【试题版】2019年河南省(郑州市)中考数学试题
2019年河南省中招考试数学试卷及答案(解析版)

(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为;
(2)请补全条形统计图;
(3)该校共有1200名男生,请估什全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;
(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200× =108”,请你判断这种说法是否正确,并说明理由.
补全条形统计图如图所示。
(3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为
1200× =160(人):………………………………………………………7分
(4)这种说法不正确.理由如下:
小明得到的108人是经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108人。………9分
解:(1)过点B、D作x轴的的垂线,垂足分别为点M、N.
∵A (5.0)、B(2,6),∴OM=BC=2,BM=OC=6,AM=3.
∵DN∥BM,∴△AND∽△ABM.
∴
∴DN =2,AN=1, ∴ON=4
∴点D的坐标为(4,2).…………………………3分
又∵ 双曲线y= (x>0)经过点D,
∴k=2×4=8
3.如图,直线AB、CD相交于O,射线OM平分∠AOC,ON⊥OM,若∠AOM =350,则∠CON的度数为 ( )
(A) .350(B). 450(C) .550(D). 650
答案:C
解析:根据角的平分线的性质及直角的性质,即可求解.
∠CON=900-350=550,故选C.
4.下列各式计算正确的是 ( )
(A)a +2a =3a2(B)(-a3)2=a6
河南省郑州市2019年中考数学二模试卷及答案(word解析版)

.
考点 : 因式分解 -运用公式法.
分析: 直接运用平方差公式进行因式分解. 解答: 解: x2﹣ 4y2=(x+2y )(x ﹣ 2y). 点评: 本题考查了平方差公式分解因式, 熟记公式结构是解题的关键.
平方差公式: a2﹣b2=( a+b)( a﹣ b).
4.( 2 分)( 2019?邵阳)函数 y=
考点 : 正比例函数的性质. 分析: 根据正比例函数的性质可知. 解答: 解:因为正比例函数 y=3x 中, k=3> 0,
故此函数为增函数,即 y 随 x 的增大而增大. 故填:增大. 点评: 本题考查的是正比例函数的性质,解答此题的关键是要熟知以下知识: 正比例函数 y=kx 中: 当 k> 0 时,图象位于一、三象限, y 随 x 的增大而增大; 当 k< 0 时,图象位于二、四象限, y 随 x 的增大而减小.
解答: 解:根据单项式系数、次数的定义,数字因式﹣
为单项式的系数,字母指数和为 2+1=3 ,故系数是
3. 点评: 单项式中的数字因数叫做这个单项式的系数.
单项式中, 所有字母的指数和叫做这个单项式的次数.
3.( 2 分)( 2004?盐城)因式分解:
x2﹣
2
4y =
( x+2y )( x﹣ 2y)
∴它们的周长比是 2: 3. 点评: 本题考查对相似三角形性质的理解.
( 1)相似三角形周长的比等于相似比; ( 2)相似三角形面积的比等于相似比的平方; ( 3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.
6.( 2 分)( 2004?盐城)在正比例函数 y=3x 中, y 随 x 的增大而 增大 (填 “增大 ”或 “减小 ”).
2019年河南中考数学真题--含解析

2019年河南省初中毕业、升学考试数学(满分120分,考试时间100分钟)一、选择题:本大题共10小题,每小题3分,共30分.不需写出解答过程,请把最后结果填在题后括号内.1.(2019河南省,1,3)12的绝对值是()A.12- B.12C.2D.2-【答案】B【解析】本题考查了绝对值的概念,解题的关键是理解绝对值的意义.此类问题容易出错的地方是容易与倒数或相反数混淆.根据绝对值的意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,从而可得12的绝对值是12,即1122.故答案选B【知识点】绝对值,相反数2.(2019河南省,2,3)成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为()A. 46×10-7B. 4.6×10-7C.4.6×10-6D.0.46×10-5【答案】C【解析】本题考查了科学记数法,解题的关键是正确确定a的值以及n的值.0.0000046是绝对值小于1的数,这类数用科学计数法表示的方法是写成a×10-n(1≤a<10,n >0 )的形式,关键是确定-n,确定了n的值,-n的值就确定了.确定方法是:n 的值等于原数中左起第一个非零数前零的个数(含整数位数上的零).故0.0000046中左起第一个非零数为4,其左边六个零,即0.0000046=4.6×10-6.答案选C【知识点】科学记数法3.(2019河南省,3,3)如图,AB∥CD,∠B=75°,∠E=27°,则∠D的度数为()A.45°B.48°C.50°D.58°【答案】B【解析】本题考查了(1)平行线的性质有:①两条平行线被第三条直线所截,同位角相等,②两条平行线被第三条直线所截,内错角相等,③两条平行线被第三条直线所截,同旁内角互补.(2)三角形内角和定理推论:三角形的一个外角等于与它不相邻的两个内角的和; ∵AB ∥CD ∠B =75° ∴∠B=∠CFE =75°∵∠CFE=∠D+∠E ∠E =27° ∴∠D=∠CFE-∠E =75°-27°=48° 故答案选B【知识点】平行线的性质,三角形内角和定理及其推论 4.(2019河南卷,4,3)下列计算正确的是( ) A.236a a a += B.22(3)6a a -= C.222()x y x y -=- D.32222-=【答案】D【解析】A 合并同类项系数2+3=5,,不是2×3=6,B 错-3的平方等于9,C 中乘法公式用错,D 正确,选D【知识点】合并同类项、积的乘方、乘法公式、合并同类二次根式.5.(2019河南卷,5,3)如图(1)是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图(2),关于平移前后几何体的三视图,下列说法正确的是( )A.主视图相同B.左视图相同C. 俯视图相同D.三种视图都不相同【答案】c【解析】考查三视图,对比平移前后结果A 主视图不同,B 左视图不同,AB 选项不对,C 俯视图相同,C 正确.故选C. 【知识点】平移,三视图6.(2019河南卷,6,3)一元二次方程(1)(1)23x x x +-=+的根的情况是( ) A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根D.没有实数根 【答案】A【解析】先化简,∵2123x x -=+,∴2240x x --=,△=2-+16=20(2)>0,故选A . 【知识点】一元二次方程化为基本形式,运用根的判别式判断根的情况7.(2019河南省,7,3) 某超市销售A ,B ,C ,D 四种矿泉水,它们的单价依次是5元,3元,2元,1元.某天的销售情况如图所示,则这天销售矿泉水的平均单价是( ) A.1.95元 B.2.15元 C.2.25元 D.2.75元55%20%15%10%DCBA【答案】C【解析】本题考查了加权平均数的概念和意义,由题意可知各种不同价格的百分比就是权重,最终的平均数就等于每个价格乘以权重,所以平均单价为:5×10%+3×15%+2×55%+1×10%=2.25,所以最后的平均单价为2.25元.【知识点】加权平均数的意义;扇形统计图8.(2019河南省,8,3) 已知抛物线24y x bx =-++经过(-2,n )和(4,n )两点,则n 的值为( )A.-2B.-4C.2D.4【答案】B【解题过程】由题意知抛物线过(-2,n )和(4,n ),说明这两个点关于对称轴对称,即对称轴为直线x =1,所以-a b2=1,又因为a=-1,所以可得b =2,即抛物线的解析式为y=-x 2+2x +4,把x =-2代入解得n =-4.【知识点】二次函数的对称性;中点坐标公式;求对称轴的公式及二次函数解析式. 9.(2019河南省,9,3)如图,在四边形ABCD 中,AD ∥BC ,∠D =90°,AD =4,BC =3,分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O ,若点O 是AC 的中点,则CD 的长为( )A.【答案】A【解题过程】过点A 做BM ⊥B C 与点M,∵AD ∥BC∴∠BCD+∠D=180°又∵∠D=90°∴∠BCD=90°∴∠BCD=∠D=∠BMD=90° 四边形BCDM 为矩形 ∴AB=BC=3 BM=CD由作图可知AE=CE 又∵O 是AC 的中点 ∴AB=BC=3在Rt △ABM 中,∠AMB=90°,AM=AD-MD=1 ∴BM= ∴CD=故选AMFE OBDAC【知识点】尺规作图 矩形的判定及性质 等腰三角形的性质 垂直平分线的性质 勾股定理 10.(2019河南省,10,3)如图,在△OAB 中,顶点O (0,0),A (-3,4),B (3,4).将△OAB与正方形ABCD 组成的图形绕点O 顺时针旋转,每次旋转90°,则第70次旋转结束时,点D 的坐标为( ) A. (10,3) B. (-3,10) C. (10,-3) D. (3,-10)yxCDBAO【答案】D 【思路分析】由A 、B 两点的坐标可知线段AB 的长度和它与x 轴的关系,由正方形的性质可知AD=AB ,延长DA 交x 轴于点M ,则DA ⊥x 轴,Rt △DMO 中,MO=3,DM=10,将△OAB 和正方形ABCD 绕点O 每次顺时针旋转90°,Rt △DMO 也同步绕点O 每次顺时针旋转90°,D 点的落点坐标可由Rt △DMO 的旋转得到。
河南2019年中考数学试题和答案[word解析版]
![河南2019年中考数学试题和答案[word解析版]](https://img.taocdn.com/s3/m/58da4b4fbed5b9f3f80f1c0a.png)
2019年河南省中考数学试卷一、选择题(每小题3分,共24分)1.(3分)(2019年河南省)下列各数中,最小的数是()A.0 B.C.﹣D.﹣3考点:有理数大小比较.分析:根据正数大于0,0大于负数,可得答案.解答:解:﹣3,故选:D.点评:本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.2.(3分)(2019年河南省)据统计,2019年河南省旅游业总收入达到约亿元.若将亿用科学记数法表示为×10n,则n等于()A.10 B.11 C.12 D.13考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:亿=3875 5000 0000=×1011,故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2019年河南省)如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为()A.35° B.45° C.55°D.65°考点:垂线;对顶角、邻补角.分析:由射线OM平分∠AOC,∠AOM=35°,得出∠MOC=35°,由ON⊥OM,得出∠CON=∠MON﹣∠MOC得出答案.解答:解:∵射线OM平分∠AOC,∠AOM=35°,∴∠MOC=35°,∵ON⊥OM,∴∠MON=90°,∴∠CON=∠MON﹣∠MOC=90°﹣35°=55°.故选:C.点评:本题主要考查了垂线和角平分线,解决本题的关键是找准角的关系.4.(3分)(2019年河南省)下列各式计算正确的是()A.a+2a=3a2B.(﹣a3)2=a6C. a3a2=a6D.(a+b)2=a2+b2考点:完全平方公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据合并同类项法则,积的乘方,同底数幂的乘法,平方差公式分别求出每个式子的值,再判断即可.解答:解:A、a+2a=3a,故本选项错误;B、(﹣a3)2=a6,故本选项正确;C、a3a2=a5,故本选项错误;D、(a+b)2=a2+b2+2ab,故本选项错误,故选B.点评:本题考查了合并同类项法则,积的乘方,同底数幂的乘法,平方差公式的应用,主要考查学生的计算能力.5.(3分)(2019年河南省)下列说法中,正确的是()A.“打开电视,正在播放河南新闻节目”是必然事件B.某种彩票中奖概率为10%是指买十张一定有一张中奖C.神舟飞船反射前需要对零部件进行抽样调查D.了解某种节能灯的使用寿命适合抽样调查考点:随机事件;全面调查与抽样调查;概率的意义.分析:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.不易采集到数据的调查要采用抽样调查的方式,据此判断即可.解答:解:A.“打开电视,正在播放河南新闻节目”是随机事件,本项错误;B.某种彩票中奖概率为10%是指买十张可能中奖,也可能不中奖,本项错误;C.神舟飞船反射前需要对零部件进行全面调查,本项错误;D.解某种节能灯的使用寿命,具有破坏性适合抽样调查.故选:D.点评:本题考查了调查的方式和事件的分类.不易采集到数据的调查要采用抽样调查的方式;必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.(3分)(2019年河南省)将两个长方体如图放置,则所构成的几何体的左视图可能是()A.B.C.D.考点:简单组合体的三视图.分析:根据从左边看得到的图形是左视图,可得答案.解答:解:从左边看,下面是一个矩形,上面是一个等宽的矩形,该矩形的中间有一条棱,故选:C.点评:本题考查了简单组合体的三视图,注意能看到的棱用实线画出.7.(3分)(2019年河南省)如图,ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8 B.9 C.10 D.11考点:平行四边形的性质;勾股定理.分析:利用平行四边形的性质和勾股定理易求BO的长,进而可求出BD的长.解答:解:∵ABCD的对角线AC与BD相交于点O,∴BO=DO,AO=CO,∵AB⊥AC,AB=4,AC=6,∴BO==5,∴BD=2BO=10,故选C.点评:本题考查了平行四边形的性质以及勾股定理的运用,是中考常见题型,比较简单.8.(3分)(2019年河南省)如图,在Rt△ABC中,∠C=90°,AC=1cm,BC=2cm,点P从点A出发,以1cm/s的速度沿折线AC→CB→BA运动,最终回到点A,设点P的运动时间为x(s),线段AP的长度为y(cm),则能够反映y与x之间函数关系的图象大致是()A.B.C.D.考点:动点问题的函数图象.分析:这是分段函数:①点P在AC边上时,y=x,它的图象是一次函数图象的一部分;②点P在边BC上时,利用勾股定理求得y与x的函数关系式,根据关系式选择图象;③点P在边AB上时,利用线段间的和差关系求得y与x的函数关系式,由关系式选择图象.解答:解:①当点P在AC边上,即0≤x≤1时,y=x,它的图象是一次函数图象的一部分.故C错误;②点P在边BC上,即1<x≤3时,根据勾股定理得AP=,即y=,则其函数图象是y随x的增大而增大,且不是线段.故B、D错误;③点P在边AB上,即3<x≤3+时,y=+3﹣x=﹣x+3+,其函数图象是直线的一部分.综上所述,A选项符合题意.故选:A.点评:本题考查了动点问题的函数图象.此题涉及到了函数y=的图象问题,在初中阶段没有学到该函数图象,所以只要采取排除法进行解题.二、填空题(每小题3分,共21分)9.(3分)(2019年河南省)计算:﹣|﹣2|=1.考点:实数的运算.分析:首先计算开方和绝对值,然后再计算有理数的减法即可.解答:解:原式=3﹣2=1,故答案为:1.点评:此题主要考查了实数的运算,关键是掌握立方根和绝对值得性质运算.10.(3分)(2019年河南省)不等式组的所有整数解的和为﹣2.考点:一元一次不等式组的整数解.分析:先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x的所有整数解相加即可求解.解答:解:,由①得:x≥﹣2,由②得:x<2,∴﹣2≤x<2,∴不等式组的整数解为:﹣2,﹣1,0,1.所有整数解的和为﹣2﹣1+0+1=﹣2.故答案为:﹣2.点评:本题考查的是解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.(3分)(2019年河南省)如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于M,N两点;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为105°.考点:作图—基本作图;线段垂直平分线的性质.分析:首先根据题目中的作图方法确定MN是线段BC的垂直平分线,然后利用垂直平分线的性质解题即可.解答:解:由题中作图方法知道MN为线段BC的垂直平分线,∴CD=BD,∵∠B=25°,∴∠DCB=∠B=25°,∴∠ADC=50°,∵CD=AC,∴∠A=∠ADC=50°,∴∠ACD=80°,∴∠ACB=∠ACD+∠BCD=80°+25°=105°,故答案为:105°.点评:本题考查了基本作图中的垂直平分线的作法及线段的垂直平分线的性质,解题的关键是了解垂直平分线的做法.12.(3分)(2019年河南省)已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,若点A的坐标为(﹣2,0),抛物线的对称轴为直线x=2,则线段AB的长为8.考点:抛物线与x轴的交点.分析:由抛物线y=ax2+bx+c的对称轴为直线x=2,交x轴于A、B两点,其中A点的坐标为(﹣2,0),根据二次函数的对称性,求得B点的坐标,再求出AB的长度.解答:解:∵对称轴为直线x=2的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,∴A、B两点关于直线x=2对称,∵点A的坐标为(﹣2,0),∴点B的坐标为(6,0),AB=6﹣(﹣2)=8.故答案为:8.点评:此题考查了抛物线与x轴的交点.此题难度不大,解题的关键是求出B点的坐标.13.(3分)(2019年河南省)一个不透明的袋子中装有仅颜色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,则第一个人摸到红球且第二个人摸到白球的概率是.考点:列表法与树状图法.专题:计算题.分析:列表得出所有等可能的情况数,找出第一个人摸到红球且第二个人摸到白球的情况数,即可求出所求的概率.解答:解:列表得:红红白白红﹣﹣﹣(红,红)(白,红)(白,红)红(红,红)﹣﹣﹣(白,红)(白,红)白(红,白)(红,白)﹣﹣﹣(白,白)白(红,白)(红,白)(白,白)﹣﹣﹣所有等可能的情况有12种,其中第一个人摸到红球且第二个人摸到白球的情况有4种,则P==.故答案为:.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.14.(3分)(2019年河南省)如图,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,其中点C的运动路径为,则图中阴影部分的面积为.考点:菱形的性质;扇形面积的计算;旋转的性质.分析:连接BD′,过D′作D′H⊥AB,则阴影部分的面积可分为3部分,再根据菱形的性质,三角形的面积公式以及扇形的面积公式计算即可.解答:解:连接BD′,过D′作D′H⊥AB,∵在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,∴D′H=,∴S△ABD′=1×=,∴图中阴影部分的面积为+﹣,故答案为:+﹣.点评:本题考查了旋转的性质,菱形的性质,扇形的面积公式,熟练掌握旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.15.(3分)(2019年河南省)如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为或.考点:翻折变换(折叠问题).分析:连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P,先利用勾股定理求出MD′,再分两种情况利用勾股定理求出DE.解答:解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P,∵点D的对应点D′落在∠ABC的角平分线上,∴MD′=PD′,设MD′=x,则PD′=BM=x,∴AM=AB﹣BM=7﹣x,又折叠图形可得AD=AD′=5,∴x2+(7﹣x)2=25,解得x=3或4,即MD′=3或4.在RT△END′中,设ED′=a,①当MD′=3时,D′E=5﹣3=2,EN=7﹣CN﹣DE=7﹣3﹣a=4﹣a,∴a2=22+(4﹣a)2,解得a=,即DE=,②当MD′=4时,D′E=5﹣4=1,EN=7﹣CN﹣DE=7﹣4﹣a=3﹣a,∴a2=12+(3﹣a)2,解得a=,即DE=.故答案为:或.点评:本题主要考查了折叠问题,解题的关键是明确掌握折叠以后有哪些线段是对应相等的.三、解答题(本大题共8小题,满分75分)16.(8分)(2019年河南省)先化简,再求值:+(2+),其中x=﹣1.考点:分式的化简求值.专题:计算题.分析:先把括号内通分,再把除法运算化为乘法运算,然后把分子分母因式分解,约分后得到原式=,再把x的值代入计算.解答:解:原式=÷=÷==,当x=﹣1时,原式==.点评:本题考查了分式的化简求值:先把分式的分子或分母因式分解,再进行通分或约分,得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值.17.(9分)(2019年河南省)如图,CD是⊙O的直径,且CD=2cm,点P为CD的延长线上一点,过点P作⊙O的切线PA,PB,切点分别为点A,B.(1)连接AC,若∠APO=30°,试证明△ACP是等腰三角形;(2)填空:①当DP=1cm时,四边形AOBD是菱形;②当DP=﹣1cm时,四边形AOBD是正方形.考点:切线的性质;等腰三角形的判定;菱形的判定;正方形的判定.分析:(1)利用切线的性质可得OC⊥PC.利用同弧所对的圆周角等于圆心角的一半,求得∠ACP=30°,从而求得.(2)①要使四边形AOBD是菱形,则OA=AD=OD,所以∠AOP=60°,所以OP=2OA,DP=OD.②要使四边形AOBD是正方形,则必须∠AOP=45°,OA=PA=1,则OP=,所以DP=OP﹣1.解答:解:(1)连接OA,AC∵PA是⊙O的切线,∴OA⊥PA,在RT△AOP中,∠AOP=90°﹣∠APO=90°﹣30°=60°,∴∠ACP=30°,∵∠APO=30°∴∠ACP=∠APO,∴AC=AP,∴△ACP是等腰三角形.(2)①1,②.点评:本题考查了切线的性质,圆周角的性质,熟练掌握圆的切线的性质和直角三角形的边角关系是解题的关键.18.(9分)(2019年河南省)某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为144°;(2)请补全条形统计图;(3)该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×=108”,请你判断这种说法是否正确,并说明理由.考点:条形统计图;用样本估计总体;扇形统计图.专题:图表型.分析:(1)用“经常参加”所占的百分比乘以360°计算即可得解;(2)先求出“经常参加”的人数,然后求出喜欢篮球的人数,再补全统计图即可;(3)用总人数乘以喜欢篮球的学生所占的百分比计算即可得解;(4)根据喜欢乒乓球的27人都是“经常参加”的学生,“偶尔参加”的学生中也会有喜欢乒乓球的考虑解答.解答:解:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;故答案为:144°;(2)“经常参加”的人数为:300×40%=120人,喜欢篮球的学生人数为:120﹣27﹣33﹣20=120﹣80=40人;补全统计图如图所示;(3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为:1200×=160人;(4)这个说法不正确.理由如下:小明得到的108人是经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108人.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(9分)(2019年河南省)在中俄“海上联合﹣2018”反潜演习中,我军舰A测得潜艇C的俯角为30°,位于军舰A正上方1000米的反潜直升机B测得潜艇C的俯角为68°,试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数,参考数据:sin68°≈,cos68°≈,tan68°≈,)考点:解直角三角形的应用-仰角俯角问题.分析:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,分别在Rt三角形ACD中表示出CD和在Rt三角形BCD中表示出BD,从而利用二者之间的关系列出方程求解.解答:解:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,根据题意得:∠ACD=30°,∠BCD=65°,设AD=x,则BD=BA+AD=1000+x,在Rt三角形ACD中,CD===,在Rt三角形BCD中,BD=CDtan68°,∴1000+x=xtan68°解得:x==≈308米,∴潜艇C离开海平面的下潜深度为308米.点评:本题考查了解直角三角形的应用,解题的关键是从题目中抽象出直角三角形并选择合适的边角关系求解.20.(9分)(2019年河南省)如图,在直角梯形OABC中,BC∥AO,∠AOC=90°,点A,B的坐标分别为(5,0),(2,6),点D为AB上一点,且BD=2AD,双曲线y=(k>0)经过点D,交BC于点E.(1)求双曲线的解析式;(2)求四边形ODBE的面积.考点:反比例函数综合题.专题:综合题.分析:(1)作BM⊥x轴于M,作BN⊥x轴于N,利用点A,B的坐标得到BC=OM=5,BM=OC=6,AM=3,再证明△ADN∽△ABM,利用相似比可计算出DN=2,AN=1,则ON=OA﹣AN=4,得到D点坐标为(4,2),然后把D点坐标代入y=中求出k的值即可得到反比例函数解析式;(2)根据反比例函数k的几何意义和S四边形ODBE=S梯形OABC﹣S△OCE﹣S△OAD进行计算.解答:解:(1)作BM⊥x轴于M,作BN⊥x轴于N,如图,∵点A,B的坐标分别为(5,0),(2,6),∴BC=OM=5,BM=OC=6,AM=3,∵DN∥BM,∴△ADN∽△ABM,∴==,即==,∴DN=2,AN=1,∴ON=OA﹣AN=4,∴D点坐标为(4,2),把D(4,2)代入y=得k=2×4=8,∴反比例函数解析式为y=;(2)S四边形ODBE=S梯形OABC﹣S△OCE﹣S△OAD=×(2+5)×6﹣×|8|﹣×5×2=12.点评:本题考查了反比例函数综合题:熟练掌握反比例函数图象上点的坐标特征、反比例函数k的几何意义和梯形的性质;理解坐标与图形的性质;会运用相似比计算线段的长度.21.(10分)(2019年河南省)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A 型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.考点:一次函数的应用;二元一次方程组的应用;一元一次不等式组的应用.分析:(1)设每台A型电脑销售利润为x元,每台B型电脑的销售利润为y元;根据题意列出方程组求解,(2)①据题意得,y=﹣50x+15000,②利用不等式求出x的范围,又因为y=﹣50x+15000是减函数,所以x取34,y取最大值,(3)据题意得,y=(100+m)x﹣150(100﹣x),即y=(m﹣50)x+15000,分三种情况讨论,①当0<m<50时,y随x的增大而减小,②m=50时,m﹣50=0,y=15000,③当50<m<100时,m﹣50>0,y随x的增大而增大,分别进行求解.解答:解:(1)设每台A型电脑销售利润为x元,每台B型电脑的销售利润为y元;根据题意得解得答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元.(2)①据题意得,y=100x﹣150(100﹣x),即y=﹣50x+15000,②据题意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,即商店购进34台A型电脑和66台B型电脑的销售利润最大.(3)据题意得,y=(100+m)x﹣150(100﹣x),即y=(m﹣50)x+15000,33≤x≤70①当0<m<50时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②m=50时,m﹣50=0,y=15000,即商店购进A型电脑数量满足33≤x≤70的整数时,均获得最大利润;③当50<m<100时,m﹣50>0,y随x的增大而增大,∴当x=70时,y取得最大值.即商店购进70台A型电脑和30台B型电脑的销售利润最大.点评:本题主要考查了一次函数的应用,二元一次方程组及一元一次不等式的应用,解题的关键是根据一次函数x值的增大而确定y值的增减情况.22.(10分)(2019年河南省)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为60°;②线段AD,BE之间的数量关系为AD=BE.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.考点:圆的综合题;全等三角形的判定与性质;等腰三角形的性质;等边三角形的性质;直角三角形斜边上的中线;正方形的性质;圆周角定理.专题:综合题;探究型.分析:(1)由条件易证△ACD≌△BCE,从而得到:AD=BE,∠ADC=∠BEC.由点A,D,E在同一直线上可求出∠ADC,从而可以求出∠AEB的度数.(2)仿照(1)中的解法可求出∠AEB的度数,证出AD=BE;由△DCE为等腰直角三角形及CM为△DCE中DE 边上的高可得CM=DM=ME,从而证到AE=2CH+BE.(3)由PD=1可得:点P在以点D为圆心,1为半径的圆上;由∠BPD=90°可得:点P在以BD为直径的圆上.显然,点P是这两个圆的交点,由于两圆有两个交点,接下来需对两个位置分别进行讨论.然后,添加适当的辅助线,借助于(2)中的结论即可解决问题.解答:解:(1)①如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,∴△ACD≌△BCE.∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.故答案为:60°.②∵△ACD≌△BCE,∴AD=BE.故答案为:AD=BE.(2)∠AEB=90°,AE=BE+2CM.理由:如图2,∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,∴△ACD≌△BCE.∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.(3)∵PD=1,∴点P在以点D为圆心,1为半径的圆上.∵∠BPD=90°,∴点P在以BD为直径的圆上.∴点P是这两圆的交点.①当点P在如图3①所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交BP于点E,如图3①.∵四边形ABCD是正方形,∴∠ADB=45°.AB=AD=DC=BC=,∠BAD=90°.∴BD=2.∵DP=1,∴BP=.∵A、P、D、B四点共圆,∴∠APB=∠ADB=45°.∴△PAE是等腰直角三角形.又∵△BAD是等腰直角三角形,点B、E、P共线,AH⊥BP,∴由(2)中的结论可得:BP=2AH+PD.∴=2AH+1.∴AH=.②当点P在如图3②所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交PB的延长线于点E,如图3②.同理可得:BP=2AH﹣PD.∴=2AH﹣1.∴AH=.综上所述:点A到BP的距离为或.点评:本题考查了等边三角形的性质、正方形的性质、等腰三角形的性质、直角三角形斜边上的中线等于斜边的一半、圆周角定理、三角形全等的判定与性质等知识,考查了运用已有的知识和经验解决问题的能力,是体现新课程理念的一道好题.而通过添加适当的辅助线从而能用(2)中的结论解决问题是解决第(3)的关键.23.(11分)(2019年河南省)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.(1)求抛物线的解析式;(2)若PE=5EF,求m的值;(3)若点E′是点E关于直线PC的对称点,是否存在点P,使点E′落在y轴上若存在,请直接写出相应的点P的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)利用待定系数法求出抛物线的解析式;(2)用含m的代数式分别表示出PE、EF,然后列方程求解;(3)解题关键是识别出四边形PECE′是菱形,然后根据PE=CE的条件,列出方程求解.解答:解:(1)将点A、B坐标代入抛物线解析式,得:,解得,∴抛物线的解析式为:y=﹣x2+4x+5.(2)∵点P的横坐标为m,∴P(m,﹣m2+4m+5),E(m,﹣m+3),F(m,0).∴PE=|y P﹣y E|=|(﹣m2+4m+5)﹣(﹣m+3)|=|﹣m2+m+2|,EF=|y E﹣y F|=|(﹣m+3)﹣0|=|﹣m+3|.由题意,PE=5EF,即:|﹣m2+m+2|=5|﹣m+3|=|m+15|①若﹣m2+m+2=m+15,整理得:2m2﹣17m+26=0,解得:m=2或m=;①若﹣m2+m+2=﹣(m+15),整理得:m2﹣m﹣17=0,解得:m=或m=.由题意,m的取值范围为:﹣1<m<5,故m=、m=这两个解均舍去.∴m=2或m=.(3)假设存在.作出示意图如下:∵点E、E′关于直线PC对称,∴∠1=∠2,CE=CE′,PE=PE′.∵PE平行于y轴,∴∠1=∠3,∴∠2=∠3,∴PE=CE,∴PE=CE=PE′=CE′,即四边形PECE′是菱形.由直线CD解析式y=﹣x+3,可得OD=4,OC=3,由勾股定理得CD=5.过点E作EM∥x轴,交y轴于点M,易得△CEM∽△CDO,∴,即,解得CE=|m|,∴PE=CE=|m|,又由(2)可知:PE=|﹣m2+m+2|∴|﹣m2+m+2|=|m|.①若﹣m2+m+2=m,整理得:2m2﹣7m﹣4=0,解得m=4或m=﹣;②若﹣m2+m+2=﹣m,整理得:m2﹣6m﹣2=0,解得m=3+或m=3﹣.由题意,m的取值范围为:﹣1<m<5,故m=3+这个解舍去.综上所述,存在满足条件的点P,可求得点P坐标为(﹣,),(4,5),(3﹣,2﹣3).点评:本题是二次函数压轴题,综合考查了二次函数与一次函数的图象与性质、点的坐标、待定系数法、菱形、相似三角形等多个知识点,重点考查了分类讨论思想与方程思想的灵活运用.需要注意的是,为了避免漏解,表示线段长度的代数式均含有绝对值,解方程时需要分类讨论、分别计算.。
(完整版)河南省2019年中考数学试题与答案【解析版】,推荐文档 (2)

2019 年河南省中考数学试卷一、选择题(每小题 3 分,共24 分)1.(3 分)(2019 年河南省) 下列各数中,最小的数是()A.考点:分析:解答:0 B.有理数大小比较.根据正数大于0,0 大于负数,可得答案.解:﹣3C.﹣D.﹣3,故选:D.点评:本题考查了有理数比较大小,正数大于0,0 大于负数是解题关键.3875.5 亿元.若将3875.5 亿用科学2.(3 分)(2019 年河南省) 据统计,2019 年河南省旅游业总收入达到约记3.8755 ×10 n,则n 等数法表示为A.于(10 B.)11 C.12 D.13考点:科学记数法—表示较大的数.n 的值时要看把原分析:科学记数法的表示形式为a×10 n的形式,其中1≤|a| <10,n 为整数.确定数变1 时,n是正数成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是负的绝对值<数.解答:解:3875.5 亿=3875 5000 0000=3.8755 ×10 11,故选:B.当原数点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10 n 的形式,其中1≤|a| <10,n 为整数,表示时关键要正确确定 a 的值以及n 的值.3.(3 分)(2019 年河南省) 如图,直线AB,CD 相交于点O,射线OM 平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为()A.考点:35°垂线;对顶角、邻补角.B.45°C.55°D .65°分析:由射线OM 平分∠AOC,∠AOM=35°,得出∠MOC=35°,由ON⊥OM,得出∠CON=∠MON﹣∠MOC 得出答案.解答:解:∵射线OM 平分∠AOC,∠AOM=35°,∴∠MOC=35°,∵ON⊥OM,∴∠MON=90°,∴∠CON=∠MON﹣∠MOC=90°﹣35°=55°.故选:C.点评:本题主要考查了垂线和角平分线,解决本题的关键是找准角的关系.4.(3 分)(2019 年河南省) 下列各式计算正确的是()D.A.a+2a=3a2B.(﹣a3)2=a6C.a3?a2=a6(a +b )2 = a 2 + b 2考点:分析:完全平方公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.根据合并同类项法则,积的乘方,同底数幂的乘法,平方差公式分别求出每个式子的值,再判断即可.解答:解:A、a+2a=3a,故本选项错误;B、(﹣a3)2=a6,故本选项正确;C、a3?a2=a5,故本选项错误;D、(a+b)2=a2+b2+2ab,故本选项错误,故选B.点评:能力.本题考查了合并同类项法则,积的乘方,同底数幂的乘法,平方差公式的应用,主要考查学生的计算5.(3 分)(2019 年河南省) 下列说法中,正确的是()A. “打开电视,正在播放河南新闻节目”是必然事件B. 某种彩票中奖概率为10%是指买十张一定有一张中奖C. 神舟飞船反射前需要对零部件进行抽样调查D. 了解某种节能灯的使用寿命适合抽样调查考点:分析:随机事件;全面调查与抽样调查;概率的意义.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.不易采集到数据的调查要采用抽样调查的方式,据此判断即可.解答:解:A.“打开电视,正在播放河南新闻节目”是随机事件,本项错误;B.某种彩票中奖概率为10%是指买十张可能中奖,也可能不中奖,本项错误;C.神舟飞船反射前需要对零部件进行全面调查,本项错误;D.解某种节能灯的使用寿命,具有破坏性适合抽样调查.故选:D.点评:本题考查了调查的方式和事件的分类.不易采集到数据的调查要采用抽样调查的方式;必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.(3 分)(2019 年河南省) 将两个长方体如图放置,则所构成的几何体的左视图可能是()A.B.C.D.考点:简单组合体的三视图.分析:根据从左边看得到的图形是左视图,可得答案.解答:解:从左边看,下面是一个矩形,上面是一个等宽的矩形,该矩形的中间有一条棱,故选:C.点评:本题考查了简单组合体的三视图,注意能看到的棱用实线画出.7.(3 分)(2019 年河南省) 如图,?ABCD 的对角线AC BD 相交于点O,AB⊥AC,若AB=4,AC=6,则BD 的长与是()A.8 B.9 C.10 D.11考点:分析:解答:平行四边形的性质;勾股定理.利用平行四边形的性质和勾股定理易求BO 的长,进而可求出解:∵ ?ABCD 的对角线AC 与BD 相交于点O,BD 的长.∴BO=DO,AO=CO,∵AB⊥AC,AB=4,AC=6,∴BO= ∴BD=2BO=10,=5,故选C.点评:本题考查了平行四边形的性质以及勾股定理的运用,是中考常见题型,比较简单.8.(3 分)(2019 年河南省) 如图,在R△t ABC 中,∠ C=90°,AC=1cm,BC=2cm,点P 从点A 出发,以1cm/s 的速度沿折线AC→CB→BA 运动,最终回到点A,设点P 的运动时间为x(s),线段AP 的长度为y(cm),则能够反映y 与x 之间函数关系的图象大致是()A.B.C.D.考点:分析:动点问题的函数图象.这是分段函数:①点P 在AC 边上时,y=x,它的图象是一次函数图象的一部分;②点P 在边BC 上时,利用勾股定理求得y 与x 的函数关系式,根据关系式选择图象;③点P 在边AB 上时,利用线段间的和差关系求得y 与x 的函数关系式,由关系式选择图象.解答:解:①当点P 在AC 边上,即0≤x≤1时,y=x ,它的图象是一次函数图象的一部分.故 C 错误;②点P 在边BC 上,即1<x≤3时,根据勾股定理得y 随x 的增大而增大,且不是线段.故AP= ,即y= ,则其函数图象是B、D 错误;③点P 在边AB 上,即3<x≤3+ 时,y= +3﹣x=﹣x+3+ ,其函数图象是直线的一部分.综上所述,A 选项符合题意.故选:A.点评:本题考查了动点问题的函数图象.此题涉及到了函数y= 的图象问题,在初中阶段没有学到该函数图象,所以只要采取排除法进行解题.3 分,共21 分)二、填空题(每小题9.(3 分)(2019 年河南省) 计算:﹣| ﹣2|= 1 .考点:分析:解答:实数的运算.首先计算开方和绝对值,然后再计算有理数的减法即可.解:原式=3﹣2=1,故答案为:1.点评:此题主要考查了实数的运算,关键是掌握立方根和绝对值得性质运算.10.(3 分)(2019 年河南省) 不等式组的所有整数解的和为﹣2.考点:一元一次不等式组的整数解.分析:先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的加即可求解.x 的所有整数解相解答:解:,由①得:x≥﹣2,由②得:x<2,∴﹣2≤x<2,∴不等式组的整数解为:﹣2,﹣1,0,1.所有整数解的和为﹣2﹣1+0+1=﹣2.故答案为:﹣2.点评:本题考查的是解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.(3 分)(2019 年河南省) 如图,在△ ABC 中,按以下步骤作图:①分别以B,C 为圆心,以大于BC 的长为半径作弧,两弧相交M,N 两点;于②作直线MN AB 于D,连接CD,若CD=AC,∠B=25°,则∠ACB 的度数为105°.交点考点:作图—基本作图;线段垂直平分线的性质.MN 是线段BC的垂直平分线,然后利用垂直平分线的性质解题分析:首先根据题目中的作图方法确定即可.MN 为线段BC 的垂直平分线,解答:解:由题中作图方法知道∴CD=BD,∵∠B=25°,∴∠DCB=∠B=25°,∴∠ADC=50°,∵CD=AC,∴∠A=∠ADC=50°,∴∠ACD=80°,∴∠ACB=∠ACD+∠BCD=80°+25°=105°,故答案为:105°.点评:本题考查了基本作图中的垂直平分线的作法及线段的垂直平分线的性质,解题的关键是了解垂直平分线的做法.12.(3 分)(2019 年河南省) 已知抛物线y=ax 2+bx+c(a≠0)与x 轴交于A,B 两点,若点A 的坐标为(﹣8抛物线的对称轴为直线x=2,则线段AB 的长为.抛物线与x 轴的交点.考点:x=2,x 轴于A、B点,其A 点的标为(2,分析:由抛物线y=ax2+bx+c 的对称轴为直线根据A二次函数的对称性,求得 B 点的坐标,再求出 B的长度.解答:解:∵对称轴为直线x=2 的抛物线y=ax 2+bx+c (a≠0)与x 轴相交于A、B 两点,∴A、 B 两点关于直线∵点 A 的坐标为(﹣∴点B 的坐标为(6,0),AB=6﹣(﹣2)=8.故答案为:8.x=2 对称,2,0),点评:此题考查了抛物线与x 轴的交点.此题难度不大,解题的关键是求出2个红球13.(3 分)(2019 年河南省) 一个不透明的袋子中装有仅颜色不同的和随机摸出一个小球不放回,则第一个人摸到红球且第二个人摸到白球的概率是考点:专题:列表法与树状图法.计算题.分析:列表得出所有等可能的情况数,找出第一个人摸到红球且第二个人摸到白球的情况数,即可求出所求的概率.解答:解:列表得:红红白白红﹣﹣﹣(红,红)(白,红)(白,红)红(红,红)﹣﹣﹣(白,红)(白,红)白(红,白)(红,白)﹣﹣﹣(白,白)白(红,白)(红,白)(白,白)﹣﹣﹣所有等可能的情况有12 种,其中第一个人摸到红球且第二个人摸到白球的情况有则P= =.4 种,故答案为:.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.14.(3 分)(2019 年河南省) 如图,在菱形ABCD 中,AB=1,∠ DAB=60°,把菱形绕点A 顺时针旋转ABCD到菱形AB′C′D′,其中点 C 的运动路径为30°得.,则图中阴影部分的面积为考点:分析:菱形的性质;扇形面积的计算;旋转的性质.连接BD′,过D′作D′H⊥AB,则阴影部分的面积可分为 3 部分,再根据菱形的性质,三角形的面积公式以及扇形的面积公式计算即可.解答:解:连接BD′,过D′作D′H⊥AB,∵在菱形ABCD 中,AB=1,∠ DAB=60°,把菱形AB′C′D′,∴D′H= ,ABCD 绕点A 顺时针旋转30°得到菱形∴△S ABD′=1×= ,∴图中阴影部分的面积为+ ﹣,故答案为:+ ﹣.点评:本题考查了旋转的性质,菱形的性质,扇形的面积公式,熟练掌握旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.15.(3 分)(2019 年河南省) 如图矩形ABCD 中,AD=5,AB=7,点E 为DC 上一个动点,把△ ADE 沿AE 折叠,当点D 的对应点D′落在∠ABC 的角平分线上时,DE 的长为或.考点:翻折变换(折叠问题).分析:连接BD′,过D′作MN⊥AB,交AB 于点M,CD 于N,作D′P⊥BC 交BC 于点P,先利用勾股定理求出MD′,再分两种情况利用勾股定理求出点解答:解:如图,连接BD′,过D′作DE.MN⊥AB,交AB 于点M,CD 于点N,作D′P⊥BC 交BC 于点P,∵点 D 的对应点D′落在∠ ABC 的角平分线上,∴MD′=PD′,设MD′=x,则PD′=BM=x,∴AM=AB﹣BM=7﹣x,又折叠图形可得AD=AD′=5,2 2∴x+(7﹣x)=25,解得x=3 或4,即MD′=3 或4.在R△T END′中,设ED′=a,①当MD′=3 时,D′E=5﹣3=2,EN=7﹣CN﹣DE=7﹣3﹣a=4﹣a,2 2 2∴a=2 +(4﹣a),解得a= ,即DE= ,②当MD′=4 时,D′E=5﹣4=1,EN=7﹣CN﹣DE=7﹣4﹣a=3﹣a,2 2 2∴a=1 +(3﹣a),解得a= ,即DE= .故答案为:或.点评:本题主要考查了折叠问题,解题的关键是明确掌握折叠以后有哪些线段是对应相等的.三、解答题(本大题共8 小题,满分75 分)+(2+ ),其中x= ﹣1.16.(8 分)(2019 年河南省) 先化简,再求值:考点:专题:分式的化简求值.计算题.分析:先把括号内通分,再把除法运算化为乘法运算,然后把分子分母因式分解,约分后得到原式= ,再把x 的值代入计算.解答:解:原式= ÷=÷=?=,当x= ﹣1 时,原式= = .点评:本题考查了分式的化简求值:先把分式的分子或分母因式分解,再进行通分或约分,得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值.17.(9 分)(2019 年河南省) 如图,CD 是⊙O 的直径,且CD=2cm,点P 为CD 的延长线上一点,过点切线PA,PB,切点分别为点A,B.°,试证明ACP 是等腰三角形;P 作⊙O 的(1)连接AC,若∠ APO=30 △(2)填空:①当DP=②当DP= 1 cm 时,四边形AOBD 是菱形;﹣1 cm 时,四边形AOBD 是正方形.考点:切线的性质;等腰三角形的判定;菱形的判定;正方形的判定.分析:(1)利用切线的性质可得OC⊥PC.利用同弧所对的圆周角等于圆心角的一半,求得∠ ACP=30°,从而求得.(2)①要使四边形AOBD 是菱形,则OA=AD=OD,所以∠ AOP=60°,所以OP=2OA,DP=OD.②要使四边形AOBD 是正方形,则必须∠ AOP=45°,OA=PA=1,则OP= ,所以DP=OP﹣1.解答:解:(1)连接OA,AC∵PA 是⊙O 的切线,∴OA⊥PA,在R△T AOP 中,∠ AOP=90°﹣∠APO=90°﹣30°=60°,∴∠ACP=30°,∵∠APO=30°∴∠ACP=∠APO,∴AC=AP,∴△ ACP 是等腰三角形.(2)①1,②.点评:本题考查了切线的性质,圆周角的性质,熟练掌握圆的切线的性质和直角三角形的边角关系是解题的关键.18.(9 分)(2019 年河南省) 某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.300 名男生进请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为144° ;(2)请补全条形统计图;(3)该校共有1200 名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×=108”,请你判断这种说法是否正确,并说明理由.考点:条形统计图;用样本估计总体;扇形统计图.专题:图表型.分析:(1)用“经常参加”所占的百分比乘以360°计算即可得解;(2)先求出“经常参加”的人数,然后求出喜欢篮球的人数,再补全统计图即可;(3)用总人数乘以喜欢篮球的学生所占的百分比计算即可得解;(4)根据喜欢乒乓球的27 人都是“经常参加”的学生,“偶尔参加”的学生中也会有喜欢乒乓球的考虑解答.解答:解:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;故答案为:144°;(2)“经常参加”的人数为:300×40%=120 人,喜欢篮球的学生人数为:120﹣27﹣33﹣20=120 ﹣80=40 人;补全统计图如图所示;(3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为12:00×=160 人;(4)这个说法不正确.理由如下:小明得到的108 人是经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108 人.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(9 分)(2019 年河南省) 在中俄“海上联合﹣2018”反潜演习中,我军舰 A 测得潜艇 C 的俯角为30°,位于军舰A 正上方1000 米的反潜直升机 B 测得潜艇 C 的俯角为68°,试根据以上数据求出潜艇 C 离开海平面的下潜深度.(结果保留整数,参考数据:sin68 °≈ 0.9 ,cos68°≈ 0.4 ,tan68 °≈ 2.5 , 1.7 )考点:分析:解直角三角形的应用- 仰角俯角问题.过点C 作CD⊥AB,交BA 的延长线于点D,则AD 即为潜艇 C 的下潜深度,分别在Rt 三角形ACD 中表示出CD 和在Rt 三角形BCD 中表示出BD,从而利用二者之间的关系列出方程求解.解答:解:过点 C 作CD⊥AB,交BA 的延长线于点D,则AD 即为潜艇 C 的下潜深度,根据题意得:∠ACD=30°,∠BCD=65°,设AD=x,则BD=BA+AD=1000+x,在Rt 三角形ACD 中,CD= = = ,在Rt 三角形BCD 中,BD=CD?tan68°,∴1000+x= x?t an 68 °解得:x= = ≈308 米,∴潜艇C 离开海平面的下潜深度为308 米.点评:本题考查了解直角三角形的应用,解题的关键是从题目中抽象出直角三角形并选择合适的边角关系求解.OABC 中,BC∥AO,∠5,A,B 的0 坐标分),20.(9 分)(2019 年河南省) 如图,在直角梯形(2,6),点D 为AB 上一点,且BD=2AD,双曲线y= (k>0)经过点D,交BC 于点E.(1)求双曲线的解析式;(2)求四边形ODBE 的面积.AOC=90°,点别为(考点:反比例函数综合题.专题:综合题.分析:(1)作BM⊥x轴于M,作BN⊥x轴于N,利用点A,B 的坐标得到BC=OM=5,BM=OC=6,AM=3,再证明△ADN∽△ABM,利用相似比可计算出DN=2,AN=1,则ON=OA﹣AN=4,得到D 点坐标为(4,2),然后把D 点坐标代入y= 中求出k 的值即可得到反比例函数解析式;﹣S﹣Sk 的几进行何意义计(2)根据反比例函数和S四边形=SODBE算.梯形OABC△OCE△OAD解答:解:(1)作BM⊥x轴于M,作BN⊥x轴于N,如图,∵点A,B 的坐标分别为(5,0),(2,6),∴BC=OM=5,BM=OC=6,AM=3,∵DN∥BM,∴△ADN∽△ABM,==∴= = ,即,∴DN=2,AN=1,∴ON=OA﹣AN=4,∴D 点坐标为(4,2),把D(4,2)代入y=得k=2×4=8,∴反比例函数解析式为y= ;(2)S 四边形ODBE=S 梯形OABC﹣△S OCE﹣△S OAD= ×(2+5)×6﹣=12.×|8| ﹣×5×2点评:本题考查了反比例函数综合题:熟练掌握反比例函数图象上点的坐标特征、反比例函数k 的几何意义和梯形的性质;理解坐标与图形的性质;会运用相似比计算线段的长度.10 台A 型和20台B 4000 型电21.(10 分)(2019 B 型电脑的利润为年河南省) 某商店销售3500 元.销脑的20台利润型和为(1)求每台A 型电脑和B 型电脑的销售利润;100台,其中B 型A电脑电的进的货量倍不超设(2)该商店计划一次购进两种型号的电脑共过进y元型电脑x 台,这100 台电脑的销售总利润为.①求y 关于x 的函数关系式;②该商店购进 A 型、 B 型电脑各多少台,才能使销售总利润最大?m(0<m<100)元,且限定商店最多(3)实际进货时,厂家对 A 型电脑出厂价下调购进2)中100条台电件脑销,设售总计利润出最大使的进店保持同种电脑的售价不变,请你根据以上信息及(这货方案.考点:一次函数的应用;二元一次方程组的应用;一元一次不等式组的应用.x 元,y 元每台根据B 型题意电脑列出的销方程售利组求分析:(1)设每台A 型电脑销售利润为润为解,(2)①据题意得,y=﹣50x+15000,②利用不等式求出x 的范围,又因为y=﹣50x+15000 是减函数,所以x 取34,y 取最大值,(3)据题意得,y=(100+m)x﹣150(100﹣x),即y=(m﹣50)x+15000,分三种情况讨论,①当0<m<50 时,y 随x 的增大而减小,② m=50 时,m﹣50=0,y=15000 ,③当50<m<100 时,m﹣50>0,y 随x 的增大而增大,分别进行求解.解答:解:(1)设每台A 型电脑销售利润为x 元,每台 B 型电脑的销售利润为y 元;根据题意得解得答:每台 A 型电脑销售利润为100 元,每台B 型电脑的销售利润为150 元.(2)①据题意得,y=100x﹣150(100﹣x),即y=﹣50x+15000 ,②据题意得,100﹣x≤2x,解得x≥33 ,∵y=﹣50x+15000,∴y 随x 的增大而减小,∵x 为正整数,∴当x=34 时,y 取最大值,则100﹣x=66,即商店购进34 台A 型电脑和66 台 B 型电脑的销售利润最大.(3)据题意得,y=(100+m)x﹣150(100﹣x),即y=(m﹣50)x+15000,33 ≤x≤70①当0<m<50 时,y 随x 的增大而减小,∴当x=34 时,y 取最大值,即商店购进34 台A 型电脑和66 台 B 型电脑的销售利润最大.②m=50 时,m﹣50=0,y=15000,即商店购进 A 型电脑数量满足33 ≤x≤70 的整数时,均获得最大利润;③当50<m<100 时,m﹣50>0,y 随x 的增大而增大,∴当x=70 时,y 取得最大值.即商店购进70 台A 型电脑和30 台 B 型电脑的销售利润最大.点评:本题主要考查了一次函数的应用,二元一次方程组及一元一次不等式的应用,解题的关键是根据一次函数x 值的增大而确定y 值的增减情况.22.(10 分)(2019 年河南省) (1)问题发现如图△1,ACB 和△DCE 均为等边三角形,点A,D,E 在同一直线上,连接BE.填空:①∠AEB 的度数为60°;②线段AD,BE 之间的数量关系为(2)拓展探究AD=BE .CM 为△DCE DE如图△2,ACB 和△DCE 均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E 在同一直线上,中边上的高,连接BE,请判断∠AEB 的度数及线段CM,AE,BE 之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD 中,,若点P 满足PD=1,且∠BPD=90°,请直接写出点 A 到BP 的距离.CD=考点:圆的综合题;全等三角形的判定与性质;等腰三角形的性质;等边三角形的性质;直角三角形斜边上的中线;正方形的性质;圆周角定理.专题:综合题;探究型.分析:(1)由条件易证△ACD≌△BCE,从而得到:AD=BE,∠ADC=∠BEC.由点A,D,E 在同一直线上可求出∠ADC,从而可以求出∠ AEB 的度数.(2)仿照(1)中的解法可求出∠ AEB 的度数,证出AD=BE;由△ DCE 为等腰直角三角形及CM 为△ DCE 中DE 边上的高可得CM=DM=ME,从而证到AE=2CH+BE.(3)由PD=1 可得:点P 在以点D 为圆心,1 为半径的圆上;由∠ BPD=90°可得:点P 在以BD 为直径的圆上.显然,点P 是这两个圆的交点,由于两圆有两个交点,接下来需对两个位置分别进行讨论.然后,添加适当的辅助线,借助于(2)中的结论即可解决问题.解答:解:(1)①如图1,∵△ ACB 和△ DCE 均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ ACD 和△ BCE 中,∴△ACD≌△BCE.∴∠ADC=∠BEC.∵△ DCE 为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E 在同一直线上,∴∠ADC=120°.∴∠BEC=120°.∴∠ AEB=∠BEC﹣∠CED=60°.故答案为:60°.②∵△ACD≌△BCE,∴AD=BE.故答案为:AD=BE.(2)∠AEB=90°,AE=BE+2CM.理由:如图2,∵△ ACB 和△ DCE 均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ ACD 和△ BCE 中,∴△ACD≌△BCE.∴AD=BE,∠ADC=∠BEC.∵△ DCE 为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E 在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.(3)∵PD=1,∴点P 在以点 D 为圆心, 1 为半径的圆上.∵∠BPD=90°,∴点P 在以BD 为直径的圆上.∴点P 是这两圆的交点.①当点P 在如图3①所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点 A 作AE⊥AP,交BP 于点E,如图3①.∵四边形ABCD 是正方形,∴∠ADB=45°.AB=AD=DC=BC= ,∠BAD=90°.∴BD=2.∵DP=1,∴BP= .∵A、P、D、B 四点共圆,∴∠APB=∠ADB=45°.∴△ PAE 是等腰直角三角形.又∵△BAD 是等腰直角三角形,点B、E、P 共线,AH⊥BP,∴由(2)中的结论可得:BP=2AH+PD.∴=2AH+1.∴AH=.②当点P 在如图3②所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点 A 作AE⊥AP,交PB 的延长线于点E,如图3②.同理可得:BP=2AH﹣PD.∴=2AH﹣1.∴AH=.综上所述:点 A 到BP 的距离为或.点评:本题考查了等边三角形的性质、正方形的性质、等腰三角形的性质、直角三角形斜边上的中线等于斜边的一半、圆周角定理、三角形全等的判定与性质等知识,考查了运用已有的知识和经验解决问题的能力,是体现新课程理念的一道好题.而通过添加适当的辅助线从而能用(2)中的结论解决问题是解决第(3)的关键.A(﹣1,0),B(5,0)两点,直线23.(11 分)(2019 年河南省) 如图,抛物线y=﹣x2+bx+c 与x 轴交于点y=﹣x+3 与y 轴交于点C,与x 轴交于点D.点P 是x 轴上方的抛物线上一动点,过点P 作PF⊥x轴于点F,交直线CD 于点E.设点P 的横坐标为m.(1)求抛物线的解析式;(2)若PE=5EF,求m 的值;(3)若点E′是点E 关于直线PC 的对称点,是否存在P,使点E′落在y 轴上?若存在,请直接写出相应的点点P 的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)利用待定系数法求出抛物线的解析式;(2)用含m 的代数式分别表示出PE、EF,然后列方程求解;(3)解题关键是识别出四边形PECE′是菱形,然后根据PE=CE 的条件,列出方程求解.解答:解:(1)将点A、B 坐标代入抛物线解析式,得:,解得,∴抛物线的解析式为:y=﹣x2+4x+5.(2)∵点P 的横坐标为m,2 m+3),F(m,)∴P(m,﹣m+4m+5),E(m,﹣.2 2m+2|,∴PE=|y ﹣y |=| (﹣m+4m+5)﹣(﹣m+3)|=| ﹣m+PE﹣m+3|EF=|y E﹣y F|=| (﹣m+3)﹣0|=| .m+2|=5|﹣由题意,PE=5EF,即:| ﹣m2+2m+ m3 +| 1= 5| |2m+15,整理得:2m﹣①若﹣m+m+2= 17m+26=0,解得:m=2 或m= ;2 2m+15),整理得:m﹣①若﹣m+m+2=﹣(m﹣1 7 = 0 ,解得:m=由题意,m 的取值范围为:﹣1<m<5,故m= 、m=或m=.这两个解均舍去.∴m=2 或m= .(3)假设存在.作出示意图如下:∵点E、E′关于直线PC 对称,∴∠1=∠2,CE=CE′,PE=PE′.∵PE 平行于y 轴,∴∠ 1=∠3,∴∠2=∠3,∴PE=CE,∴PE=CE=PE′=CE′,即四边形PECE′是菱形.由直线CD 解析y=﹣x+3,可得OD=4,OC=3,由勾股定理得CD=5.式过点 E 作EM∥x 轴,交y 轴于点M△,易得CEM∽△CDO,∴,即,解得CE= |m| ,2∴PE=CE= |m| ,又由(2)可知:PE=|﹣m+∴| ﹣m2+ m+2|= |m| .m+2|2 ①若﹣m+22m+2= m,整理得:2m﹣7m﹣4=0,解得m=4 或m=﹣;2②若﹣m+ m+2=﹣m,整理得:m﹣6m﹣2=0,解得m=3+ 或m=3﹣.由题意,m 的取值范围为:﹣1<m<5,故m=3+这个解舍去.综上所述,存在满足条件的点P,可求得点P 坐标为(﹣,),(4,5),(3﹣,2 ﹣3).点评:本题是二次函数压轴题,综合考查了二次函数与一次函数的图象与性质、点的坐标、待定系数法、菱形、相似三角形等多个知识点,重点考查了分类讨论思想与方程思想的灵活运用.需要注意的是,为了避免漏解,表示线段长度的代数式均含有绝对值,解方程时需要分类讨论、分别计算.“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
2019年河南省中考数学试卷及答案(Word解析版)

2019年河南省初中学业水平暨高级中等学校招生考试试卷数 学注意事项:1. 本试卷共8页,三个大题,满分120分,考试时间100分钟,请用蓝、黑色水笔或圆珠笔直接答在试卷上。
参考公式:二次函数图像2(0)y ax bx c a =++≠的顶点坐标为24(,)24b ac b a a-- 一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填在题后括号内。
1、-2的相反数是【】(A )2 (B)2-- (C)12 (D)12- 【解析】根据相反数的定义可知:-2的相反数为2【答案】A2、下列图形中,既是轴对称图形又是中心对称图形的是【】【解析】轴对称是指在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形。
中心对称图形是指平面内,如果把一个图形绕某个点旋转180°后,能与自身重合,那么就说这两个图形关于这个点成中心对称。
结合定义可知,答案是D【答案】D3、方程(2)(3)0x x -+=的解是【】(A )2x = (B )3x =- (C )122,3x x =-= (D )122,3x x ==-【解析】由题可知:20x -=或者30x +=,可以得到:122,3x x ==-【答案】D4、在一次体育测试中,小芳所在小组8个人的成绩分别是:46,47,48,48,49,49,49,50.则这8个人体育成绩的中位数是【】(A ) 47 (B )48 (C )48.5 (D )49【解析】中位数是将数据按照从小到大的顺序排列,其中间的一个数或中间两个数的平均数就是这组数的中位数。
本题的8个数据已经按照从小到大的顺序排列了,其中间的两个数是48和49,它们的平均数是48.5。
因此中位数是48.5【答案】C5、如图是正方形的一种张开图,其中每个面上都标有一个数字。
那么在原正方形中,与数字“2”相对的面上的数字是【】(A )1 (B )4 (C )5 (D )6【解析】将正方形重新还原后可知:“2”与“4”对应,“3”与“5”对应,“1”与“6”对应。
2019年河南省中考真题数学试题(附答案解析)

三、解答题(本大题共8小题,满分75分,解答应写出文字说明、证明过程或演算步骤)
16.先化简,再求值:
,其中
.
17.如图,在△ABC中,BA=BC,∠ABC=90°,以AB为直径的半圆O交AC于点D,点E是 BD
上不与点B,D重合的任意一点,连接AE交BD于点F,连接BE并延长交AC于点C.
⑴求证:△ADF ≌ △BDG ;
∴EO⊥AC,∴EB是AC的垂直平分线,∴AB=BC=3.
在Rt△ABM中,∠AMB=90°,AM=AD-MD=1,
∴BM= AB2 AM 2 32 12 2 2 ,
∴CD= 2 2.故选A.
10.【答案】D
【解析】由A、B两点的坐标可知线段AB的长度和它与x轴的关系,由正方形的性质可知AD=AB, 延长DA交x轴于点M,则DA⊥x轴,Rt△DMO中,MO=3,DM=10,将△OAB和正方形ABCD绕点O每 次顺时针旋转90°,Rt△DMO也同步绕点O每次顺时针旋转90°,点D的落点坐标可由Rt△DMO的旋 转得到。仔细观察图形得到点D坐标的变化规律,每旋转四次完成一个循环,从而可得到第70次旋 转后的坐标。
(A) 46×10-7 (B) 4.6×10-7 (C)4.6×10-6 (D)0.46×10-5
3.如图,AB∥CD,∠B=75°,∠E=27°,则∠D的度数为
(A)45° (B)48° (C)50° (D)58°
4.下列计算正确的是(
)
A. 2a 3a 6a
B. (3a)2 6a2
C. (x y)2 x2 y2
b.七年级成绩在70≤x<80这一组的是: 70 72 74 75 76 76 77 77 77 78 79 c.七、八年级成绩的平均数、中位数如下:
2019年河南省郑州市中考数学一模试卷

2019年河南省郑州市中考数学一模试卷一、选择题(每小题3分,共30分,下列各小题均有四个答案,其中只有一个是正确的)1.(3分)下列各数中,最小的数是(A.﹣2019B.2019)tC.D.t2.(3分)共享单车的投放使用为人们的工作和生活带来了极大的便利,不仅有效缓解了出行“最后一公里”问题,而且经济环保,据相关部门2018年11月统计数据显示,郑州市互联网租赁自行车累计投放超过49万辆,将49万用科学记数法表示正确的是(A.4.9×104B.4.9×105C.0.49×104D.49×1043.(3分)如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,你认为从左面看到的这个几何体的形状图是())A.B.C.D.4.(3分)已知点P(3a﹣3,1﹣2a)关于x轴的对称点在第三象限,则a的取值范围在数轴上表示正确的是()A.C.B.D.5.(3分)如图,在△ABC中,∠B=50°,∠C=30°,分别以点A和点C为圆心,大于AC 的长为半径画弧,两弧相交于点M,N,作直线MN交BC于点D,连接AD,则∠BAD的度数为()A.50°B.60°C.70°D.80°6.(3分)为积极响应“传统文化进校园”的号召,郑州市某中学举行书法比赛,为奖励获A.C.B.D.10.(3分)如图,在△ABC中,点O是∠ABC和∠ACB两个内角平分线的交点,过点O 作EF∥BC分别交AB,AC于点E,F,已知△ABC的周长为8,BC=x,△AEF的周长为y,则表示y与x的函数图象大致是()A.B.C.D.二、填空题(每小题3分,共15分)11.(3分)计算:(π﹣3.14)0+3﹣1=.12.(3分)在同一平面内,将一副直角三角板ABC和EDF如图放置(∠C=60°,∠F=45°),其中直角顶点D是BC的中点,点A在DE上,则∠CGF=°.13.(3分)若关于x的一元二次方程(k﹣1)x2+2x﹣1=0有两个不相等的实数根,则k的取值范围是.14.(3分)如图,已知△ABC≌△DCE≌△GEF,三条对应边BC、CE、EF在同一条直线上,连接BG,分别交AC、DC、DE于点P、Q、K,其中S△PQC=3,则图中三个阴影部分的面积和为.15.(3分)如图,在矩形ABCD中,AB:BC=3:5,点E是对角线BD上一动点(不与点B,D重合),将矩形沿过点E的直线MN折叠,使得点A,B的对应点G,F分别在直线AD与BC上,当△DEF为直角三角形时,CN:BN的值为.三、解答题(本大题共8题,共75分,请认真读题)ܽ16.(8分)先化简,再求值:(1),其中a是方程a(a+1)=0的解.17.(9分)在创客教育理念的指引下,国内很多学校都纷纷建立创客实践室及创客空间,致力于从小培养孩子的创新精神和创造能力,郑州市某校开设了“3D”打印、数学编程、智能机器人、陶艺制作”四门创客课程,为了解学生对这四门创客课程的喜爱情况,数学兴趣小组对全校学生进行了随机问卷调查(问卷调查表如表所示),将调查结果整理后绘制成图1、图2两幅均不完整的统计图表.图1创客课程频数频率AB360.450.25bC168D合计a1最受欢理的创客课程词查问卷你好!这是一份关于你喜欢的创客深程问卷调查表,请你在表格中选择一个(只能选择一个)你最喜欢的课程选项在其后空格内打“√“,非常感谢你的合作.选项A创客课程“3D”打印数学编程BC智能机器人陶艺制作D请根据图表中提供的值息回答下列问题:(1)统计表中的a=.b=(2)“D”对应扇形的圆心角为;;(3)根据调查结果,请你估计该校2000名学生中最喜欢“数学编程”创客课程的人数.18.(9分)如图所示,在等边三角形ABC中,BC=8cm,射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D时,求证:四边形AFCE是平行四边形;(2)填空:①当t为s时,四边形ACFE是菱形;②当t为s时,△ACE的面积是△ACF的面积的2倍.19.(9分)被誉为“中原第一高楼”的郑州会展宾馆(俗称“大玉米”)坐落在风景如画的如意湖,是来郑州观光的游客留影的最佳景点.学完了三角函数知识后,刘明和王华同学决定用自己学到的知识测量“大玉米”的高度,他们制订了测量方案,并利用课余时间完成了实地测量.测量项目及结果如下表:请你帮助该小组根据上表中的测量数据,求出郑州会展宾馆的高度(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,结果保留整数)20.(9分)如图,在平面直角坐标系中,将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,点C坐标为(﹣1,0),点A的坐标为(0,2).一次函数y=kx+b的图象经过点B,C,反比例函数y的图象也经过点B.(1)求反比例函数的关系式;第6页(共22页)(2)直接写出当x<0时,kx+b<0的解集.21.(10分)某文具店经销甲、乙两种不同的笔记本.已知:两种笔记本的进价之和为10元,甲种笔记本每本获利2元,乙种笔记本每本获利1元,马阳光同学买4本甲种笔记本和3本乙种笔记本共用了47元.(1)甲、乙两种笔记本的进价分别是多少元?(2)该文具店购入这两种笔记本共60本,花费不超过296元,则购买甲种笔记本多少本时该文具店获利最大?(3)店主经统计发现平均每天可售出甲种笔记本350本和乙种笔记本150本.如果甲种笔记本的售价每提高1元,则每天将少售出50本甲种笔记本;如果乙种笔记本的售价每提高1元,则每天少售出40本乙种笔记本,为使每天获取的利润更多,店主决定把两种笔记本的价格都提高x元,在不考虑其他因素的条件下,当x定为多少元时,才能使该文具店每天销售甲、乙两种笔记本获取的利润最大?22.(10分)如图,△ABC和△ADE是有公共顶点的直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.(1)如图1,若△ABC和△ADE是等腰三角形,求证:∠ABD=∠ACE;(2)如图2,若∠ADE=∠ABC=30°,问:(1)中的结论是否成立?请说明理由.(3)在(1)的条件下,AB=6,AD=4,若把△ADE绕点A旋转,当∠EAC=90°时,请直接写出PB的长度.223.(11分)如图1,抛物线y x+bx+c经过点A(﹣2,0),B(﹣8,0),C(﹣4,4).(1)求这个抛物线的表达式;(2)如图2,一把宽为2的直尺的右边缘靠在直线x=﹣4上,当直尺向左平移过程中刻度线0始终在x轴上,直尺的右边边缘与抛物线和直线BC分别交于G、D点,直尺的左边边缘与抛物线和直线BC分别交于F、E点,当图中四边形DEFG是平行四边形时,此时直尺左边边缘与直线BC的交点E的刻度是多少?(3)如图3,在直线x=﹣4上找一点K,使得∠ACP+∠AKC=∠ABC(直线x=﹣4与x轴交于P点),请直接写出K点的坐标.2019年河南省郑州市中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共30分,下列各小题均有四个答案,其中只有一个是正确的)1.【分析】先在数轴上表示出各数,根据数轴的特点即可得出结论.【解答】解:如图所示,,故最小的是:﹣2019.故选:A.2.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:49万=4.9×105.故选:B.3.【分析】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,据此可得左视图.【解答】解:由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,所以从左面看到的这个几何体的形状图是:故选:D.4.【分析】直接利用关于x轴对称点的性质结合第二象限内点的坐标特点得出a的取值范围进而得出答案.【解答】解:∵点P(3a﹣3,1﹣2a)关于x轴的对称点在第三象限,∴P点在第二象限,<t∴,>t解得:>a,如图所示:.故选:C.10.【分析】由三角形的内心性质和平行线的性质证出BE=OE,CF=OF,得出△AEF的周长y与x的关系式为y=8﹣x,求出0<x<4,即可得出答案.【解答】解:∵点O是△ABC的内心,∴∠ABO=∠CBO,∠ACO=∠BCO,∵EF∥BC,∴∠EOB=∠CBO,∠FOC=∠BCO,∴∠ABO=∠EOB,∠ACO=∠FOC,∴BE=OE,CF=OF,∴△AEF的周长y=AE+EF+AF=AE+OE+OF+AF=AB+AC,∵△ABC的周长为8,BC=x,∴AB+AC=8﹣x,∴y=8﹣x,∵AB+AC>BC,∴y>x,∴8﹣x>x,∴0<x<4,即y与x的函数关系式为y=8﹣x(x<4),故选:A.二、填空题(每小题3分,共15分)11.【分析】直接利用零指数幂的性质以及负指数幂的性质进而化简得出答案.【解答】解:原式=1ܽ.故答案为:.12.【分析】根据直角三角形的性质得到AD=CD,求得∠DAC=∠C=60°根据三角形的内角和和对顶角的性质即可得到结论.【解答】解:∵∠BAC=90°,D为BC的中点,∴AD=CD,∴∠DAC=∠C=60°,∴∠EAG=120°,∴∠AGE=180°﹣120°﹣45°=15°,∴∠CGF=∠QGE=15°,故答案为:15.13.【分析】根据该方程是关于x得一元二次方程,得到关于k得一个不等式,根据该方程有两个不相等的实数根,结合根的判别式公式,得到一个关于k得不等式,分别解两个不等式,解之取公共部分即可得到答案.【解答】解:∵原方程是关于x得一元二次方程,∴k﹣1≠0解得:k≠1,又∵原方程有两个不相等的实数根,∴△=4+4(k﹣1)>0,解得:k>0,即k得取值范围是:k>0且k≠1,故答案为:k>0且k≠1.14.【分析】根据全等三角形对应角相等,可以证明AC∥DE∥GF,再根据全等三角形对应边相等BC=CE=EF,然后利用平行线分线段成比例定理求出GF=3PC,KE=2PC,所以PC=DK,设△DQK的边DK为x,DK边上的高为h,表示出△DQK的面积,再根据边的关系和三角形的面积公式即可求出三部分阴影部分的面积.【解答】解:∵△ABC≌△DCE≌△GEF,∴∠ACB=∠DEC=∠GFE,BC=CE=EF,∴AC∥DE∥GF,∴,,t t t∴KE=2PC,HF=3PC,又∵DK=DE﹣KE=3PC﹣2PC=PC,∴△DQK≌△CQP(相似比为1)设△DQK的边DK为x,DK边上的高为h,则xh=3,整理得xh=6,S△BPC x•2h=xh=6,SSCEKQ3x•2h﹣3=3xh﹣3=3×6﹣3=18﹣3=15,四边形△EFH3x•2h=3xh=18,∴三个阴影部分面积的和为:6+15+18=39.故答案为:3915.【分析】分两种情况进行讨论:当∠DFE=90°时,△DEF为直角三角形;当∠EDF=t t,进而得出CF,90°时,△DEF为直角三角形,分别判定△DCF∽△BCD,得到t根据线段的和差关系可得CN和BN的长,于是得到结论.【解答】解:∵AB:BC=3:5,设AB=3x,BC=5x,∵四边形ABCD是矩形,∴CD=AB=3x,AD=BC=5x,分两种情况:①如图所示,当∠DFE=90°时,△DEF为直角三角形,∵∠CDF+∠CFD=∠EFN+∠CFD=90°,∴∠CDF=∠EFN,由折叠可得,EF=EB,∴∠EFN=∠EBN,∴∠CDF=∠CBD,又∵∠DCF=∠BCD=90°,∴△DCF∽△BCD,ttt t∴,即,ᝦ∴CF x,ᝦᝦᝦᝦ∴FN,ᝦᝦtᝦ∴CN=CF+NF xܽx x,t ᝦᝦ ∴BN =5x x x , t ∴CN :BN ;②如图所示,当∠EDF =90°时,△DEF 为直角三角形,∵∠CDF+∠CDB =∠CDF+∠CBD =90°,∴∠CDF =∠CBD ,又∵∠DCF =∠BCD =90°,∴△DCF ∽△BCD ,tt tt ∴ ,即, ᝦ∴CF x ,ᝦ ᝦܽ t ᝦᝦ ∴NF x , ∴CN =NF ﹣CF x ,ᝦ ᝦ t ᝦ ∴BN =5x xx ,t ∴CN :BN ,t综上所述,CN :BN 的值为或 , t t 故答案为: 或 . t 三、解答题(本大题共 8 题,共 75 分,请认真读题)16.【分析】根据分式的运算法则即可求出答案.、 ( 【解答】解:原式• 、 ( ,由于 a (a+1)=0,∴a =0 或 a =﹣1,由分式有意义的条件可知 a =0 需要舍去,∴a=﹣1,∴原式.17.【分析】(1)根据频数与频率的关系列式计算即可即可;(2)根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;(3)根据最喜欢“数学编程”创客课程的人数所占的百分比,即可得到人数.【解答】解:(1)a=36÷0.45=80,b=16÷80=0.20,故答案为:80,0.20;(2)“D”对应扇形的圆心角的度数为:360°=36°,t故答案为:36°;(3)估计该校2000名学生中最喜欢“数学编程”创客课程的人数为:2000×0.25=500(人);18.【分析】(1)判断出△ADE≌△CDF得出AE=CF,即可得出结论;(2)①先求出AC=BC=8,进而判断出AE=CF=AC=8,即可得出结论;②先判断出△ACE和△ACF的边AE和CF上的高相等,进而判断出AE=2CF,再分两种情况,建立方程求解即可得出结论.【解答】解:(1)如图1,∵AG∥BC,∴∠EAC=∠FCA,∠AED=∠CFD,∵EF经过AC边的中点D,∴AD=CD,∴△ADE≌△CDF(AAS),∴AE=CF,∵AE∥FC,∴四边形AFCE是平行四边形;(2)①如图2,∵△ABC是等边三角形,∴AC=BC=8,∵四边形ACFE是菱形,∴AE=CF=AC=BC=8,且点F在BC延长线上,由运动知,AE=t,BF=2t,∴CF=2t﹣8,t=8,将t=8代入CF=2t﹣8中,得CF=8=AC=AE,符合题意,即:t=8秒时,四边形ACFE是菱形,故答案为8;②设平行线AG与BC的距离为h,∴△ACE边AE上的高为h,△ACF的边CF上的高为h,∵△ACE的面积是△ACF的面积的2倍,∴AE=2CF,当点F在线段BC上时(0<t<4),CF=8﹣2t,AE=t,∴t=2(8﹣2t),∴t;ᝦ当点F在BC的延长线上时(t>4),CF=2t﹣8,AE=t,∴t=2(2t﹣8),∴t,即:t秒或秒时,△ACE的面积是△ACF的面积的2倍,ᝦ故答案为:或.ᝦ19.【分析】直接利用锐角三角函数关系得出BN的长,进而得出答案.【解答】解:由题意可得:设BN=FN=x,t则tan40°0.84,t tܽttᝦܽ解得:x=278.25,故AB=278.25+1.5≈280(m),答:郑州会展宾馆的高度为280m.20.【分析】(1)过点B作BF⊥x轴于点F.根据AAS证明△BCF≌△CAO,从而求得点B 的坐标,利用待定系数法可求出反比例函数的关系式;(2)在第二象限内,找出一次函数值y=kx+b落在反比例函数y图象下方的部分对应的x的取值范围即可.【解答】解:(1)如图,过点B作BF⊥x轴于点F.∵∠BCA=90°,∴∠BCF+∠ACO=90°,又∵∠CAO+∠ACO=90°,∴∠BCF=∠CAO.在△BCF与△CAO中,tt,∴△BCF≌△CAO(AAS),∴CF=AO=2,BF=CO=1,∴OF=OC+CF=1+2=3,∴点B的坐标为(﹣3,1),将点B的坐标代入y,可得:m=﹣3×1=﹣3,故可得反比例函数解析式为y;(2)结合点B的坐标及图象,可得当x<0时,kx+b<0的解集为:﹣3<x<0.21.【分析】(1)设甲种笔记本的进价是m元,乙种笔记本的进价是(10﹣m)元.根据王同学买4本甲种笔记本和3本乙种笔记本共用了47元,列出方程即可解决问题.(2)设购入甲种笔记本n本,根据购入这两种笔记本共60本,花费不超过296元,列出不等式即可解决问题.(3)设把两种笔记本的价格都提高x元的总利润为W元.构建二次函数,利用二次函数的性质解决最值问题.【解答】解:(1)设甲种笔记本的进价是m元,乙种笔记本的进价是(10﹣m)元.由题意4(m+2)+3(10﹣m+1)=47,解得m=6,答:甲种笔记本的进价是6元,乙种笔记本的进价是4元.(2)设购入甲种笔记本n本,则6n+4(60﹣n)≤296,解得n≤28,答:购入甲种笔记本最多28本,此时获利最大.(3)设把两种笔记本的价格都提高x元的总利润为W元.则W=(2+x)(350﹣50x)+(1+x)(150﹣40x),∵a<0,∴抛物线开口向下,∴x=2时,W最大=1210,∴x=2时,最大利润为1210元.22.【分析】(1)依据等腰三角形的性质得到AB=AC,AD=AE,依据同角的余角相等得到∠DAB=∠CAE,然后依据SAS可证明△ADB≌△AEC,最后,依据全等三角形的性质可得到∠ABD=∠ACE;(2)先判断出△ADB∽△AEC,即可得出结论;(3)分为点E在AB上和点E在AB的延长线上两种情况画出图形,然后再证明△PEB ∽△AEC,最后依据相似三角形的性质进行证明即可.【解答】解:(1)∵△ABC和△ADE是等腰直角三角形,∠BAC=∠DAE=90°,∴AB=AC=3,AD=AE=2,∠DAB=∠CAE.∴△ADB≌△AEC.∴∠ABD=∠ACE.(2)(1)中结论成立,理由:在Rt△ABC中,∠ABC=30°,∴AB AC,在Rt△ADE中,∠ADE=30°,∴AD AE,t t∴.∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∴△ADB∽△AEC.∴∠ABD=∠ACE(3)解:①当点E在AB上时,BE=AB﹣AE=AB﹣AD=2.∵∠EAC=90°,∴CE tܽܽ2.同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠PEB=∠AEC,∴△PEB∽△AEC.t∴.t∴.∴PB.②当点E在BA延长线上时,BE=10.∵∠EAC=90°,∴CE tܽܽ2.同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠BEP=∠CEA,∴△PEB∽△AEC.t∴.tt∴.t∴PB.t综上所述,PB的长为或.23.【分析】(1)根据点A、C的坐标利用待定系数法可求出二次函数的解析式;(2)根据点B、C的坐标利用待定系数法可求出直线BC的解析式,设点D的坐标为(﹣2 m,﹣m+8),则点E的坐标为(﹣m﹣2,﹣m+6),点G的坐标为(m,m+5m﹣8),2点F的坐标为(﹣m﹣2,(﹣m﹣2)+5(m﹣2)﹣8),根据平行四边形的性质可得出DG=EF,由此即可得出关于m的一元一次方程,解之即可得出m的值,再将m的值代入点E的坐标中即可得出结论;(3)设直线x=4与x轴交于点P,取CP的中点M,连接BM,过点M作MN⊥BC于点N,则∠AKC=∠CBM,根据等腰直角三角形的性质可得出MN、CN的值,进而可得出BN、tan∠CBM的值,由tan∠AKC可求出PK的值,进而即可得出点K的坐标.2【解答】解:(1)将A(﹣2,0)、C(﹣4,4)代入y x+bx+c中,ܽ䁣t ܽ䁣ᝦ䁣得:,解得:,2∴二次函数的解析式为y x﹣5x﹣8;(2)设直线BC的解析式为y=kx+a(k≠0),将B(﹣8,0)、C(﹣4,4)代入y=kx+a中,䁪ܽt 䁪ܽ䁪得:,解得:,∴直线BC的解析式为y=x+8,设点D的坐标为(﹣m,﹣m+8),2则点E的坐标为(﹣m﹣2,﹣m+6),点G的坐标为(﹣m,m+5m﹣8),点F的坐2标为(﹣m﹣2,(﹣m﹣2)﹣5(﹣m﹣2)﹣8).∵四边形DEFG为平行四边形,∴DG=EF,22即m﹣5m﹣8﹣(﹣m+8)(﹣m﹣2)﹣5(﹣m﹣2)﹣8﹣(﹣m+6),解得:m=5,∴点E的坐标为(﹣7,1),∴当图中四边形DEFG是平行四边形时,此时直尺右边缘与直线BC的交点E的刻度是1;(3)∵直线x=﹣4与x轴交于点P,取CP的中点M,连接BM,过点M作MN⊥BC于点N,如图所示.∵C(﹣4,4),B(﹣8,0),A(﹣2,0),∴PB=PC=4,AP=2,BC=4,∴∠BCP=∠CBP=45°.∵点M为PC中点,∴PM=2=PA,∴tan∠MBP tan∠ACP,∵∠BCP=45°,MN⊥BC,∴△CMN为等腰直角三角形,∴MN=CN CM,∴BN=BC﹣CN=3,t∴tan∠CBM,t∵∠ACP+∠AKC=∠ABC,∴∠AKC=∠ABC﹣∠ACP=∠CBM,∴tan∠AKC,∴PK=3AP=6,∴点K的坐标为(﹣4,6)或(﹣4,﹣6).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年河南省(郑州市)中考数学试题
一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。
1.(3分)﹣的绝对值是()
A.﹣B.C.2 D.﹣2
2.(3分)成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为()
A.46×10﹣7B.4.6×10﹣7C.4.6×10﹣6D.0.46×10﹣5 3.(3分)如图,AB∥CD,∠B=75°,∠E=27°,则∠D的度数为()
A.45°B.48°C.50°D.58°
4.(3分)下列计算正确的是()
A.2a+3a=6a B.(﹣3a)2=6a2
C.(x﹣y)2=x2﹣y2D.3﹣=2
5.(3分)如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图
②.关于平移前后几何体的三视图,下列说法正确的是()
A.主视图相同B.左视图相同
C.俯视图相同D.三种视图都不相同
6.(3分)一元二次方程(x+1)(x﹣1)=2x+3的根的情况是()
A.有两个不相等的实数根B.有两个相等的实数根
C.只有一个实数根D.没有实数根
7.(3分)某超市销售A,B,C,D四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是()
A.1.95元B.2.15元C.2.25元D.2.75元
8.(3分)已知抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,则n的值为()A.﹣2 B.﹣4 C.2 D.4
9.(3分)如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C为圆心,大于AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为()
A.2B.4 C.3 D.
10.(3分)如图,在△OAB中,顶点O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为()
A.(10,3)B.(﹣3,10)C.(10,﹣3)D.(3,﹣10)
二、填空题(每小题3分,共15分。
)
11.(3分)计算:﹣2﹣1=.
12.(3分)不等式组的解集是.
13.(3分)现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是.
14.(3分)如图,在扇形AOB中,∠AOB=120°,半径OC交弦AB于点D,且OC⊥OA.若OA=2,则阴影部分的面积为.
15.(3分)如图,在矩形ABCD中,AB=1,BC=a,点E在边BC上,且BE=α.连接AE,将△ABE沿AE折叠,若点B的对应点B′落在矩形ABCD的边上,则a的值为.
三、解答题(本大题共8个小题,满分75分)
16.(8分)先化简,再求值:(﹣1)÷,其中x=.
17.(9分)如图,在△ABC中,BA=BC,∠ABC=90°,以AB为直径的半圆O交AC于点D,点E是上不与点B,D重合的任意一点,连接AE交BD于点F,连接BE并延长交AC于点G.
(1)求证:△ADF≌△BDG;
(2)填空:
①若AB=4,且点E是的中点,则DF的长为;
②取的中点H,当∠EAB的度数为时,四边形OBEH为菱形.
18.(9分)某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:
a.七年级成绩频数分布直方图:
b.七年级成绩在70≤x<80这一组的是:
70 72 74 75 76 76 77 77 77 78 79
c.七、八年级成绩的平均数、中位数如下:
根据以上信息,回答下列问题:
(1)在这次测试中,七年级在80分以上(含80分)的有人;
(2)表中m的值为;
(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;
(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数
76.9分的人数.
19.(9分)数学兴趣小组到黄河风景名胜区测量炎帝塑像(塑像中高者)的高度.如图所示,炎帝塑像DE在高55m的小山EC上,在A处测得塑像底部E的仰角为34°,再沿AC 方向前进21m到达B处,测得塑像顶部D的仰角为60°,求炎帝塑像DE的高度.(精确到1m.参考数据:sin34°≈0.56,cos34°=0.83,tan34°≈0.67,≈1.73)
20.(9分)学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B 奖品共需120元;购买5个A奖品和4个B奖品共需210元.
(1)求A,B两种奖品的单价;
(2)学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的.请设计出最省钱的购买方案,并说明理由.
21.(10分)模具厂计划生产面积为4,周长为m的矩形模具.对于m的取值范围,小亮已经能用“代数”的方法解决,现在他又尝试从“图形”的角度进行探究,过程如下:(1)建立函数模型
设矩形相邻两边的长分别为x,y,由矩形的面积为4,得xy=4,即y=;由周长为m,得2(x+y)=m,即y=﹣x+.满足要求的(x,y)应是两个函数图象在第象限内交点的坐标.
(2)画出函数图象
函数y=(x>0)的图象如图所示,而函数y=﹣x+的图象可由直线y=﹣x平移得到.请在同一直角坐标系中直接画出直线y=﹣x.
(3)平移直线y=﹣x,观察函数图象
①当直线平移到与函数y=(x>0)的图象有唯一交点(2,2)时,周长m的值为;
②在直线平移过程中,交点个数还有哪些情况?请写出交点个数及对应的周长m的取值
范围.
(4)得出结论
若能生产出面积为4的矩形模具,则周长m的取值范围为.
22.(10分)在△ABC中,CA=CB,∠ACB=α.点P是平面内不与点A,C重合的任意一点.连接AP,将线段AP绕点P逆时针旋转α得到线段DP,连接AD,BD,CP.
(1)观察猜想
如图1,当α=60°时,的值是,直线BD与直线CP相交所成的较小角的度数是.
(2)类比探究
如图2,当α=90°时,请写出的值及直线BD与直线CP相交所成的小角的度数,并就图2的情形说明理由.
(3)解决问题
当α=90°时,若点E,F分别是CA,CB的中点,点P在直线EF上,请直接写出点C,P,D在同一直线上时的值.
图1 图2 备用图
23.(11分)如图,抛物线y=ax2+x+c交x轴于A,B两点,交y轴于点C.直线y=﹣x﹣2经过点A,C.
(1)求抛物线的解析式;
(2)点P是抛物线上一动点,过点P作x轴的垂线,交直线AC于点M,设点P的横坐标为m.
①当△PCM是直角三角形时,求点P的坐标;
②作点B关于点C的对称点B',则平面内存在直线l,使点M,B,B′到该直线的距离都
相等.当点P在y轴右侧的抛物线上,且与点B不重合时,请直接写出直线l:y=kx+b 的解析式.(k,b可用含m的式子表示)
备用图。