专题:变力做功问题
小专题复习课(变力做功求解四法)

答案:-125 J
3.利用W=Pt求解 在功率给出且保持不变的情况下,利用W=Pt可求出变力所 做的功. 【典例6】质量为5 t的汽车以恒定的输出功率75 kW在一条平直
的公路上由静止开始行驶,在10 s内速度达到10 m/s,求摩擦
阻力在这段时间内所做的功.
【深度剖析】汽车的功率不变,根据P=Fv知,随着速度v的增大, 牵引力将变小,不能用W=Fl求功,但已知汽车的功率恒定,所 以牵引力在这段时间内所做的功WF=Pt=75×103× 10 J=7.5×105 J
轴及x=5 m所围面积,即 W1 10 5 5 J 37.5 J; W2为F2做的功,数
值等于F2图线跟坐标轴及x=5 m所围面积,即 W2 5 5 J 12.5 J, 所以Ekm=37.5 J-12.5 J=25 J. 答案:25 J
2 2
W外=ΔEp=mgΔh= 1 mg
答案: 1 mg
2
2
a 2 b2 b .
a 2 b2 b
1.(化变力为恒力)如图所示,质量为2 kg的木块套在光滑的竖
直杆上,用60 N的恒力F通过轻绳拉木块,木块在A点的速度vA=
3 m/s,则木块运动到B点的速度vB是多少?(木块可视为质点,g 取10 m/s2)
【典例4】如图所示,质量m=1 kg的物体从轨道上的A点由静止 下滑,轨道AB是弯曲的,且A点高出B点h=0.8 m.物体到达B点时 的速度为2 m/s,求物体在该过程中克服摩擦力所做的功.
【深度剖析】物体由A运动到B的过程中共受到三个力作用:重力 G、支持力FN和摩擦力Ff.由于轨道是弯曲的,支持力和摩擦力 均为变力.但支持力时刻垂直于速度方向,故支持力不做功,
求变力做功的方法

注意:功是标量、过程量 公式只适用恒力做功
1.平均力法 当力 F 的大小随位移 l 呈线性变化时,F 的平均值-F = F1+2 F2,则 F 做的功 W=-F l=F1+2 F2l。
[ 对点训练]
1.用铁锤把钉子钉入木板,设木板对钉子的阻力 F 与钉进木板的深度成正比,已知铁锤
(2)全过程的功应等于两部分面积的代数和。
2.在一家农家乐旅游景点,还保留有驴拉磨的民俗项目。如
图所示,假设驴拉磨的平均用力大小为 500 N,运动的半
径为 1 m,则驴拉磨转动一周所做的功为
(D )
A.0 C.500π J
B.500 J D.1 000π J
[ 例 4 ] 如图所示,一辆拖车(图中未画出)通过光滑定滑轮将一重物 G 匀速提升。当 拖车从 A 点水平移动到 B 点时,位移为 s,绳子由竖直变为与竖直方向成 θ 的角度, 求此过程中拖车对绳子所做的功。
第一次将钉子钉进 d,如果铁锤第二次敲钉子时对钉子做的功与第一次相同,那么,第
二次钉子进入木板的深度是
B( )
A.( 3-1)d
B.( 2-1)d
ห้องสมุดไป่ตู้C.
5-1d 2
D.
2 2d
2.图像法 如图所示,在 F-l 图像中,图像与 l 轴所围成的面积表示力 做的功 W。
注意:(1)l 轴上方的面积表示力对物体做正功,应为正值; l 轴下方的面积表示力对物体做负功,应为负值。
变力做功的几个典型例题

变力做功的几个典型例题河南省信阳高级中学陈庆威2016.11.04变力做功的问题,一直是高中物理中学生最头痛的问题之一,它有没有规律可循呢?相信,通过以下几个例题的学习,你一定能打开思维,豁然开朗。
一、力随位移均匀变化的情况典例1.如图所示,质量分布均匀的长方体木板放置在水平面上,M、N 分别是木板的左、右两个端点,水平面的A、C 之间粗糙,与木板的动摩擦因数处处相等,水平面其余部分光滑,AC 的距离等于木板的长度,B 为AC 的中点.某时刻开始木板具有水平向右的初速度v 0,当M 端运动到C 点时速度刚好为0,则()A.木板N 端运动到B 点时速度为B.木板N 端运动到C 点时速度为v 0C.木板N 端从A 到B 摩擦力做的功等于木板N 端从B 到C 摩擦力做的功D.木板N 端从A 到C 摩擦力做的功等于木板M 端从A 到C 摩擦力做的功【考点】动能定理的应用;功的计算.【分析】将木板分为n 等分(n 足够大),故从开始到M 端运动到C 点过程,每个部分克服摩擦力做功均为,然后对全程和各个分过程运用动能定理列式分析即可.【解析】:将木板分为n 等分(n 足够大),每个部分的质量为n m ;从开始到M 端运动到C 点过程,每个部分克服摩擦力做功均为,根据动能定理,有:n(﹣)=0﹣①A、从开始到木板N 端运动到B 点过程,有:(﹣)×=﹣②联立①②解得:v 1=v故A错误;B、从开始到木板N端运动到C点过程,有:n(﹣)×=0﹣③联立①③解得:v2=故B正确;C、木板N端从A到B过程摩擦力做功:W1=(﹣)×=﹣木板N端从B到C过程摩擦力做功:W2=n(﹣)×﹣(﹣)=﹣故C错误;D、木板N端从A到C摩擦力做的功:W3=n(﹣)×=﹣木板M端从A到C摩擦力做的功:W4=n(﹣)×=﹣故D正确;故选:BD.【点评】本题关键是采用微元法并结合动能定理列式分析,较难.因为摩擦力是随位移均匀增加的,所以该题还可以用平均值法和F-x图像来解。
专题变力做功问题

图象法
适用各种变力做功
假如我们已知F-S图象或根据题意能够作出F-S
图象(用纵坐标表示作用在物体上的力F,横坐标表
示物体在力的方向上的位移S ),我们就可以利用
“面积法”来求此变力做的功,因此F-S图象也叫示
功图
例4、静置于光滑水平面上坐标原点处的小物
块,在水平拉力F作用下,沿x轴方向运动
(如图2甲所示),拉力F随物块所在位置坐
F 2R
平均力法
适用力的方向不变
如果力的方向不变,力的大小随位移按线性规律 变化时,即力满足F=ks+b的形式时,我们可用 平均力替代这个变力而恒力做功的公式计算。
例3、一辆汽车质量为 1105 kg,从静止开始
运动,其阻力为车重的0.05倍。其牵引力的大 小与车前进的距离是线性关系且, 其中 是车所受阻力,当该车前进100m时, 求牵引力对汽车做了多少功?
由于力的大小不变而方向时刻改变,我们可以将
圆弧无限分割成n小段分别为 S1、S2、Sn,
在每一小段位移中力F可以看作恒力,而弧长也可以 看作直线长,因此,力F在整个过程中做的功等于力F 在各小段位移过程中做功的代数和,故有:
W F S1 F S2 F Sn F (S1 S2 Sn )
标x的变化关系(如图乙所示),图线为半
圆.则小物块运动到x0的过程中拉力F做的功
为(
)
例题分析
F
O
x0
x
F
图2-甲
Fm
O
A0
C 4 Fm x0
图2乙
x0
x
B
1 2
Fm
x0
D
4
x0 2
答案:C
例5、长度为 l ,质量为m的均匀绳,一段置于水
一轮复习名师导学物理专题突破(五)变力做功求解问题

专题突破(五) 变力做功求解问题对应学生用书p 92功的定义式W =Fs cos α仅适用于恒力F 做功的计算,变力做功可以通过化“变”为“恒”或等效代换的思想求解,主要方法有:1.微元法:就是将变力做功的空间(位移)无限划分为相等的小段,在每个小段里变力便可看做恒力,每个小段里的功可由公式W =Fs cos α计算,整个过程中变力的功就是各小段里“恒力”功的总和,即W 总=∑F Δs cos α.2.图象法:画出变力F 与位移s 的图象,则F -s 图线与s 轴所围的“面积”表示该过程中变力F 做的功.3.力的平均值法:在力的方向不变,大小与位移呈线性关系的直线运动中,可先求该变力对位移的平均值F -=F 1+F 22,再由W =F -s 计算. 4.动能定理法:当物体运动过程中始末两个状态的速度已知时,用动能定理∑W =ΔE k 或功能关系求变力做的功是非常方便的(当然也可求恒力做的功).5.转换研究对象法:运动问题中,在一些特定条件下,可以找到与变力做的功相等的恒力做的功,这样,就可将求变力做的功转化为计算恒力做的功.6.特定情形:①用W =Pt 可求机车恒功率运行时发动机做的功;②电场力做的功可用W AB =qU AB 求解.一、微元法1 在一半径R =6 m 的圆弧形桥面的底端A ,某人把一质量m =8 kg 的物块(可看成质点).用大小始终为F =75 N 的拉力从底端缓慢拉到桥面顶端B(圆弧AB 在同一竖直平面内),拉力的方向始终与物块在该点的切线成37°角,整个圆弧桥面所对的圆心角为120°,g 取10 m /s 2,sin 37°=,cos 37°=0.8.求这一过程中:(1)拉力F 做的功;(2)桥面对物块的摩擦力做的功.[解析] (1)将圆弧AB ︵分成很多小段l 1、l 2…l n ,拉力在每一小段上做的功为W 1、W 2…W n .因拉力F 大小不变,方向始终与物块在该点的切线成37°角,所以W 1=Fl 1cos 37°、W 2=Fl 2cos 37°…W n =Fl n cos 37°所以W F =W 1+W 2+…+W n =F cos 37°(l 1+l 2+…+l n )=F cos 37°·16×2πR ≈ J . (2)重力G 做的功W G =-mgR(1-cos 60°)=-240 J ,因物块在拉力F 作用下缓慢移动,动能不变,由动能定理知W F +W G +W f =0所以W f =-W F -W G =- J +240 J =- J .二、图象法2 一物体所受的力F 随位移x 变化的图象如图所示,在这一过程中,力F 对物体做的功为( )A .3 JB .6 JC .7 JD .8 J[解析] 力F 对物体做的功等于x 轴上方梯形“面积”所表示的正功与x 轴下方三角形“面积”所表示的负功的代数和.W 1=12×(3+4)×2 J =7 J W 2=-12×(5-4)×2 J =-1 J 所以力F 对物体做的功为W =7 J -1 J =6 J .故选项B 正确.[答案] B三、力的平均值法3 (多选)如图甲所示,长为l 、倾角为α的斜面固定在水平地面上,一质量为m 的小物块从斜面顶端由静止释放并沿斜面向下滑动,已知小物块与斜面间的动摩擦因数μ与下滑距离x 的变化图象如图乙所示,则( )A .μ0>tan αB .小物块下滑的加速度逐渐增大C .小物块下滑到斜面底端的过程中克服摩擦力做的功为12μ0mgl cos α D .小物块下滑到低端时的速度为2gl sin α-2μ0gl cos α[解析] 因物块能够下滑,则mg sin α>μ0mg cos α,即μ0<tan α,A 错;μ逐渐减小,则加速度逐渐增大,B 对;因μ随位置均匀变化,则f -=0+μ0mg cos α2=μ0mg cos α2,则克服摩擦力做功为W =μ0mgl cos α2,C 对;根据动能定理有mgl sin α-W =12mv 2,则v =2gl sin α-μ0gl cos α,D 错.[答案] BC四、动能定理法4 一半径为R 的半圆形轨道竖直固定放置,轨道两端等高,质量为m 的质点自轨道端点P 由静止开始滑下,滑到最低点Q 时,对轨道的压力为2mg ,重力加速度大小为g.质点自P 滑到Q 的过程中,克服摩擦力所做的功为( )A .14mgRB .13mgRC .12mgRD .π4mgR [解析] 在Q 点质点受到竖直向下的重力和竖直向上的支持力,两力的合力充当向心力,所以有F N -mg =m v 2R,F N =2mg ,联立解得v =gR ,下滑过程中,根据动能定理可得mgR -W f =12mv 2,解得W f =12mgR ,所以克服摩擦力做功12mgR ,C 正确. [答案] C五、转换研究对象法5 人拉着绳通过一定滑轮吊起质量m =50 kg 的物体,如图所示,开始绳与水平方向夹角为60°,当人匀速提起重物由A 点沿水平方向运动s =2 m 而到达B 点,此时绳与水平方向成30°角,已知重力加速度g =10 m /s 2,求人对绳的拉力做了多少功?[解析] 设滑轮距A 、B 点的高度为h ,则:h ()cot 30°-cot 60°=s人由A 走到B 的过程中,重物上升的高度Δh 等于滑轮右侧绳子增加的长度,即:Δh =h sin 30°-h sin 60°,人对绳子做的功为:W =mg·Δh =mgs ()3-1=1 000()3-1 J ≈732 J . 1.(多选)如图甲所示,水平面上有质量相等的两个木块A 、B 用一根轻弹簧相连接,整个系统处于平衡状态.现用一个竖直向上的力F 拉动木块A ,使木块A 向上做匀加速直线运动,弹簧始终处于弹性限度内,如图乙所示.研究从力F 刚作用在木块A 上时(x =0)到木块B 刚离开地面时(x =x 0)这个过程,并且选定这个过程中木块A 的起始位置为坐标原点,得到表示力F 和木块A 的位移x 之间关系的图象如图丙,则下列说法正确的是( )A .x =x 02时,弹簧刚好恢复原长 B .该过程中拉力做功W F =F 1+F 22x 0 C .0~x 02过程,拉力做的功大于木块A 机械能的增加量 D .0~x 0过程,木块A 动能的增加量等于拉力和重力做功的总和[解析] A 压着弹簧处于静止状态,mg =kx 1;当力F 作用在A 上,使其向上匀加速直线运动,由牛顿第二定律可知F +k(x 1-x)-mg =ma ,随着x 逐渐增大,导致弹簧的弹力逐渐减小,则力F 逐渐增大,但物体A 的合力却不变,当B 刚离开地面时,弹簧处于伸长状态有mg =kx 2,则x 0=x 1+x 2=2x 1,则当x =x 02=x 1时,弹簧刚好恢复到原长,故A 正确;根据图象可知拉力F 随着位移均匀增大,则W F =F -·x =F 1+F 22·x 0,故B 正确;在A 上升过程中,弹簧从压缩恢复到原长过程,因弹簧弹力对A 做正功,则拉力做功小于A 物体机械能的增加,故C 错误;0~x 0过程因弹簧的初末形变量相同,则弹性势能的变化为零;由动能定理可知W F -W G =ΔE k ,即木块A 动能的增加量等于拉力和重力做功的总和,故D 正确.[答案] ABD2.在水平面上,有一弯曲的槽道,槽道由半径分别为R 2和R 的两个半圆构成.现用大小恒为F 的拉力将一光滑小球从A 点沿槽道拉至B 点,若拉力F 的方向时刻与小球运动方向一致,则此过程中拉力所做的功为( )A .0B .FRC .2πFRD .32πFR [解析] 因为F 的方向不断改变,不能用W =Fl cos α求解,但由于拉力F 的方向时刻与小球运动方向一致,可采用微元法,把小球的位移分割成许多的小段,在每一小段位移上作用在小球上的力F 可视为恒力,F 做的总功即为F 在各个小段上做功的代数和,W =F ⎝ ⎛⎭⎪⎫πR 2+πR =32πFR ,所以本题答案为D . [答案] D3.如图所示,固定的光滑竖直杆上套着一个滑块,用轻绳系着滑块绕过光滑的定滑轮,以大小恒定的拉力F 拉绳,使滑块从A 点起由静止开始上升.若从A 点上升至B 点和从B 点上升至C 点的过程中拉力F 做的功分别为W 1和W 2,滑块经B 、C 两点的动能分别为E k B 和E k C ,图中AB =BC ,则( )A .W 1>W 2B .W 1<W 2C .W 1=W 2D .无法确定W 1和W 2的大小关系[解析] 绳子对滑块做的功为变力做功,可以通过转换研究对象,将变力的功转化为恒力的功;因绳子对滑块做的功等于拉力F 对绳子做的功,而拉力F 为恒力,W =F·Δl ,Δl 为绳拉滑块过程中力F 的作用点移动的位移,大小等于滑轮左侧绳长的缩短量,由图可知,Δl AB >Δl BC ,故W 1>W 2,A 正确.[答案] A4.放在地面上的木块与一轻弹簧相连,弹簧处于自由伸长状态.现用手水平拉弹簧,拉力的作用点移动x 1= m 时,木块开始运动,继续拉弹簧,木块缓慢移动了x 2= m 的位移,其F -x 图象如图所示,求上述过程中拉力所做的功.[解析] 由F -x 图象可知,在木块运动之前,弹簧弹力随弹簧伸长量的变化是线性关系,木块缓慢移动时弹簧弹力不变,图线与横轴所围梯形面积即为拉力所做的功,即W =12×(+)×40 J =20 J .5.一个质量为m 的小球拴在细绳的一端,另一端用大小为F 1的拉力作用,在水平面上做半径为R 1的匀速圆周运动,如图所示.今将力的大小改为F 2,使小球仍在水平面上做匀速圆周运动,但半径为R 2.小球运动的半径由R 1变成R 2的过程中拉力对小球做的功多大?[解析] 本题由于绳的拉力是物体在两个轨道圆周运动的向心力,是变力.在轨道变化过程中该力做功属于变力做功,但不能直接求其功,而是先由向心力公式求出初、末状态动能,再由动能定理求出该力的功.设半径为R 1、R 2时小球做圆周运动的速度分别为v 1、v 2,由向心力公式得:F 1=m v 21R 1,F 2=m v 22R 2根据动能定理:W =12mv 22-12mv 21 解得:W =12(F 2R 2-F 1R 1)。
专题 动能定理的应用——变力做功问题 课后练习

动能定理的应用——变力做功问题 课后练习主讲教师:张老师 北京汇文中学物理教研组长 特级教师题一: 如图所示,斜面倾角为θ,滑块质量为m ,滑块与斜面间的动摩擦因数μ ,从距挡板为s 0的位置以v 0的速度沿斜面向上滑行。
设重力沿斜面的分力大于滑动摩擦力,且每次与挡板碰撞前后的速度大小保持不变,斜面足够长。
求滑块从开始运动到最后停止滑行的总路程s .题二: 如图所示, ABCD 是一个盆式容器,盆内侧壁与盆底BC 的连接处都是一段与BC 相切的圆弧,BC 是水平的,其长度d =0.50 m .盆边缘的高度为h =0.30 m .在A 处放一个质量为m 的小物块并让其从静止下滑.已知盆内侧壁是光滑的,而盆底BC 面与小物块间的动摩擦因数为μ=0.10.小物块在盆内来回滑动,最后停下来,则停的地点到B 的距离为多少?题三: 如图所示,光滑水平平台上有一个质量为m 的物块,站在地面上的人用跨过定滑轮的绳子向右拉动物块,不计绳和滑轮的质量及滑轮的摩擦,且平台边缘离人手作用点竖直高度始终为h .当人以速度v 从平台的边缘处向右匀速前进位移x 时,则 ( )A .在该过程中,物块的运动可能是匀速的B .在该过程中,人对物块做的功为 mv 2x 22(h 2+x 2)C .在该过程中,人对物块做的功为 12m v 2 D .人前进x 时,物块的运动速率为vh h 2+x2s 0v 0θ题四: 如图所示为某娱乐场的滑道示意图,其中AB 为曲面滑道,某人从坡顶滑下,经过高度差为20 m 的A 点和B 点时的速度分别为2 m/s 和12 m/s ,人的质量为70 kg ,问:从A 到B 的过程中,人克服阻力做的功是多少?题五: 如图所示,质量为m 的物块与水平转台之间的动摩擦因数为μ ,物体与转台转轴相距R ,物体随转台由静止开始转动,当转速增加到某值时,物块即将开始滑动,在这一过程中,摩擦力对物体做的功是( )A .12μmgRB .2πzQZ mgRC .2μmgRD .0题六: 如图所示,质量为m 的小球用长为L 的轻质细线悬于O 点,与O 点处于同一水平线上的P点处有一个光滑的细钉,已知OP =L 2,在A 点给小球一个水平向左的初速度v 0 ,发现小球到达跟P 点在同一竖直线上的最高点B . 小球到达B 点时的速率为gL 2,若初速度v 0=3gL ,则小球在从A 到B 的过程中克服空气阻力做了多少功.动能定理的应用——变力做功问题课后练习参考答案题一: sin cos mgs mv mg θμθ+20022详解:由于重力沿斜面的分力大于滑动摩擦力,物体虽经多次往复运动,最终将停止在挡板处。
变力做功问题的求法集锦

变力的功求法集锦第一.平均力法1.基本依据:如果一个过程,若F 是位移l 的线性函数时,即F=k l +b 时,可以用F 的平均值 =F (F 1 +F 2)/2来代替F 的作用效果来计算。
2.基本方法:先判断変力F 与位移l 是否成线性关系,然后求出该过程初状态的力1F 和末状态的力2F ,再求出每段平均力和每段过程位移,然后由αcos l F W =求其功。
【例1】用铁锤将一铁钉击入木块,设木块对铁钉的阻力与铁钉钉入木块内的深度成正比。
在铁锤击第一次时,能把铁钉击入木块内1cm ,问击第二次时,能击入多深?(设铁锤每次做功都相等) 解析:铁锤每次做功都是克服铁钉阻力做功,但摩擦阻力不是恒力,其大小与深度成正比。
, 可用平均阻力来代替。
如图所示,第一次击入深度为,平均阻力为, 做功为:第二次击入深度为到,平均阻力为:位移为做功为:两次做功相等:解后有:练习1:要把长为l 的铁钉钉入木板中,每打击一次给予的能量为E 0,已知钉子在木板中遇到的阻力 与钉子进入木板的深度成正比,比例系数为k 。
问此钉子全部进入木板需要打击几次?分析:钉子在整个过程中受到的平均阻力为:F k l k l =+=022钉子克服阻力做的功为:W F l k l F ==122设全过程共打击n 次,则给予钉子的总能量:E n E k l 总==0212所以n k l E =202【例2】如图所示,轻弹簧一端与竖直墙壁相连,另一端与一质量为m的木块连接,放在光滑的水平面上。
弹簧劲度系数为k ,开始时处于自然长度。
现用水平力缓慢拉木块,使木块前进x ,求拉力对木块做了多少功?解析:可用平均力 kx F 1=求功,故21kx x F W =⋅=。
思考:1.若是恒力F 向右拉动木块,拉力的功是否仍为上述的解?2.若是物块轻轻放置于如右图所示的竖直轻弹簧上并最终静止在平衡位置。
弹簧压缩了x ,则重力做的功是否完全转化成了弹簧的弹性势能(mgx=1/2kx 2)?【例3】如图所示,在盛有水的圆柱形容器内竖直地浮着一块立方体木块,木块的边长为h ,其密度为水的密度ρ的一半,横截面积也为容器截面积的一半,水面高为2h ,现用力缓慢地把木块压到容器底上,设水不会溢出,求压力所做的功。
专题:变力做功

专题一:变力做功的计算(一)变力做功的常见方法:1、将变力做功转化为恒力做功:(1)通过连接点的联系将变力做功转化为恒力做功——等值法;(2)力大小不变、方向与速度方向夹角恒定的变力转化为恒力做功——微元法; (3)方向不变、大小与位移均匀变化的变力做功,利用求平均力做功转化为恒力做功——平均值法或F x -图像法(力—位移图像围成的面积表示力做功的值。
) 2、功率不变的力做功W Pt =。
典型题例:1—1:化变力为恒力——等值法1、如图所示,光滑的定滑轮到滑块的高度为h ,已知细绳的拉力为F (恒定),滑块沿水平面由A 点前进s 至B 点,滑块在初、末位置时细绳与水平方向夹角分别为α和β。
求滑块由A 点运动到B 点过程中,绳的拉力对滑块所做的功。
2、人在A 点拉着绳通过光滑的定滑轮,吊起质量m =50kg 的物体,如图所示,开始绳与水平方向的夹角为60°,当人匀速地提起物体由A 点沿水平方向运动2x m =而到达B 点,此时绳与水平方向成30°角,取210/g m s =,求人对绳的拉力所做的功。
1—2:化变力为恒力——微元法1、在机械化生产水平较低的时期,人们经常通过“驴拉磨”的方式把粮食颗粒加工成粗面来食用,如图所示,假设驴拉磨的平均用力大小为500 N ,动的半径为1 m ,则驴拉磨转动一周所做功为( )A .0B .500 JC .500π JD .1 000π J2、如图所示,一质量为2m kg =的物体从半径为5R m =的圆弧的A 端,在拉力作用下沿圆弧缓慢运动到B 端(圆弧AB 在竖直平面内)。
拉力F 大小不变始终为15N ,方向始终与物体在该点的切线成37°角,圆弧所对应的圆心角为60°,BO 边为竖直方向。
取210/g m s =。
求这一过程中:(1)重力mg 做了多少功?(2)圆弧面对物体的支持力N 做了多少功? (3)拉力F 做了多少功?(4)圆弧面对物体的摩擦力f 做了多少功?1—3、化变力为恒力——平均值法、F x -图像法1、如图所示,轻弹簧一端与竖直墙壁连接,另一端与一个质量为m 的木块连接,放在光滑的水平面上,弹簧的劲度系数为k 、初始时刻处于自然状态。