触发器和时序逻辑电路

合集下载

时序逻辑电路的分类

时序逻辑电路的分类

时序逻辑电路的分类时序逻辑电路是一种能够在特定的时间序列下执行特定操作的电路。

它通常由组合逻辑电路和存储器组成,可以实现复杂的计算和控制功能。

时序逻辑电路按照其实现功能的不同,可以分为以下几类。

一、触发器触发器是最基本的时序逻辑电路之一,它可以存储一个比特位,并且在时钟信号到来时根据输入信号的状态改变输出状态。

常见的触发器有SR触发器、D触发器、JK触发器和T触发器等。

二、计数器计数器是一种能够在特定条件下对输入信号进行计数并输出结果的电路。

它通常由若干个触发器组成,每个触发器都表示一个二进制位。

常见的计数器有同步计数器和异步计数器等。

三、移位寄存器移位寄存器是一种能够将输入信号从一个位置移动到另一个位置并输出结果的电路。

它通常由若干个触发器组成,每个触发器都表示一个二进制位。

常见的移位寄存器有串行入并行出移位寄存器、并行入串行出移位寄存器和并行入并行出移位寄存器等。

四、状态机状态机是一种能够根据输入信号的状态和时钟信号的变化改变输出状态的电路。

它通常由若干个触发器和组合逻辑电路组成,可以实现复杂的控制功能。

常见的状态机有Moore状态机和Mealy状态机等。

五、定时器定时器是一种能够在特定时间间隔内产生一个脉冲信号或者计数信号的电路。

它通常由若干个触发器和组合逻辑电路组成,可以实现复杂的定时功能。

常见的定时器有单稳态定时器和多稳态定时器等。

六、脉冲生成器脉冲生成器是一种能够在特定条件下产生一个脉冲信号的电路。

它通常由若干个触发器和组合逻辑电路组成,可以实现复杂的脉冲生成功能。

常见的脉冲生成器有单稳态脉冲生成器、多稳态脉冲生成器和斯奈德-哈特脉冲生成器等。

七、序列检测电路序列检测电路是一种能够在输入序列中检测出指定模式并输出相应结果的电路。

它通常由若干个触发器和组合逻辑电路组成,可以实现复杂的序列检测功能。

常见的序列检测电路有Moore序列检测器和Mealy序列检测器等。

八、时钟同步电路时钟同步电路是一种能够将异步输入信号转换为同步输出信号的电路。

触发器与时序逻辑电路

触发器与时序逻辑电路
用74LS161构成十二进制计数器
将状态1100 反馈到清零端 归零
将状态1011 反馈到清零端 归零
第2页
用异步归零构成十二进制计数器,存在一个极短暂的过渡状态1100。十二进制计数器从状态0000开始计数,计到状态1011时,再来一个CP计数脉冲,电路应该立即归零。然而用异步归零法所得到的十二进制计数器,不是立即归零,而是先转换到状态1100,借助1100的译码使电路归零,随后变为初始状态0000。
触发器有两个稳定的状态:“0”状态和“1’状态; 不同的输入情况下,它可以被置成0状态或1状态; 当输入信号消失后,所置成的状态能够保持不变。
第2页
1
2
3
4
10.1 触发器
一对具有互非关系的输出端,其中Q 的状态称为触发器的状态。
第2页
1.1. RS触发器
一对输入端子均为低电或有效。
基本RS触发器
F1:在Q0为1时,再来一个CP计数脉冲才翻转,但在Q3为1时不得翻转;
第2页
F0:每来一个CP计数脉冲翻转一次; 选用4个CP下降沿触发的JK触发器F0、F1、F2 、F3。
10.2.2 十进制计数器
驱动方程
第2页
2、异步十进制加法计数器
第2页
由触发器组成的N进制计数器的一般分析方法是:对于同步计数器,由于计数脉冲同时接到每个触发器的时钟输入端,因而触发器的状态是否翻转只需由其驱动方程判断。而异步计数器中各触发器的触发脉冲不尽相同,所以触发器的状态是否翻转除了考虑其驱动方程外,还必须考虑其时钟输入端的触发脉冲是否出现。
状态转换真值表
第2页
用上升沿触发的D触发器构成的4位异步二进制加法计数器及其波形图
F0每输入一个时钟脉冲翻转一次。 F1在Q0由1变0时翻转, F2在Q1由1变0时翻转, F3在Q2由1变0时翻转。

第11章触发器和时序逻辑电路

第11章触发器和时序逻辑电路

第11章 触发器和时序逻辑电路 11章
基本RS触发器图形符号如图11-1b所示,图中 RD S下标的D , D 表示直接输入,非号表示触发信号0时对电路有效,RD 故称 S D 称直接置"1"(直接置位)端, 直接置"0"(直接复位)端, Q 逻辑符号中的小圆圈"○" 表示非号,在 端同样加 "○". 输 入 输 基本RS触发器的逻辑功能表,如下表所示. 出
第11章 触发器和时序逻辑电路 11章
11.1.3. 边沿型JK触发器
边沿触发器是利用电路内部速度差来克服"空翻"现 象的时钟触发器.它的触发方式为边沿触发,通常为下降 沿触发方式,即输入数据仅在时钟脉冲的下降沿这一"瞬 间"起作用.在图11-4b的逻辑符号中,CP输入端用小圆 圈表示低电平有效,而加一三角来表示边沿触发,则CP表 示为下降沿触发. JK触发器是应用最广的基本"记忆"部件,用它可以 组成多种具有其它功能的触发器和数字器件.集成JK触发 器有各种型号和规格,常用的有74HC73A,74HC107A, 74HC76A,等TTL触发器;CC4027,CC4013等CMOS触 发器.
由表11-2可见,R,S全是"1"的输入组合是应当禁止的, 因为当CP=1时,若R=S=1,则导引门G3,G4均输出"0"态, 致使Q==1,当时钟脉冲过去之后,触发器恢复成何种稳态 是随机的.在同步RS触发器中,通常仍设有RD和SD,它们只 允许在时钟脉冲的间歇期内使用,采用负脉冲使触发器置 "1"或置"0",以实现清零或置数,使之具有指定的初始状 态.不用时"悬空",即高电平.R,S端称同步输入端,触 发器的状态由CP脉冲来决定. 同步RS触发器结构简单,但存在两个严重缺点:一是会出 现不确定状态.二是触发器在CP持续期间,当R,S的输入 状态变化时,会造成触发器翻转,造成误动作,导致触发器 的最后状态无法确定.

触发器、时序逻辑电路

触发器、时序逻辑电路

第12 章习题12-1填空题1. 数字电路分为组合逻辑和时序逻辑两大类。

2. 时序逻辑电路的输出取决于输入状态和输入前的输出状态,因此电路具有记忆功能。

触发器是构成时序逻辑电路的基本单元,其本身也由门电路构成,但其中包含有反馈环节,因此它是时序逻辑电路的基本单元。

3. 集成触发器的置1端可以根据需要预先将触发器置1,置0 端可以根据需要预先将触发器置0,而不受时序脉冲的同步控制。

4. 计数器统计的是CP脉冲的个数,它有3种分类方法,按计数进位不同,分为二进制、十进制和任意进制计数器;按计数规律不同,分为加法、减法和可逆计数器;按计数器中触发器翻转是否同步分为同步计数器和异步计数器,其中同步计数器的计数速度较快。

5. 寄存器是一种能够接收、暂存、传递数码或指令等信息的逻辑部件,它一般由触发器构成,且每个触发器只能存储1 位二进制信息。

6. 半导体存储器有两种,一种称为随机存取存储器,简称RAM;另一种称为只读存储器,简称ROM。

7. 存储器的存储容量是指存储器能够存储0 和1 的个数,一般用字数×位数来表示。

字数指字线的数目,位数指数据线的总的数目。

8. 移位寄存器按移位方向的不同分为左移寄存器、右移寄存器和双向移位寄存器。

9. 在所有触发器中,JK 触发器的逻辑功能是最完善的,它没有同步触发器的空翻现象,也没有同步触发器状态不定的现象,而且比D触发器和T触发器的功能齐全。

10. JK触发器的逻辑功能是J=0,K=0时,Q=0 ;J=0,K=1时,Q=0 ;J=1,K=0时,Q=1 ;J=1,K=1时,翻转。

输入信号过后保持输入信号到来时的功能称为记忆功能,翻转功能称为计数功能。

11. D触发器的逻辑功能可概括为输出端Q的状态永远与输入端D的状态相同,但在画波形图时应为D触发器的Q态与输入端的D态相同。

12. RS触发器的逻辑功能可概括为:R端和S端同时无效时,触发器保持原状态;R端和S端同时有效时,触发器处于不定状态;R端有效,S端无效时,触发器处于1状态;R端无效,S端有效时,触发器处于0 状态。

触发器和时序逻辑电路

触发器和时序逻辑电路

Q
.
& G1
.
& G2
1 SD
被封锁
1
& G3
1
& G4 0 被封锁 R C
章目录 返回
RD1
R,S 输入状态 不起作用。 触发器状态不变
S
上一页 下一页
当C=1时 触发器状态由R,S 输入状态决定。
Q
Q
.
& G1
.
& G2
触发器的翻转 1 SD 时刻受C控制 (C高电平时 打开 & G 3 翻转),而触 发器的状态由 R,S的状态决页
22.1.1 R-S 触发器
1. 基本 R-S 触发器 两互补输出端 正常情况下, 两输出端的状态 保持相反。通常 以Q端的逻辑电 平表示触发器的 状态,即Q=1, Q=0时,称为“1‖ 态;反之为“0‖ 态。 Q Q
.
& G1 SD 两输入端
.
反馈线
& G2
RD
章目录 返回 上一页 下一页
Q
.1
& G2
触发器置“0‖
1
& G3
0 RD 1
& G4 1
触发器置“1‖
S0
C
R1
章目录 返回 上一页 下一页
(4) S =1, R= 1
Q=0 1 Q
若先翻
Q 1 Q=1
.
& G1 1 1
. 若先翻
& G2
当时钟由 1变 0 后 触发器状态不定
1 SD
0 1
0 RD 1 1
& G3
& G4
S1
章目录 返回 上一页 下一页

触发器和时序逻辑电路

触发器和时序逻辑电路
(1) 第一位触发器 FF0 ,每来一种时钟脉冲就翻转一次,故 J0 = K0 = 1 ;
(2) 第二位触发器 FF1 ,在 Q0 = 1 时再来一种时钟脉冲才翻转,故 J1 = K1 = Q0 ;
大家网:
(3) 第三位触发器 FF2 ,在 Q1= Q0 = 1 时再来一种时钟脉冲才翻转,故 J2 = K2 = Q1Q0 ;
大家网:
只有当初钟脉冲来到后,即 CP = 1 时,触发器才按 R 、S 端旳输入状态 来决 定其输出状态。
触发器置R和D0 或置是S1直D,接一置般0用和于直置接初置态1。端在,工就作是过不程经中过它时们钟处脉于冲1 旳态控。制能够对基本
可控 RS 触发器旳逻辑式
Q S CP Q ,
可分四种情况分析CP = 1 时触 发器旳状态转换和逻辑功能,如右 表所示。
转一次,即
,具有计数功能。
SD
S
Q
D
1D
CP
C1
Q
RD
R
Q Q n1
n
上升沿 D 触发 器图形符号
1D
Q
CP
C1
Q
D 触发器转换 为 T 触发器
大家网:
返回
14.2 寄存器
寄存器用来临时存储参加运算旳数据和运算成果。
14.2.1 数码寄存器
下图是由 D 触发器(上升沿触发)构成旳四位数码寄存器,这是并行输入/并行 输出旳寄存器。工作之初要先清零。
时序逻辑电路旳特点:它旳输出状态不但决定于当初旳输入状态,而且还与电 路旳原来状态有关,也就是时序逻辑电路具有记忆功能。
触发器是时序逻辑电路旳基本单元。
大家网:
14.1 双稳态触发器
14.1.1 RS 触发器

触发器-时序逻辑电路实验报告

触发器-时序逻辑电路实验报告

1实验报告课程名称:数字电子技术基础实验 指导老师:樊伟敏实验名称:触发器应用实验实验类型:设计类 同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤五、实验数据记录和处理 六、实验结果与分析(必填)七、讨论、心得一、实验目的1. 加深理解各触发器的逻辑功能,掌握各类触发器功能的转换方法。

2. 熟悉触发器的两种触发方式(电平触发和边沿触发)及其触发特点。

3. 掌握集成J-K 触发器和D 触发器逻辑功能的测试方法。

4. 学习用J-K 触发器和D 触发器构成简单的时序电路的方法。

5. 进一步掌握用双踪示波器测量多个波形的方法。

二、主要仪器与设备实验选用集成电路芯片:74LS00(与非门)、74LS11(与门)、74LS55(与或非门)、74LS74(双D 触发器)、74LS107(双J —K 触发器),GOS-6051 型示波器,导线,SDZ-2 实验箱。

三、实验内容和原理 1、D →J-K 的转换实验①设计过程:J-K 触发器和D 触发器的次态方程如下: J-K 触发器:n n 1+n Q Q J =Q K +, D 触发器:Qn+1=D 若将D 触发器转换为J-K 触发器,则有:nn Q Q J =D K +。

②仿真与实验电路图:仿真电路图如图1所示。

操作时时钟接秒信号,便于观察。

图1实验名称:触发器应用实验 姓名: 学号: 2③实验结果:2、D 触发器转换为T ’触发器实验①设计过程:D 触发器和T ’触发器的次态方程如下:D 触发器:Q n+1= D , T ’触发器:Q n+1=!Q n若将D 触发器转换为T ’触发器,则二者的次态方程须相等,因此有:D=!Qn 。

②仿真与实验电路图:仿真电路图如图2 所示。

操作时时钟接秒信号。

③实验结果:发光二极管按时钟频率闪动,状态来回翻转。

3、J-K →D 的转换实验。

触发器与时序逻辑电路二

触发器与时序逻辑电路二

课题十四:触发器与时序逻辑电路(二)【学习内容】寄存器用来暂时存放参与运算的数据和运算结果,有无移位的功能又可以分为数码寄存器和移位寄存器,通过重点学习后者,结合二进制计数器,达到使学生熟悉计数器工作。

【学习重点】寄存器的时序电路各类寄存器的工作原理【学习难点】移位脉冲及其时序电路【学习内容】●寄存器用来暂时存放参与运算的数据和运算结果。

●寄存器常分为数码寄存器和移位寄存器两种,其区别在于有无移位的功能1.数码寄存器(1)电路图形:(见P379图14.2.1)由D触发器(上升沿触发)组成的四位数码寄存器。

(2)工作原理①先复位(清零),使四个触发器FF3~FF0全处于态。

②当“寄存器指令”)正脉冲到来时,四位二进制数d3d2d1d0就存入四个触发器2.移位寄存器(1)电路图(见P379图14.2.2)图14.2.2是由JK触发器组成的四位移位寄存器.(2)工作原理:●设寄存的二进制数为1011,按移位脉冲(即时钟脉冲)的工作节拍从高位到低位依次串行送到D端①工作之初先清零.首先D=1,第一个移位脉冲的下降沿来到时使触发器FF0翻转,Q0=1,其他仍保持0态;②接着D=0,第二个移位脉冲的下降沿来到时使FF0和FF1同时翻转,由于FF1的J=1,FF0的J=0,所以Q1=1,Q0=0,Q2和Q3仍为0;③以后过程如表14.2.1所示,移位一次,存入一个新数码,直到第四个脉冲的下降沿来到时,存数结束.这时,可以从四个触发器的Q端得到并行的数码输出.表14.2.1 移位寄存器的状态表14.3 计数器●计算器能累计输入脉冲的数目,可以进行加法、减法或两者兼有的计数,可分为二进制计数器、十进制计数器及任意进制计算器1.二进制计数器表14.3.1 四位二进制加法状态表(1)异步二进制加法计数器①每一个计数脉冲,最低位触发器翻转一次;②位触发器是在相信的低位触发器从1变为0进位时翻转因此可用四个主从型JK触发器来组成异步二进制加法计数器(如P381图14.3.1所示)(2)进制加法计数器①第一位触发器FF0,每来一个计数脉冲就翻转一次,故J0=K0=1;②第二位触发器FF1,在Q0=1时再来一个脉冲才翻转,故J1=K1=Q0;③第三位触发器FF2,在Q1=Q0=1时再来一个脉冲才翻转,故J2=K2=Q1Q0;④第四位触发器FF3,在Q2=Q1=Q0=1时再一个脉冲才翻转,故J3=K3=Q2Q1Q0 2.十进制计数器表14.3.2 8421码十进制加法计数器的状态表:(1)与二进制加法计数器比较,来第十个脉冲不是由1001变为1010,而是恢复0000。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子技术
双稳态触发器: 是一种具有记忆功能的逻辑单元电路,它能储存
一位二进制码。
特点: 1、有两个稳定状态“0”态和“1”态; 2、能根据输入信号将触发器置成“0”或“1”态; 3、输入信号消失后,被置成的“0”或“1”态能
保存下来,即具有记忆功能。
4 总目录 章目录 返回 上一页 下一页
21.1.1 R-S 触发器
1 1 不变 保持
0 0 同时变 1后不确定
SD RD
RD(Reset Direct)-直接置“0”端(复位端) 低电平有效
SD(Set Direct)-直接置“1”端(置位端)
缺陷:存在不确定态,不能受控制。
14 总目录 章目录 返回 上一页 下一页
Q
2. 可控 RS 触发器
.
基本R-S触发器
& G1
1. 基本 R-S 触发器
正常情况下, 两输出端的状态 保持相反。通常 以Q端的逻辑电 平表示触发器的 状态,即Q=1, Q=0时,称为“1” 态;反之为“0” 态。
电子技术
两互补输出端
Q
Q
.
. 反馈线
≥1 G1
≥1 G2
S 两输入端 R
5 总目录 章目录 返回 上一页 下一页
触发器输出与输入的逻辑关系
下面介绍双稳态触发器,它是构成时序电路 的基本逻辑单元。
2 总目录 章目录 返回 上一页 下一页
21.1 双稳态触发器
21.1.1 R-S 触发器 21.1.2 J-K 触发器 21.1.3 D 触发器 22.1.4 触发器逻辑功能转换
电子技术
3 总目录 章目录 返回 上一页 下一页
21.1 双稳态触发器
电子技术
第21章 触发器和时序逻辑电路
21.1 双稳态触发器 21.2 寄存器 21.3 计数器 21.4 时序逻辑电路的分析 21.5 由555定时器组成的单稳态触发器
和无稳态触发器 21.6 应用举例
1 总目录 章目录 返回 上一页 下一页
时序逻辑电路的特点:
电子技术
电路的输出状态不仅取决于当时的输入信号, 而且与电路原来的状态有关。当输入信号消失后, 电路状态仍维持不变。这种具有存贮记忆功能的 电路称为时序逻辑电路。
触发器保持 原来的状态, 即触发器具 有保持、记 忆功能。
电子技术
触发器保持 “1”态不变
1Q
Q0
1.
.0
G1 0
S1
G2 1
R1
12 总目录 章目录 返回 上一页 下一页
(4) SD=0,RD = 0
“1”态
电子技术
当信号SD= RD = 0 同时变为1时,由
于与非门的翻转
Q 1
1.
Q 1
. 0 若先翻转
R
17 总目录 章目录 返回 上一页 下一页
当C=1时
触发器状态由R,S 输入状态决定。
Q
.
& G1
电子技术
Q
.
& G2
1 SD 1 (1) S=0, R=0 打开
& G3
1 RD 1 & G4
触发器保持原态
S0
1 C
打开
R0
18 总目录 章目录 返回 上一页 下一页
Q
(2) S = 0, R= 1
S
1 RD1 & G4
0 C
被封锁
R
16 总目录 章目录 返回 上一页 下一页
当C=1时
触发器状态由R,S 输入状态决定。
Q
.
& G1
电子技术
Q
.
& G2
触发器的翻转 时刻受C控制 (C高电平时 翻转),而触 发器的状态由 R,S的状态决 定。
1 SD 打开 & G3
S
1 C
RD 1 & G4
打开
SD
导引电路
& G3
电子技术
Q
.
& G2
RD & G4
S
时钟脉冲
C
R
15 总目录 章目录 返回 上一页 下一页
SD,RD 用于预置触 发器的初始状态,
工作过程中应处于 高电平,对电路工作 状态无影响。
Q
.
& G1
电子技术
Q
.
& G2
当C=0时
1 SD 1
被封锁
R,S 输入状态
& G3
不起作用。
触发器状态不变
(2) S=0,R = 1
设原态为“1”态
翻转为“0”态
0 Q
1.
≥1 G1 0
0 S
电子技术
1 Q
.0
≥1 G2 1
1 R
9 总目录 章目录 返回 上一页 下一页
设原态为“1” 态
结论: 不论 触发器原来 为何种状态, 当 S=0,
R=1时, 将使触发器 置“0”或称 为复位。
电子技术
触发器保持 “0”态不变
& G3
电子技术
Q 1 Q=1
. 若先翻
& G2 1
01 RD 1
& G4
S1
1 C
R1
0
20 总目录 章目录 返回 上一页 下一页
可控RS状态表
SR 00 01
Qn+1 Qn 0
逻辑符号 QQ
电子技术
10 11
1 不定
SD S Qn—时钟到来前触发器的状态
电子技术
(1) S=1,R = 0
设触发器原态 为“1”态。
置“1”状态
0Q
0.
≥1 G1 1
1 S
Q1
.1
≥1 G2 0
0 R
6 总目录 章目录 返回 上一页 下一页
触发器输出与输入的逻辑关系
电子技术
(1) S=1,R = 0
设触发器原态 为“0”态。
翻转 “1”状态
1Q
0.
≥1 G1 0
1 S
1Q
Q0
1.
.0
≥1 G1
≥1 G2
0
1
S0
R1
复位
10 总目录 章目录 返回 上一页 下一页
(3) S=1,R = 1
设原态为“1”态 保持为“1”态
0Q
0.
≥1G1
1 1 S
电子技术
Q1
.1
≥1 G2 0
1 R
11 总目录 章目录 返回 上一页 下一页
设原态为“1” 态
当 S=1, R=1时,
0.
触发器置“0” (3) S =1, R= 0
& G1 1 SD 1
& G3
电子技术
QLeabharlann .1& G20 RD 1 & G4
触发器置“1”
S0
1 C
R1
19 总目录 章目录 返回 上一页 下一页
Q=0 1 Q
(4) S =1, R= 1
若先翻
.
当时钟由 1变 0 后 触发器状态不定
& G1 1
1 SD 01
时间不可能完全 相同,触发器状
& G1
& G2
态可能是“1”态, 11 10 1 1
也可能是“0”态,
1
1
不能根据输入信
SD 0
RD 0
号确定。
若G1先翻转,则触发器为“0”态
13 总目录 章目录 返回 上一页 下一页
电子技术
基本 R-S 触发器状态表
逻辑符号
SD RD
Q 功能
QQ
10 01
0 置0 1 置1
Q0
. 01
≥1 G2 0
0 R
7 总目录 章目录 返回 上一页 下一页
设原态为“0” 态
结论: 不论 触发器原来 为何种状态, 当 S=1,
R=0时, 将使触发器 置“1”或称 为置位。
电子技术
触发器保持 “1”态不变
0Q
Q1
0.
.1
≥1 G1 1
1 S
≥1 G2
0
0 R 置位
8 总目录 章目录 返回 上一页 下一页
相关文档
最新文档