机器视觉大作业2
《机器视觉与应用》大作业清单

《机器视觉与应用》大作业清单说明:每组应提交一份调研报告及相应的程序代码,演示录像或截图。
程序可使用C/C++/Matlab,如使用C/C++请包含完整的工程文件,IDE可使用VC6 ,VS2005,VS2008,CodeBlocks,可参考使用相关开源类库,如OpenCV,Matlab Image Processing Toolbox等。
提交时间:1月15日提交地址:ftp://202.120.50.201/user: MV09, password: MV09提交要求:大作业要有封面和目录(封面内容:参加人员姓名和学号,专业名称和时间)作业答疑:助教杨扬 [iyangyang186@]1.请查阅文献,对当前的人脸检测与识别(face detection and recognition)算法做调研,形成调研报告,包括当前有哪些流行的人脸检测与识别算法,各自的优缺点等,并注明参考文献。
写一个简单的人脸检测程序。
该程序可从本地硬盘读取一张图片(如JPG文件),用绿色框标识出检测到的人脸区域。
(宋晓辉、任振华、王玉珏)2.请查阅文献,对当前的人眼检测(eye/gaze detection)算法做调研,形成调研报告,包括当前有哪些流行的人眼检测算法,各自的优缺点等,并注明参考文献。
写一个简单的人眼检测程序。
该程序可从本地硬盘读取一张图片(如JPG文件),用绿色框标识出检测到的人眼区域。
(张卓贤、党东显、王建楼)3.请查阅文献,对当前的人体检测(body detection)算法做调研,形成调研报告,包括当前有哪些流行的人体检测算法,各自的优缺点等,并注明参考文献。
写一个简单的人体检测程序。
该程序可从本地硬盘读取一张图片(如JPG 文件),用曲线段标识出检测到的人体轮廓。
(金方进、杨帆、邱世广)4.请查阅文献,对当前的指尖检测(fingertip detection)算法做调研,形成调研报告,包括当前有哪些流行的指尖检测算法,各自的优缺点等,并注明参考文献。
机器视觉及应用作业

《机器视觉及应用》课程作业一、数字图像处理1.两个图像子集S1和S2如下图所示。
对于V={1},确定这两个子集是(a)4邻接,(b)8邻接,还是(c)m邻接?解:对于V={1},子集S1是4邻接;而子集S2则是8邻接。
2.考虑如下所示的图像分割:(a)令V={0,1}并计算p到q间的4、8和m通路的最短长度。
如果在这两点间不存在特殊通路,请解释原因。
(b)对V={1,2}重复上题。
解:(a)①p到q之间,不存在4通路。
因为V={0,1}时,如图无法找到p、q之间的通路;②p到q之间的8通路最短长度如图最短长度为4+2√2;③p到q之间的m通路最短长度如图最短长度为6+√2;(b)对于V={1,2},容易得到:p、q之间4通路最短长度为8,8通路最短长度为4+2√2,m通路最短长度为8。
3.利用所学图像处理的知识,将下面全方位图像展开为普通图像。
我认为用到的是图像集合修正的知识,来处理这幅类似于几何失真的全方位图像。
首先,最主要的就是找到这幅图像的中心,这就需要利用相机的盲区(中心未拍摄到图像的黑色圆圈),求取图像的中心;(可以利用二值化后求中心的办法求得)然后,就是展开工作,以找到的中心作为极坐标中心,给图像各像素点一个极坐标;最后,通过一定的变换算法,如Houng变换(查找资料得到),对极坐标进行展开,最终获得普通图像。
最终经处理后得到的图片如图:4.图中的白条是7像素宽,210像素高。
两白条之间的宽度是17像素,当应用下面的处理时图的变化结果是什么?(1)分别用3×3、9×9均值滤波;(2)分别用3×3、9×9中值滤波。
答:(1)用3×3、9×9均值滤波,由于7>3/2,7>9/2,所以均值滤波时,滤波窗中白色像素点数>滤波窗中像素点数的一半,加上该图是二值图,灰度取值只有两个,所以说滤波前后图像不变;(2)用3×3、9×9中值滤波之后,图像中白色线条变窄,且两端变圆。
机器视觉作业

机器视觉作业机器视觉结课作业机器视觉系统的组成,及各组成部分的作⽤。
机器视觉就是⽤机器代替⼈眼来做测量和判断。
机器视觉系统是指通过机器视觉产品(即图像摄取装置,分CMOS 和CCD 两种)将被摄取⽬标转换成图像信号,传送给专⽤的图像处理系统,得到被摄⽬标的形态信息,根据像素分布和亮度、颜⾊等信息,转变成数字化信号;图像系统对这些信号进⾏各种运算来抽取⽬标的特征,进⽽根据判别的结果来控制现场的设备动作。
⼀个典型的机器视觉系统包括以下五⼤块:(1)照明照明是影响机器视觉系统输⼊的重要因素,它直接影响输⼊数据的质量和应⽤效果。
由于没有通⽤的机器视觉照明设备,所以针对每个特定的应⽤实例,要选择相应的照明装置,以达到最佳效果。
光源可分为可见光和不可见光。
常⽤的⼏种可见光源是⽩炽灯、⽇光灯、⽔银灯和钠光灯。
可见光的缺点是光能不能保持稳定。
如何使光能在⼀定的程度上保持稳定,是实⽤化过程中急需要解决的问题。
另⼀⽅⾯,环境光有可能影响图像的质量,所以可采⽤加防护屏的⽅法来减少环境光的影响。
照明系统按其照射⽅法可分为:背向照明、前向照明、结构光和频闪光照明等。
其中,背向照明是被测物放在光源和摄像机之间,它的优点是能获得⾼对⽐度的图像。
前向照明是光源和摄像机位于被测物的同侧,这种⽅式便于安装。
结构光照明是将光栅或线光源等投射到被测物上,根据它们产⽣的畸变,解调出被测物的三维信息。
频闪光照明是将⾼频率的光脉冲照射到物体上,摄像机拍摄要求与光源同步。
(2)镜头FOV(Field Of Vision)=所需分辨率*亚象素*相机尺⼨/PRTM(零件测量公差⽐)镜头选择应注意:①焦距②⽬标⾼度③影像⾼度④放⼤倍数⑤影像⾄⽬标的距离⑥中⼼点/节点⑦畸变。
勿将⼯作距离与物体到像的距离混淆。
⼯作距离是从⼯业镜头前部到被观察物体之间的距离。
⽽物体到像的距离是CCD 传感器到物体之间的距离。
计算要求的⼯业镜头焦距时,必须使⽤⼯作距离(3)相机按照不同标准可分为:标准分辨率数字相机和模拟相机等。
(完整word版)湖北工业大学机器视觉作业

一、列举至少三种零件表面三维数据获取的方法。
针对其中一种,详细介绍其测量原理或方法。
1.接触式测量方法:坐标测量机、层析法。
2.非接触式测量方法:基于光学三角形原理的扫描法、基于相位偏移测量原理的莫尔条纹法、基于工业CT 断层扫描图像、立体视觉测量方法。
基于光学三角形原理的扫描法是以光作为光源,其结构模式可以分为光点、单线条、多光条等,将其投射到被测物体表面,并采用光电敏感元件在另一位置接受激光的反射能量,根据光点或光条在物体上成象的偏移,通过被测物体基平面、象点、象距等之间的关系计算物体的深度信息。
介绍一种使用激光的三角形测量法。
硬件由线激光发生器、CCD 摄像头、图像采集卡、相应的连接线与电源以及微型计算机组成。
如果采用两个参数完全相同的CCD 摄像头对称放置,可以减少测量盲区,提高测量精度。
三角形测量法利用基准面、像点、物距、像距等之间的关系计算物体的Z 坐标值。
图中, i —入射光 L —透镜N —成像屏, u —透镜L 的物距 v —透镜L 的像距O —L 光轴与入射光线i 的交点A —物面上的光点A ’,O ’分别是A 、O 的像点h —物面上光点相对于基准面的M 高度α—入射光线与光轴的夹角M ’—目标平面 M —参考平面根据透镜成像原理,以入射光与透镜光轴交点所在平面M 为基准面,则光点A 相对于基准面M 的高度h 的计算公式为:ααcos sin ’’h v h u h +•= 二、列举至少三种边缘提取算法,详述一种亚像素边缘提取算法的原理。
1.Roberts 边缘检测算子。
采用对角线方向相邻两像素之差近似梯度幅值检测边缘。
检测水平和垂直边缘的效果好于斜向边缘,定位精度高,对噪声敏感。
2.Sobel 边缘算子。
是一组方向算子,从不同的方向检测边缘。
不是简单求平均值再差分,而是加强了中心像素上下左右四个方向像素的权重。
对噪声具有平滑作用,提供较为精确的边缘方向信息,边缘定位精度不够高,通常对灰度渐变和噪声较多的图像处理得较好。
机器视觉检测的简答作业及答案要点

2022研究生机器视觉课程检测及课程设计内容一、 回答下列问题:1、什么是机器视觉,它的目标是什么?能否画出机器视觉检测系统的结构方块图,并说出它们的工作过程原理与与人类视觉的关系?机器视觉是机器(通常指计算机)对图象进行自动处理并报告“图象中有什么”的过程,也就是说它识别图象中的内容。
图象中的内容往往是某些机器零件,而处理的目标不仅要能对机器零件定位,还要能对其进行检验。
原始数据特征向量类别标识特征度量模式分类器机器视觉系统的组成框图2、在机器视觉检测技术中:什么是点视觉技术、一维视觉技术、二维视觉技术、三维视觉技术、运动视觉技术、彩色视觉技术、非可见光视觉技术等?能否说出他们的应用领域病句、案例?能否描述它们的技术特点?答:点视觉:用一个独立变量表示的视觉称之为点视觉。
如应用位移传感器测量物体的挪移速度。
一维视觉:普通的CCD。
两维视觉:用两个独立变量表示的视觉称之为两维视觉。
比如普通的CCD。
三维视觉:用三个独立变量表示的视觉称之为三维视觉。
比如用两个相机拍摄(双目视觉);或者使用一个相机与一个辅助光源。
彩色视觉:用颜色作为变量的视觉称之为彩色视觉。
物体的颜色是由照射光源的光谱成份、光线在物体上反射与吸收的情况决定的。
比如,一个蓝色物体在日光下观察呈现蓝色,是由于这个物体将日光中的蓝光反射出来,而吸收了光谱中的其他部份的光谱,而同样的蓝色物体,在红色的光源照射下,则呈现红紫色,非可见光视觉技术:用非可见光作为光源的视觉技术。
比如非可见光成像技术。
3、机器视觉检测技术中:光源的种类有哪些?不同光源的特点是什么?光照方式有几种?不同光照方式的用途是什么?又与技术特点与要求?机器视觉检测技术中光源有以下几种:荧光灯,卤素灯+光纤导管,LED 光源,激光,紫外光等。
几种光源的特点如下:成本亮度稳定度使用寿命复杂设计温度影响种类名称荧光灯低差差普通低普通卤素灯+光纤导管高好普通差普通差LED光源普通普通好好高低光照方式有以下几种:背景光法(背光照射)是将被测物置于相机与光源之间。
机器人视觉大作业

机器人视觉论文论文题目:基于opencv的手势识别院系:信息科学与工程学院专业:信号与信息处理姓名:孙竟豪学号:21160211123摘要文中介绍了一种易于实现的快速实时手势识别算法。
研究借助计算机视觉库OpenCV和微软Visual Studio 2008 搭建开发平台,通过视频方式实时提取人的手势信息,进而经二值化、膨胀腐蚀、轮廓提取、区域分割等图像处理流程甄别出当前手势中张开的手指,识别手势特征,提取出人手所包含的特定信息,并最终将手势信息作为控制仪器设备的操作指令,控制相关设备仪器。
0、引言随着现代科技的高速发展及生活方式的转变,人们越发追求生活、工作中的智能化,希望享有简便、高效、人性化的智能操作控制方式。
而伴随计算机的微型化,人机交互需求越来越高,人机友好交互也日益成为研发的热点。
目前,人们已不仅仅满足按键式的操作控制,其目光已转向利用人体动作、表情变化等更加方便、友好、直观地应用智能化交互控制体系方面。
近年来,国内外科学家在手势识别领域有了突破性进展。
1993 年B.Thamas等人最先提出借助数据手套或在人手粘贴特殊颜色的辅助标记来进行手势动作的识别,由此开启了人们对手势识别领域的探索。
随后,手势识别研究成果和各种方式的识别方法也纷然出现。
从基于方向直方图的手势识别到复杂背景手势目标的捕获与识别,再到基于立体视觉的自然手势识别,每次探索都是手势识别领域内的重大突破。
1 手势识别流程及关键技术本文将介绍一种基于 OpenCV 的实时手势识别算法,该算法是在现有手势识别技术基础上通过解决手心追踪定位问题来实现手势识别的实时性和高效性。
基于 OpenCV 的手势识别流程如图 1 所示。
首先通过视频流采集实时手势图像,而后进行包括图像增强、图像锐化在内的图像预处理,目的是提高图像清晰度并明晰轮廓边缘。
根据肤色在 YCrCb 色彩空间中的自适应阈值对图像进行二值化处理,提取图像中所有的肤色以及类肤色像素点,而后经过膨胀、腐蚀、图像平滑处理后,祛除小块的类肤色区域干扰,得到若干块面积较大的肤色区域; 此时根据各个肤色区域的轮廓特征进行甄选,获取目标手势区域,而后根据目标区域的特征进行识别,确定当前手势,获取手势信息。
机器视觉复习题及答案2

1.什么是机器视觉技术?试论述其基本概念和目的。
器视觉技术最大的特点是速度快、信息量大、功能多。
目的:机器视觉是用机器代替人眼来完成观测和判断,常用于大批量生产过程汇总的产品质量检测,不适合人的危险环境和人眼视觉难以满足的场合。
机器视觉可以大大提高检测精度和速度,从而提高生产效率,并且可以避免人眼视觉检测所带来的偏差和误差。
2.机器视觉系统一般由哪几部分组成?试详细论述之。
(必考)答:机器视觉系统主要包括三大部分:图像获取、图像分析和处理、输出显示或控制。
图像获取:是将被检测物体的可视化图像和内在特征转换成能被计算机处理的一系列数据。
该部分主要包括,照明系统、图像聚焦光学系统、图像敏感元件(主要是CCD 和CMOS )采集物体影像。
图像分析和处理:视觉信息的处理主要包括滤波去噪、图像增强、平滑、边缘锐化、分割、图像识别与理解等内容。
经过图像处理后,图像的质量得到提高,既改善了图像的视觉效果又便于计算机对图像进行分析、处理和识别。
输出显示或控制:主要是将分析结果输出到显示器或控制机构等输出设备。
3.试论述机器视觉技术的现状和发展前景。
(不考)答:机器视觉技术的现状:机器视觉是近20~30年出现的新技术,由于其固有的柔性好、非接触、快速等特点,在各个领域得到很广泛的应用,如航空航天、工业、军事、民用等等领域。
发展前景:随着光学传感器、信息技术、信号处理、人工智能、模式识别研究的不断深入和计算机性价比的不断提高,机器视觉技术越来越成熟,特别是市面上已经有针对机器视觉系统开发的企业提供配套的软硬件服务,相信越来越多的客户会选择机器视觉系统代替人力进行工作,既便于管理又节省了成本。
价格持续下降、功能逐渐增多、成品小型化、集成产品增多。
4.机器视觉技术在很多领域已得到广泛的应用。
请给出机器视觉技术应用的三个实例并叙述之。
答:○1在激光焊接中的应用,通过机器视觉系统,实时跟踪焊缝位置,实现实时控制,防止偏离焊缝,造成产品报废。
机械视觉考试题目及答案

机械视觉考试题目及答案一、选择题(每题2分,共20分)1. 机械视觉系统中,用于捕捉图像的设备是:A. 传感器B. 相机C. 显示器D. 存储器答案:B2. 在图像处理中,边缘检测的目的是:A. 提高图像对比度B. 检测图像中的直线和曲线C. 识别图像中的特定颜色D. 增强图像的纹理特征答案:B3. 以下哪个算法常用于图像的去噪处理?A. 拉普拉斯算子B. 高斯滤波C. 霍夫变换D. 直方图均衡化答案:B4. 在机器视觉中,色彩空间转换通常不包括以下哪种颜色空间?A. RGB到HSVB. HSV到RGBC. RGB到CMYKD. HSV到LAB答案:C5. 以下哪个术语描述的是图像中像素值的分布情况?A. 分辨率B. 对比度C. 色彩空间D. 直方图答案:D6. 机器视觉中,用于测量物体尺寸的常用方法是:A. 边缘检测B. 特征匹配C. 模板匹配D. 轮廓跟踪答案:A7. 在图像分割中,阈值分割法是基于以下哪种属性?A. 颜色B. 纹理C. 亮度D. 形状答案:C8. 以下哪个算法是用于图像特征点检测的?A. 拉普拉斯算子B. SIFTC. 直方图均衡化D. 高斯滤波答案:B9. 在机器视觉中,用于识别和跟踪运动物体的技术是:A. 目标跟踪B. 目标检测C. 目标分割D. 目标分类答案:A10. 以下哪个术语描述的是图像中局部区域的亮度变化?A. 边缘B. 纹理C. 噪声D. 斑点答案:A二、简答题(每题5分,共30分)1. 简述机器视觉系统的基本组成。
答案:机器视觉系统的基本组成包括图像采集单元、图像处理单元、图像分析单元和执行单元。
2. 描述图像增强的目的及其常用的方法。
答案:图像增强的目的是提高图像的视觉效果或提取图像特征以便于后续处理。
常用的方法包括直方图均衡化、滤波、对比度增强等。
3. 解释什么是图像的边缘检测,并举例说明其应用。
答案:图像的边缘检测是指识别图像中亮度变化显著的区域,这些区域通常对应于物体的边界。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏大学(机器视觉)大作业报告题目:图像增强专业:测控技术与仪器班级:1202学号:学生姓名:完成时间:2015年6月说明大作业的要求和内容:一、内容要求对机器视觉中所用的某一技术进行综述,必须用英文书写。
二、格式要求参照报告样例格式。
三、评分依据书写内容是否详尽到位50%语言方面是否通顺,有无错误20%对应PPT制作的好坏10%英文演讲的好坏20%四、其他说明大作业务必独立完成,一经发现雷同作“0”分处理。
教师小结:成绩:教师签名:目录1 The introduction (5)2 The research status at home and abroad (7)3 Key technology (method) is introduced (11)4 conclusion (13)参考文献 (15)图像增强技术(江苏大学机械工程学院仪器科学与工程系,江苏,镇江,212013)摘要:图像增强技术是增强图像中的有用信息,它可以是一个失真的过程,其目的是要改善图像的视觉效果,针对给定图像的应用场合,有目的地强调图像的整体或局部特性,将原来不清晰的图像变得清晰或强调某些感兴趣的特征,扩大图像中不同物体特征之间的差别,抑制不感兴趣的特征,使之改善图像质量、丰富信息量,加强图像判读和识别效果,满足某些特殊分析的需要。
本文就图像增强技术的分类、基本方法以及国内外发展状况做一些简单的介绍。
关键词:图像增强;视觉效果;图像质量Image enhancementAbstract: Image enhanced technology,a process of distortion, is the useful information to enhanced image,whose purposes is to improved the Visual effect of the image.According to the given application occasions of the imagine, to stressed the overall or local characteristics of the imagine. It will turn the originally blur image into clear or stressed some features of intrest, expanded the gap in different objects features of the image, inhibit the features that are not interest, to improved the image quality, and rich its information, strengthened image’s effect of interpretation and recognition, to meet some special needs of analysis. This article simply introduced the categories of the image enhancement technologies, the basic methods and the developments at home and abroad.Keywords: Image enhancement; Visual effects; Image quality1 The introductionIn general, the image transmission and conversion, such as imaging, replication, scanning, transmission and display, etc., often cause the image quality decline, that is, image distortion. In photography due to the light illumination is insufficient or excessive, will make the image is too dark or too bright; optical system distortion, relative motion, air flow will make the image fuzzy, transmission will introduce various types of noise. In short, the image of the image in the visual effect and identification of the convenience and other aspects may exist many problems, such problems might as well collectively referred to as quality issues. Image enhancement is based on the specific need to highlight the important information in the image, while weakening or removing the need for information. Images obtained from different ways, through appropriate enhancement, the originally smudgy even unable to distinguish the original image into clear contains a lot of useful information can use the image and effectively remove image noise, enhance image edges or other interested regional and thus easier to image in the target detection and measurement. Whether the image is kept undisturbed or not is irrelevant, and will not be conscious of the image's authenticity because of the ideal form of the image.. The purpose of the image enhancement is to enhance the visual effect of the image, and convert the original image into a form that is more suitable for the observation of human eyes and computer analysis.. It is generally based on the visual characteristics of the human eye, to obtain the visual effect of the visual effect, and seldom involves the objective and uniform evaluation criteria.. The effect of the enhancement is usually related with the concrete images, and it is evaluated by the subjective feeling of the person..At present, the application of image enhancement has been penetrated into the medical diagnosis, aviation, military reconnaissance, fingerprint identification, non-destructive testing, satellite image processing and other fields.. Such as X-ray images, CT and endoscopic mirror image enhancement, allow doctors to more easilyidentify the lesion area, from the details of the image region finding problem, taken at different times on the same area of remote sensing image enhancement processing to detect whether the enemy troop movements or military equipment and building; in coal mine industrial TV system with enhanced processing to improve the clarity of industrial TV image, overcome due to the lack of light, dust and other reasons caused by image fuzzy and deviation, reduce TV system maintenance workload. Image enhancement technology rapid development with its wide application is inseparable, the motive force of the development from the emergence of stable new application, we can expect, in the future society image enhancement technology will play a more important role.2 The research status at home and abroadPictures for the first time in the 1920 s through the cable from London to New York. People at that time through the character simulation to get the middle value method to restore the image. Early image enhancement technology often involves hardware parameters Settings, such as the choice of printing process and the distribution of brightness level. At the end of 1921, this paper proposes a new technology based on optical reduction. During this period due to the introduction of a coded modulation beam images to convey to adjust the degree of photographic film, the grey level grayscale increased from 5 to 15 grey scale, this method obviously improved the effect of image restoration. To the early 1960 s first can perform tasks of large computer digital image processing, it marks the use of computer technology the advent of the era of digital image processing. In 1964, researchers at the jet propulsion laboratory (JPL) in the use of computers and other hardware devices, using geometric correction, gray level transformation, noise, such as Fourier transform and 2-d linear filtering enhancement method for space probe \"prowler 7\" back to thousands of Zhang Yueqiu photo processing, at the same time they also consider the influence of the sun and the moon environment, finally succeeded in mapping out the map on the surface of the moon. Then they for 1965 years \"prowler 8\" tens of thousands of photos in the back to earth more complex digital image processing, further improve the image quality. These achievements not only attract the attention of the world many relevant parties and JPL itself also pay more attention to the digital image processing research and improvement of the equipment, and set up the image processing laboratory IPL. Success in the IPL for the hundreds of thousands of photos to spacecraft to send back the more complicated image processing, finally obtained the topography of the moon, color chart, and panoramic Mosaic. From the digital image enhancement technology into the field of aeronautics and astronautics.In the late 1960 s and early 1970 s some scholars began to image enhancementtechnique for medical image, the earth remote sensing monitoring and astronomy, and other fields. X ray is one of the earliest used in imaging of the electromagnetic radiation sources, X-ray by roentgen discovered in 1895. Mr Godfrey n. 1970 s Hounsfield and Allan m. Cormack invented the computer, a professor at axial tomography (ct) technology: a detector around the patient, and X-ray source rotate around the object. X-rays through the body and by the corresponding detector are collected on the other side of the ring. Its principle is to use the data of perception to slice image reconstruction. When objects along the perpendicular to the direction of the detector will produce a series of slices, the section of the internal representation of the object. In the 1980 s, the development of a variety of hardware that makes people not only can deal with 2 d images, and start dealing with three-dimensional images. Many can obtain three-dimensional images of three-dimensional image processing equipment and analysis of the system has been successfully developed, the image processing technology has been widely used. Into the 1990 s, the image enhancement technology has gradually involved in all aspects of human life and social development.A computer program used to enhance the contrast or brightness coding for color, in order to explain X rays, and used in industrial, medical and biological sciences in areas such as other images. Geography with the same or similar technology research pollution mode from the aviation and satellite images. In the field of archaeology fuzzy images using image processing method has been successfully recovered. In the field of physics and related computer technology can enhance experiment in the field of high energy plasma and electron microscope images. Histogram equalization processing is one of the commonly used methods for image enhancement technology. Kim, 1997, if you want to image enhancement technique used in digital cameras and other electronic products, then the algorithm must maintain the brightness of the image features. In the article, Kim keep brightness characteristics of histogram equalization algorithm was presented (BBHE). Kim, the improved algorithm is raised, caused the attention of many scholars. In 1999, Wan subgraph two-dimensional histogram equalization algorithm is put forward by (DSIHE). Then, Chen and Ramli minimum mean square error (MMBEBHE) double histogram equalization algorithm.In order to keep the image features, many scholars to study local enhancement processing technology, many of the new algorithm is proposed: recursion average stratified balanced treatment (RMSHE), recursive subgraph equalization algorithm (RSIHE), dynamic histogram equalization algorithm (DHE), maintain brightness characteristics dynamic histogram equalization algorithm (BPDHE), multi-layer histogram equalization algorithm (MHE), brightness to keep clusters of histogram equalization processing (BPWCHE) and so on.In relatively mature theoretical system and draw lessons from foreign technology under the conditions of application system, enhancement technique and application of domestic also had the very big development. In general, image enhancement technology in the development of its initial stage, development, popularization and application of four stages. Early-stage began in the 1960 s, when the image in pixels type raster scan display, in the USES mostly, mainframe to deal with it. During this period due to image storage cost is high, the processing equipment cost is high, thus its application is very narrow. The entered the period of 1970 s, is used in great quantities in the mainframe processing, image processing is gradually convert raster scan display mode, especially in the CT and satellite remote sensing image, the image enhancement processing put forward a higher request. In the 1980 s, image enhancement technology into the popularization period, the computer has been able to to undertake the task of image processing. Entered the application period in the 1990 s, people use digital image enhancement technology processing and analysis of remote sensing images, in order to effectively resources and mineral resources exploration, investigation, agricultural and urban land planning, crop yield estimation, weather forecast and disaster monitoring and military targets, etc. In biomedical engineering, and using image enhancement technique of X-ray images, ultrasound images, and biological section microscopic image processing, such as to improve image clarity and resolution. In industrial and engineering, mainly used in nondestructive flaw detection, automatic quality inspection and process control, etc. In public security, portraits, processing and identification of fingerprints and other trace, and traffic monitoring, accident analysis using image enhancement technology in different extent.Image enhancement is an important part of image processing, the traditional image enhancement method plays a very important role to improve image quality. With the deepening of the research of image technology and development, a new image enhancement method appear constantly. For example, some scholars will be introduced to the theory of fuzzy mapping image enhancement algorithms, including fuzzy relaxation, fuzzy entropy is proposed, fuzzy enhancement algorithm to solve the problem of enhancement algorithm of mapping function selection, and with the application of interactive image enhancement technology, can control the subjective image enhancement effect. And image enhancement using histogram equalization technology has many new progress, such as multilayer histogram combined with a balanced of brightness algorithm is proposed, dynamic hierarchical histogram equalization algorithm. These algorithms by image segmentation, and then in the sub-layer do balance in image processing, better solve the contrast through stretching problem in the process of histogram equalization, and it can control sub-layer gray mapping scope, strengthen effect is better.3 Key technology (method) is introducedImage enhancement can be divided into two categories: frequency domain and spatial domain method. The former the image as a two-dimensional signal, based on the two-dimensional Fourier transform to signal enhancement. Using low pass filter (that is, only through low frequency signal) method, can get rid of the noise in the graph; Using the high-pass filtering method, can enhance the high frequency signal, such as the edge, the fuzzy image becomes clear. The latter is the typical algorithms in spatial domain method with local averaging method and median filter (in the middle of the field of local pixels) method and so on, they can be used to remove or less noise. Image enhancement method is to through certain means for additional information or to transform of the image data, particularly interested in the image features or selectively inhibit (hide) the image features, some don't need to match the images and visual response. In the process of image enhancement, not this paper analyzes the reasons of images is qualitative, not necessarily close to the original image after processing. Image enhancement technology based on the enhanced processing in space is different, can be divided into the airspace based algorithm and based on frequency domain algorithm two kinds big. Based on the algorithm of the airspace to handle directly do arithmetic of image grayscale, based on the algorithm of frequency domain is in a transform domain of the image to some correction, image transform coefficient value is a kind of indirect enhancement algorithm.Algorithm based on airspace is divided into the neighborhood denoising arithmetic algorithm and algorithm. Algorithm namely grayscale correction arithmetic, such as gray transform and histogram modification, purpose or for uniform image imaging, or expand the dynamic range image, expand the contrast. Neighborhood enhancement algorithm into image smoothing and sharpening two kinds. Smooth generally used to eliminate image noise, but also easy to cause the edge of the fuzzy. Commonly used algorithm with average filtering and median filtering. Sharpen the purpose is tohighlight the edge contour of the object, is advantageous for the target identification. Commonly used algorithm with gradient method, operator, high-pass filtering, mask matching method, statistical difference method, etc.4 conclusionOf image enhancement technology is introduced, through this homework, made me more solid grasp the related knowledge of machine vision, while in the process of finish this assignment have a few problems, but after thinking again and again, and again and again on the Internet to collect related material and finally to solve all problems.From the beginning a little knowledge of image enhancement technology to the understanding of image enhancement technology now, I paid a lot of effort. Through the consult relevant material in the library and online collection of various learning summary of the material, make me to have a deeper understanding of image enhancement technology, machine vision for this course have a deeper understanding.I think, in the operation, not only cultivate my independent thinking and the ability of collecting data, in a variety of other skills have improved. And, more importantly, in the process of operation, I learned a lot of learning method, which is the most practical in the future, really benefit a lot. To face the challenge of the society, only by constantly learning, practice, learning and practice. It also has a lot of help for our future. Later, no matter how bitter, I think we can become a pain for a pleasure, looking for fun, find it precious things. Problems encountered in the process of homework, have to be difficult, so to speak, but the good news is that eventually solved.This assignment also let I see, have what not understand don't understand to consult or surf the Internet query in time, as long as study earnestly, people think, hands-on practice, can't understand the knowledge, harvest quite abundant.In a word, take every chance to learn seriously, cherish every point inthe process of a second, learn the knowledge and method of most, exercise their power, this is we are in the work the most important thing you have learned, later will also benefit a lot!参考文献[1] ×××.××××××××××××××××××××××××××××××××××[2] ×××.××××××××××××××××××××××××××××××××××。