吸热温度来提高热效率。
2.画出朗肯循环和蒸汽压缩制冷循环的T-s图,用各点的状态参数写出:(1)朗肯循环的吸热量、放热量、汽轮机所做的功及循环热效率。
(2)制冷循环的制冷量、压缩机耗功及制冷系数。
[西安交通大学2004研]解:画出朗肯循环和蒸汽压缩制冷循环的T-s图如图10-1所示。
郎肯循环蒸汽压缩制冷循环图10-1(1)参考T-s图,可以得到:朗肯循环的吸热过程为4→1的定压加热过程,吸热量:;郎肯循环的放热过程为2→3的过程,在冷凝器中进行,放热量:;汽轮机中,做功过程为绝热膨胀过程1→2,做工量:;在水泵中被绝热压缩,接受功量为,相对于汽轮机做功来说很小,故有热效率:(2)参考上面的T-s图,可以得到:蒸汽压缩制冷循环的吸热量为:;压缩机耗功为:;制冷系数为:。
工程热力学基础——第七章蒸汽动力循环

第四节 回热循环
一、回热循环的装置系统图和T-S 图 分析朗肯循环,导致平均吸热温度不高的原 因是水的预热过程温度较低,故设法使吸热过程 的预热热量降低,提出了回热循环。 回热是指从汽轮机的适当部位抽出尚未完全 膨胀的压力、温度相对较高的少量蒸汽,去回热 加热器中加热低温冷凝水。这部分抽汽未经凝汽 器,因而没有向冷源放热,但是加热了冷凝水, 达到了回热的目的,这种循环称为抽汽回热循环。
b
5
a
6
(4)
A
图8 再热循环的T-S图
二、再热循环工作原理
从图可以看出,再热部分实际上相当于在原来 的郎肯循环1A3561的基础上增加了一个附加的循环 ab2Aa。一般而言,采用再热循环可以提高3%左右的 热效率。
三、再热循环经济性指标的计算
1、热效率
t
w0 q1
(h1 ha ) (hb h2 )
第七章 蒸汽动力循环
本章重点
水蒸气朗肯循环、回热循环、再热循 环、热电循环的组成、热效率计算及提高 热效率的方法和途径
第一节 朗肯循环
一、水蒸汽的卡诺循环
1、水蒸汽的卡诺循环的组成,如图1 2、水蒸汽的卡诺循环在蒸汽动力装置中不被应用
原因:
T
(1)、T1不高(最高
不超 374 0 C ),T2不低
(h1
h2
)
(hb
h a
)
2、汽耗率
d 3600
3600
w0 (h1 ha ) (hb h2 )
四、再热循环分析
1、采用再热循环后,可明显提高汽轮机排 汽干度,增强了汽轮机工作的安全性; 2、正确选择再热循环,不仅可提高汽轮机 排汽干度,还可明显提高循环热效率; 3、采用再热循环后,可降低汽耗率; 4、因要增设再热管道、阀门等设备,采用 再热循环要增加电厂的投资,故我国规定 单机容量在125MW及以上的机组才采用此循 环。 [例7-2] 注意,再热后,各经济指标的变化
工程热力学高教第三版课后习题第十一章答案

(2) p1 = 3MPa , t1 = 500 C , p2 = 6kPa ,由 h-s 图查得:
h1 = 3453kJ/kg 、 h2 = 2226kJ/kg 、 x2 = 0.859 t2 = 36 o C
取 h2′ ≈ cwt2' = 4.187kJ/(kg ⋅ K) × 36 C = 150.7kJ/kg
o
若不计水泵功,则
ηt =
h1 − h2 3453kJ/kg − 2226kJ/kg = = 37.16% h1 − h2′ 3453kJ/kg − 150.7kJ/kg
142
第十一章 蒸汽动力装置循环
d=
1 1 = = 8.15 × 10−7 kg/J 3 h1 − h2 (3453 − 2226) × 10 J/kg
热效率
ηt =
h1 − h2 − wp h1 − h2 − wp
=
(2996 − 2005 − 3)kJ/kg = 34.76% (2996 − 150.7 − 3)kJ/kg
若略去水泵功,则
ηt =
d=
h1 − h2 2996kJ/kg − 2005kJ/kg = = 34.83% h1 − h2′ 2996kJ/kg − 150.7kJ/kg 1 1 = = 1.009 × 10−6 kg/J 3 h1 − h2 (2996 − 2005) ×10 J/kg
143
第十一章 蒸汽动力装置循环
解: (1)由 p1 = 12.0MPa 、 t1 = 450 o C 及再热压力 pb = 2.4MPa ,由 h-s 图查得
h1 = 3212kJ/kg、s1 = 6.302kJ/(kg ⋅ K)、hb = 2819kJ/kg 、 ha = 3243kJ/kg 、 h2 = 2116kJ/kg 、 x 2 = 0.820 p2 = 0.004MPa 、 s1 = sc = sb = 6.302kJ/(kg ⋅ K) , sc ' = 0.4221kJ/(kg ⋅ K) 、 sc " = 8.4725kJ/(kg ⋅ K)
工程热力学-第十章-蒸汽动力装置循环.讲课教案

■汽轮机的相对内部效率 T 实际作功与理论作功之比,
T
h1 h2act h1 h2
一般为0.85~0.92。
■耗汽率(steam rate)
输出单位功量的耗汽量称为耗汽率,单位为 k g / J
工程上常用 kg/(kWh) 。
●理想耗汽率:d 0 D /P 0 1 /w T 1 /( h 1 h 2 ) ●实际耗汽率:d i D /P i 1 /w T ,a c t 1 /( h 1 h 2 a c t)
(2)吸热量不变,热效率: iw net,act/q10.3972
实际耗汽率:d i 1 /( h 1 h 2 a c t) 7 .5 9 7 1 0 7 k g /J
(3)作功能力损失
查水和水蒸汽图表,得到:
新蒸汽状态点1:s16.442kJ/(kgK ),h13426kJ/kg
乏汽状态点
胀到状态2,然后进入冷凝器,定压放热变为饱和水2
再经水泵绝热压缩变为过冷水4,也进入回热器。
在回热器中, kg的水蒸汽 0 1 和(1 )kg的过
冷水4混合,变为1kg的饱和水 0 1 。然后经水泵绝热压
缩进入锅炉,定压吸热变为过热蒸汽,开始新的循
环。
2、回热循环分析
■抽汽量
能量方程(吸热量=放热量):
说明:质量不同,因此不能直接从T-s图上判断热量的 变化。
●热效率(提高):
t wnet / q1
锅炉给水的起始加热
温度由 2 提高到 0 1 ,平均
吸热温度提高,平均放热 温度不变,热效率提高。
吸热量:
q 1 h 1 h 4 h 1 ( h 3 w p ) h 1 ( h 2 w p ) 3 2 7 1 . 2 2 k J / k g
10工程热力学第十章 水蒸气及蒸汽动力循环

10-3 水蒸气的热力过程 目的—确定过程的能量转换关系 分析水蒸气热力过程的目的 确定过程的能量转换关系, 分析水蒸气热力过程的目的 确定过程的能量转换关系, 包括w 以及 以及u和 等 因此,需确定状态参数的变化. 包括 ,q以及 和Δh等.因此,需确定状态参数的变化. 确定过程的能量转换关系的依据为热力学第一,二定律: 确定过程的能量转换关系的依据为热力学第一,二定律:
图和T-s图 三,水蒸气的p-v图和 图 水蒸气的 图和
分析水蒸气的相变图线可见,上,下界线表明了水汽化的始末界线, 分析水蒸气的相变图线可见, 下界线表明了水汽化的始末界线, 二者统称饱和曲线, 图分为三个区域,即液态区( 二者统称饱和曲线,它把p-v和T-s图分为三个区域,即液态区(下 界线左侧) 湿蒸汽区(饱和曲线内) 汽态区(上界线右侧) 此外, 界线左侧),湿蒸汽区(饱和曲线内),汽态区(上界线右侧).此外, 习惯上常把压力高于临界点的临界温度线作为"永久" 习惯上常把压力高于临界点的临界温度线作为"永久"气体与液体 的分界线.所以,水蒸气的相变图线,可以总结为一点(临界点) 的分界线.所以,水蒸气的相变图线,可以总结为一点(临界点), 二线(上界线,下界线) 三区(液态区,湿蒸汽区,气态区) 二线(上界线,下界线),三区(液态区,湿蒸汽区,气态区)和五态 未饱和水状态,饱和水状态,湿饱和蒸汽状态,干饱和蒸汽状态, (未饱和水状态,饱和水状态,湿饱和蒸汽状态,干饱和蒸汽状态, 过热蒸汽状态) 过热蒸汽状态)
q = h h ′′
显然, 的水加热变为过热水蒸气所需的热量, 显然,将0.01℃的水加热变为过热水蒸气所需的热量,等于液 的水加热变为过热水蒸气所需的热量 体热,汽化潜热与过热热量三者之和. 体热,汽化潜热与过热热量三者之和.而且整个水蒸气定压发生过 程及各个阶段中的加热量,均可用水和水蒸气的焓值变化来计算 用水和水蒸气的焓值变化来计算. 程及各个阶段中的加热量,均可用水和水蒸气的焓值变化来计算.
工程热力学第十章 动力循环

h3)
(h1 h6 ) (h1 h2 ) (h1 h3) (h1 h6 )
第三节 热电循环
一、背压式热电循环 排汽压力高于大气压力的汽轮机称为背压式汽轮机
二、调节抽气式热电循环
第四章 内燃机循环
气体动力循环按热机的工作原理分类,可分为内燃 机循环和燃气轮机循环两类。内燃机的燃烧过程在热机 的汽缸中进行,燃气轮机的燃烧过程在热机外的燃烧室 中进行燃气轮机主要有三部分组成:燃气轮机、压气机和燃烧 室
工质的吸热量 放热量
循环的热效率
q1 c p (T3 T2 )
q 2 c p (T4 T1 )
t
1
q2 q1
1 T4 T1 T3 T2
1
T1 (T4 T2 (T3
T 1 1) T 2 1)
二、定压加热循环
工质吸热、放热和循环热效率:
q1 cp(T3 T2), q2 cv(T4 T1)
t
1q2 q1
1cp(T4 T1) cv(T3 T2)
11 T1(T4T11)
T2(T3T2 1)
T1 T2
v2 v1
1
1 1
,
T4 T1
v3 v2
t,p
1
1 ( 1) 1
1cv(T4T1) 1T1(T4T11)
cv(T3T2)
T2(T3T21)
v3=v2,v4=v1,故
T2 T1
vv121
T3 T4
vv431
T2 T3 , T1 T4
T4 T3 T1 T2
t
1 T1 T2
1 1
T2 T1
1
1
v1 v2
1
1
1 k1
v1 v2
工程热力学思考题答案

第十章蒸汽动力装置循环1、干饱和蒸汽朗肯循环(图10-1 中循环 6-7-3-4-5-6)与同样初压力下的过热蒸汽朗肯循环(图10-1 中循环1-2-3-4-5-6-1)相比较,前者更接近卡诺循环,但热效率却比后者低,如何解释此结果?答:循环6-7-3-4-5-6局限于饱和区,吸热温度受到水的临界温度的制约,其平均吸热温度较低,故其热效率较循环低。
2、本世纪二三十年代,金属材料的耐热性仅达400℃,为使蒸汽初压提高,用再热循环很有必要。
其后,耐热合金材料有进展,加之其他一些原因,在很长一段时期内不再设计制造按再热循环工作的设备。
但近年来随着初压提高再热循环再次受到注意。
请分析其原因。
答:朗肯循环中提高新蒸汽压力和温度都可以提高循环的热效率,在本世纪二三十年代,材料的耐热性较差,通过提高蒸汽的温度而提高热机的效率比较困难,因此采用再热循环来提高蒸汽初压。
随着耐热材料的研究通过提高蒸汽的温度而提高热机的效率就可以满足工业要求。
因此很长一段时期不再设计制造再热循环工作设备。
近年来使用的蒸汽初压大大提高,由于初压的提高使得乏气干度迅速降低,引起气轮机内部效率降低,另外还会侵蚀汽轮机叶片缩短汽轮机寿命,所以乏气干度不宜太低,必须提高乏气干度,就要使用再热循环。
3、图10-13 所示回热系统中采用的是混合式回热器,靠蒸气与水的混合达到换热的目的。
另有一种表面式换热器,如图10-26 所示,蒸汽在管外冷凝,将凝结热量传给管内的水,这种布置可减少系统中高压水泵的数量。
试分析这种系统在热力学分析上与混合式系统有否不同?图10-26答:回热循环的计算最重要的是计算抽气量:对于混合式回热加热器:其热平衡方程为:()()()1'1'100041h h h h -=--αα 可得:404011'h h h h --=α对于表面式换热器:热平衡方程为:假设在理想换热情况下,没有热损失。
()()1'1'10'0'4'0'11h h h h αααα+-=+- 可得:4040'11'h h h h --=α所以在理想情况下,这两种回热器没有差别。
工程热力学__第五章气体动力循环

k 1 k
p2 p1
k 1 k
T2 T1
T1 1 1 1 1 1 k 1 T2 T2 p2 k T1 p1
T
2 1
3
4
t,C
T1 1 T3
热效率表达式似乎与卡诺循环一样
s
勃雷登循环热效率的计算
热效率:
t 1
p
2 3 2 4 T 3
4
1 1
v s
定压加热循环的计算
吸热量
q1 cp T3 T2
放热量(取绝对值)
T 2
1
3
4
q2 cv T4 T1 热效率
w q1 q2 q2 t 1 q1 q1 q1
s
定压加热循环的计算
k 1 热效率 t 1 k 1 k ( 1) t
T1
s
燃气轮机的实际循环
压气机: 不可逆绝热压缩 燃气轮机:不可逆绝热膨胀 T
定义:
3 2 1
2’
4’
压气机绝热效率
h2 h1 c h2' h1
4
燃气轮机相对内效率
oi
h3 h4' h3 h4
s
燃气轮机的实际循环的净功
净功
' w净 h3 h4' h2' h1
oi h3 h4
h2 h1
T
2 1
2’
3
4’
c
' opt w净 oic
k 2 k 1
4
吸热量
q h3 h2' h3 h1
' 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、蒸汽参数对热效率的影响
1、初温 t1的影响: ( p1 const, p2 const )
t1 TH t
工程热力学 Thermodynamics
2、初压 p1的影响: t1 const, p2 const
p1 TH t
x2
工程热力学 Thermodynamics
wT qH
h1 h2 h1 h2
(h1 h2 )ηT h1 h2
ηt T
工程热力学 Thermodynamics
例1.我国生产的300MW 汽轮发电机组,其新蒸汽压力和温度分别 为 t1 550 oC 、p1 17 MPa ,汽轮机排汽压力 p2 5 kPa 。若按郎肯循环 运行,求(1)汽轮机所产生的功 wT ;(2)水泵功 wP ;(3)循
p2 3
p1 4
Q23
2 1
Qfa
ns
工程热力学 Thermodynamics
Q23 2 1
Qfa
t
1 Qfa Q23
t
1
Qfa Q51 Q23
wp
0
h1 h2 h1 - h3(h2 )
工程热力学 Thermodynamics
ηt
h1 h1
h2 h3
如何求各点的焓值?
点1:锅炉出口(汽轮机进口) 设计参数,已知:p1,T1→h1
点2: p2设计参数,1-2定熵, s1=s2→h2
点3: p2对应的饱和水的焓,h3=h2´
点4: 3-4定熵,s4=s3→s2´ 4-1定压,p4=p1(已知)
T
wT wT
h1 h2 h1 h2
得
h2 h1 T (h1 h2 )
=3426 0.9 (3426 1963.5)
=2109.8kJ/kg
工程热力学 Thermodynamics
wT h1 h2 3426 2109.8 1316.2 kJ kg w0 wT wp 1316.2 17.06 1299.14 kJ kg (2)循环热效率
i
w0 qH
w0 h1 h4
1299.14 0.3491 3721.22
工程热力学 Thermodynamics 第三节 再热循环
一、 设备与流程 二、 能量分析计算
qH (h1 h4) (hb ha ) (h1 h2) (hb ha )
w0 wT (h1 ha ) (hb h2 )
h4 h3 wP 137 .72 17.06 154 .78 kJ kg
qH h1 h4 3426 154 .78 3721 .22 kJ kg
t
w0 qH
wT wp qH
1462.5 17.06 3721.22
0.3884
若略去水泵功,则
t
w0 qH
h1 h2 h1 h2
5 01 4 3(2) O
1 6
01
2
s
工程热力学 Thermodynamics
一、概述
第五节 热电联产循环
二、热电联产循环的两种典型方式
1.背压式
2、抽汽式
三、能量分析
能量利用系数
已利用的热量 工质从热源吸收的热量
w0
qL,u qH
已利用的热量
燃料的总释放量
T 2 1
Om
工程热力学 Thermodynamics 第六节燃气—蒸汽联合循环
叶片 叶轮
轴
排汽管
图12-4 单机汽轮机示意图
图12-5 多级冲击式汽轮机剖视图
工程热力学 Thermodynamics 第二节 朗肯循环
一. 设备与流程
简单蒸气动力装置流程示意图
流程图
工程热力学 Thermodynamics 二、能量计算与分析
qH h1 h4
qL h2 h3
wT h1 h2
3、背压 p的2 影响: p1 const, t1 const
p2 TL (TH ] )
t x2]
工程热力学 Thermodynamics
四、有摩阻的实际循环
wT h1 h2
相对内效率
T
wT wT
h1 h2 h1 h2
h2 h1 ηT (h1 h2 )
ηi
w0,act qH
ηt
w0 qH
(h1 ha ) (hb (h1 h2 ) (hb
h2 ) ha )
工程热力学 Thermodynamics
T
O
s
工程热力学 Thermodynamics
T
T
1
5 01
4 3(2)
6 01
2
O
sO
s
工程热力学 Thermodynamics 第四节 抽气回热循环
一、设备与流程
二 、能量分析计算
qH h1 h01 qL (1 α)(h2 h3)
w0 wT (h1 h01 ) (1 α)(h01 h2 )
t,R
w0 qH
(h1 h01 ) (1 )(h01
h1 h01
h01 )
? h01 (1 )h2 h01
h01 h2
h01 h2
T
3426 1963.5 0.393 3426 137.72
工程热力学 Thermodynamics
例2. 按照例1参数,若汽轮机相对内效率 T 0.90 ,试求(1)
汽轮机产生的功 wT ,水泵功 wP 和循环净功 w0 ;(2)循环循
环(内部)效率 i 。
解(1)蒸汽在汽轮机中的膨胀过程为 1 2act , 且由
p2 5 kPa
h 137.72kJ kg
v 0.0010053 m3 kg
于是求得
工程热力学 Thermodynamics
wT h1 h2 3426 1963.5 1462.5 kJ kg
wP h4 h3 ( p4 p3)v2 ( p1 p2 )v2 (17106 5103) 0.0010053 17.06103 J kg
wρ h4 h3 v3(p4 p3) v2 (p1 p2)
w0 wT wP (h1 h2) (h4 h3) qH qL q0
ηt
w0 qH
(h1 h2) (h4 h1 h4
h3)
h1 h2 v2 (p1 p2) h1 h3 (h4 h3)
h1 h2 v2 (p1 p2) h1 h3 v2 (p1 p2)
工程热力学 Thermodynamics 第十二章 蒸汽动力循环及装置
第一节蒸汽动力循环及装置及专业设备
图12-1 热力发电厂示意图
工程热力学 Thermodynamics
图12-2 锅炉本体示意图
图12-3 锅炉工作过程示意图
工程热力学 Thermodynamics
喷管 机壳
工程热力学 Thermodynamics
环热效率 t 。
解:根据 p1 17 MPa ,t1 550 oC ,在h-s图上,定出 的新蒸汽状态点1,h1 3426 kJ kg[s1 6.4。416kg/(kggK)]
理想情况下蒸汽在汽轮机中作可逆绝热膨胀,过 程1-2为定熵过程。在h-s图上从点1作定熵线与 的等压线 p2 5 kPa 相交,得点2 h2 1963.5 kJ kg (x2 0.75) 。查饱和水蒸气表得∶