中国古代数学
中国的数学历史

中国的数学历史中国是古代文明的重要代表之一,同时也有着光辉的数学历史。
以下是有关中国数学历史的一些重要内容:1.最早的数学发展:约在公元前11世纪,中国的商代就已开始发展数学。
商代的贡献主要包括单位的建立,长度和重量的标准化以及简单的算数。
2.数学家张丘建的贡献:在东汉末年,张丘建发表的《算经》成为了数学史上的重要经典之一。
这部作品包括594个题目,主要涵盖了算术、代数、几何和三角学四个方面的内容。
3.数学家李冶的成就:唐代数学家李冶贡献了许多重要的发现,特别是在解释和应用三角函数方面做出了重要贡献。
他还发明了多种算术方法,并开发了新的几何工具。
4.算学的发展:在宋代,算学成为了学校的主要课程之一,并且开始出现了关于代数学和几何学的研究。
宋代数学家朱世杰发明了一种新的十进制计数方法,并提出若干关于除法和乘方的原则。
5.《数学九章》的出现:明代数学家秦九韶和杨辉共同编写了《数学九章》这部长篇巨著。
这本书详细介绍了代数学、几何学和三角学的各个方面。
它不仅仍然是数学研究的必读之书,而且还影响了欧洲的数学研究。
6.数学教育的革新:在清朝,数学成为了中国的高等教育的重要课程之一。
清末时期的数学家严复通过翻译数学教材的方式,将西方的数学思想引入到中国。
总的来说,中国的数学历史相当悠久而且丰富,其成就在几何、代数以及计算机等领域对现代科学技术的发展做出了积极的贡献。
虽然现代数学已经发生了很大的变化,但中国数学所开创的理性、系统、严密的数学思想仍然有着深远的影响。
102中国古代数学

整理。
•《九章算术注》对数学方法的贡献 1、开始了其独特的推理论证的尝试。 “析理以辞, 解体用图。”“开辟了我国古代数学理论化的道路” 。 2、创立了“出入相补”的方法,提出了“割圆术”, 首次将极限概念用于近似计算;引入十进制小数的记法 和负整数的知识;他试图建立球体积公式,虽然没有成 功,但为后人提供了科学的方法;3、他对勾股测量问 题进行了深入研究,在几何研究中,从少数几个原理出 发,运用逻辑手段推导出结果的方法 。提出“审辨名 分”,不但对自己提出的每一个新概念都给出界定《九 章算术注》丰富了《九章算术》的数学成果,主要表现 在算术、代数和几何诸方面。 诸如,割圆术与徽率“割 之弥细,所失弥少,割之又割,以至于不可割,则与圆 合体而无所失矣。”
七为少阳,八为少阴。揲蓍的目的,就是为了取到这四个数中的一个。
让阳数对应阴卦,阴数对应阴卦,于是数字变成了爻象。
历从 史中 渊国 算筹 中国古人称数学为算学 源古 代 的 占 筮 工 具 和 方 法 中 , 不 难 发 “数学”一词相当于我国古代的“算术” 现 中 数学一词,在中国最早出现在12世纪宋代数学家秦九韶的著作中。他国 传 指出“物生有象,象生有数,乘除推阐,务究造化之源者,是数学”。 统 数 学
§3、中国初等数学理论体系的发展 时期(东汉初年到魏晋南北朝)
从东汉初年到魏晋南北朝,随着社会生 产力的逐步提高,我国初等数学理论体系日 益完善。这一时期,涌现出一批处于世界第 一流的数学家及其专著,使初等数学理论体 系日益成熟。其中刘徽及其《九章算术注》 尤为突出。
对中国传统数学理论的研究
公元1世纪至8世纪初,改变了先前只追求算法、不研 究算理的学风,开始给出概念的定义,进行推理论证,取 得了许多世界领先的成果,同时涌现出一批杰出数学家
古代数学的雅称

古代数学的雅称一、《九章算术》——中国古代数学的瑰宝《九章算术》被誉为中国古代数学的瑰宝,它是中国古代最重要的数学著作之一,被广泛应用于农业、商业和日常生活中。
这本书以九个章节的形式,系统地总结了古代中国的数学知识,内容包括算术、代数、几何、概率等多个领域。
《九章算术》的问世对中国古代数学的发展起到了重要的推动作用,也为后世的数学研究奠定了基础。
二、黄金分割——古希腊数学的华丽之美黄金分割是古希腊数学中的一个重要概念,它是指一条线段分割成两部分,其中整条线段与较长部分之比等于较长部分与较短部分之比。
黄金分割不仅在几何学中有广泛的应用,也在建筑、艺术和音乐等领域中发挥了重要的作用。
黄金分割的美学价值被古希腊人视为至高无上的,他们将之称为“黄金比例”,并将其应用于建筑、雕塑等艺术创作中,使作品更加美观和和谐。
三、印度数学——古代数学的明珠印度数学是古代数学中的一支重要学派,其发展历史悠久,贡献巨大。
古代印度人在数学领域做出了许多重要的发现,如零的概念和十进制数制等。
他们将数学视为一门哲学,通过研究数学问题来探索人类存在的意义。
印度数学的研究成果对后世的数学研究产生了深远的影响,也为现代科学的发展打下了坚实的基础。
四、阿拉伯数字——古代数学的智慧之光阿拉伯数字是古代数学中的一项伟大发明,它是现代数字系统的基础。
阿拉伯数字是一种使用十个数字字符的数制系统,它的特点是简单易用、计算方便。
阿拉伯数字的发明极大地促进了数学的发展和商业的繁荣,也使得数学成为一门实用的学科。
至今,阿拉伯数字仍然是全球通用的数字表示方法,显示出古代数学的智慧之光。
五、欧几里得几何——古代数学的完美之作欧几里得几何是古希腊数学家欧几里得创立的一门几何学体系,被誉为古代数学的完美之作。
欧几里得几何以公理为基础,通过严密的推理和证明建立了几何学的基本定理和原理。
欧几里得几何的发展对古代数学和现代科学都产生了重要影响,成为后世数学研究的重要范式。
中国古代数学的辉煌与成就

(11)中国剩余定理。实际上就是解联立 一次同余式的方法。这个方法最早见于 《孙子算经》,1801年德国数学家高斯 (公元1777~1855)在《算术探究》中 提出这一解法,西方人以为这个方法是 世界第一,称之为“高斯定理”,但后 来发现,它比中国晚1500多年,因此为 其正名为“中国剩余定理”。
❖ 他第一次给出了区分正负数的方法:"正算赤, 负算黑。否则以邪正为异。"意思是,用红色的小棍 摆出的数表示是正数,用黑色小棍摆出的数表示是 负数。也可以用斜摆的小棍表示负数,用正摆的小 棍表示正数。
5)盈不足术。又名双假位法。最早 见于《九章算术》中的第七章。在 世界上,直到13世纪,才在欧洲出 现了同样的方法,比中国晚了1200 多年。
(2)幻方。我国最早记载幻方法的是春秋时代 的《论语》和《书经》,而在国外,幻方的出 现在公元2世纪,我国早于国外600多年。
❖ 幻方(magic square)又称为魔方、方阵, 它最早起源于我国。宋代数学家杨辉称之为 纵横图。
❖ 所谓纵横图,它是由1到n2,这n2个自 然数按照一定的规律排列成N行、N列的一个 方阵。它具有一种奇妙的性质,在各种几何 形状的表上排列适当的数字,如果对这些数 字进行简单的逻辑运算时,不论采取哪一条 路线,最后得到的和或积都是完全相同的。
❖ (6)方程术。最早出现于《九章算术》 中,其中解联立一次方程组方法,早于 印度600多年,早于欧洲1500多年。在 用矩阵排列法解线性方程组方面,我国 要比世界其他国家早1800多年。
❖ (7)最精确的圆周率“祖率”。早 于世界其他国家1000多年。
❖ (8)等积原理。又名“祖暅”原 理。保持世界纪录1100多年。
❖ (3)分数运算法则和小数。中国完整的 分数运算法则出现在《九章算术》中, 它的传本至迟在公元1世纪已出现。印度 在公元7世纪才出现了同样的法则,并被 认为是此法的“鼻祖”。我国早于印度 500多年。
中国古代数学成就

中国古代数学成就中国古代数学成就数学作为一门科学,已有悠久的历史,在中国古代,数学学派十分繁荣发展,涵盖了算术、代数、几何、数论等多个方面,有着诸多的学术成就。
下面将对中国古代数学成就进行一些探讨。
算术学算术学是中国古代最早开始发展的数学学科之一,主要涉及到整数的加减乘除及其运算规律,以及解一些实际问题的方法。
中国古代算术学随着时代的变迁,不断发展出了一系列的算法,例如公约数、倍数、分解因数、约分等等,这些算法已经成为了数学中的经典算法,并深深地影响了现代数学。
在中国古代,算盘是古代数学中最为重要的计算工具之一。
算盘在中国的历史已经有2400多年的历史,从汉代开始逐渐普及,到唐代达到了顶峰。
算盘的设计十分独特,它通过珠片上下移动以表示不同位数上的数字,大大提高了计算速度。
算盘在中国的历史上曾经是计算机的前身,将计算技术推向更高的水平。
代数学代数学在中国古代的发展历史较短,但也有不少的研究成果。
代数学主要与代数式和方程式有关,通过代数式的运算和方程的解法等技巧,来解决实际生活中的问题。
中国古代数学家代表王冰、李冶、秦九韶等建立了代数学的数学体系。
而“天元术”被称为中国古代代数学的经典之作,为后来的数学家提供了很多启示。
天元术主要是关于多元方程的分解和化简,它成功地应用在了许多生产生活中的实际问题中,例如赤道经纬、水门坎门等等。
几何学几何学也是古代中国数学的非常重要的研究领域。
中国的几何学起源于商周时期的土木之学,性质拓张的唐朝时期,几何学又有了大规模的发展。
中国古代几何学成果,包括勾股定理、《九章算术》中的测量体积问题的求解、仪器等所涉及的广告,其研究方法和实践成果在世界范围内都享有重要地位。
勾股定理,是中国数学史上的一个伟大杰作,它简单而深刻,蕴含了深奥的数学机理,而且广泛地应用于测量和设计领域。
数论数论是中国古代最为重要的数学领域之一,主要研究整数和整数运算的规律,其研究的问题包括完全平方数、质数分解、同余方程等等。
中国古代数学

祖氏父子数学成就:
据《随书•律历志》记载,祖冲之求得的π值的 取值范围为3.141592 <π<3.1415927。
由于史料中没有祖冲之推算这个值的记载,后人 只能对其推导过程做出推测,一般认为它是利用 刘徽的割圆术得到的。然而要想用此法得到上述 结果,需要从正六边形起,连续的倍增正多边形 的边数,至24 576边形。这在当时的条件下是不 易做到的。
中国初等数学理论体系的形成时期
(春秋战国时代到西汉末年)
刘徽的地位:
吴文俊:“从对数学贡献的角 度来衡量,刘徽应该与欧几里 得、阿基米德相提并论”。
梅荣照:“刘徽是整个中国古 代数学理论的奠基人”。
定位:如果按成就和创造性 的大小来论,刘徽在中国的数 学家中首推第一,另一位可以 和他相提并论的是祖冲之。
思考:2013年癸巳年,2014年是( )年?
• 3.算筹记数法和十进位值制
春秋战国之际,筹算 已得到普遍的应用,筹 算记数法已使用十进位 值制,这种记数法对世 界数学的发展是有划时 代意义的 。
一、主要的数学成就(先秦数学)
• (四)乘法口诀: 从出土的文物来看,春秋战国时期的文献中已 有乘法口诀。次序与现代不同,由“九九八十 一”开始。因此又称乘法口诀或乘法表为“九 九”,这种次序流行了一千六、七百年,直到 南宋初才改为现今的顺序。
一、主要的数学成就(先秦数学)
• (五)周易的八卦和64卦:
《周易》是我国古代专讲卜筮(bu’shi)的书, 约成书于殷商时期 ,包含数学内容最丰富的著作。 《易经》中利用爻卦的变化预测吉凶,分别用 “—”与“--”表示阳爻和阴爻,构成八卦、六 十四别卦。《周易》由《易经》和《易传》两部 分组成。自汉代开始,许多算学家都热衷于将算 法与《周易》相联系。
中国古代数学的特点

中国古代数学的特点
x
一、中国古代数学的特点
中国古代数学是中国古代文化的重要组成部分,也是中国古代文明的骨干。
它不仅在中国古代文化中发挥着重要作用,而且也为世界数学发展做出了重要的贡献。
中国古代数学的特点主要表现在以下几个方面:
1、数理化的特点
中国古代数学以数学和天文学、地理学等科学的结合为特征,强调“数理化”。
它将数学、天文学、地理学和技术应用结合起来从而促进了古代科学的发展。
比如,《九章算术》将数学、天文学、地理学结合起来,对古代科学的发展发挥了重要作用。
2、计算技术的特点
中国古代数学以计算技术的发展为特征,古代中国书法、计算机等科学技术都是由古代数学家们研究和创造出来的。
比如,古代中国的书法技术是古代数学家研究并开发出来的,他们的书法技术可以用来解决很多计算问题,对古代计算技术有重要的贡献。
3、几何学的特点
中国古代数学的几何学是中国古代科技文化的重要组成部分,它不仅通过计算来研究几何学中的形状和线段,而且也使用几何学来研究古代文字、文字编码和文字数学等,为古代科技文化的发展做出了重要贡献。
4、文献的特点
中国古代数学的文献记载了我国古代数学的辉煌历史,古代中国的数学书籍包括《九章算术》、《白乐天算经》、《张邱建算经》等等。
这些书籍记载了古代中国数学的研究成果,也对古代中国科技文化的发展起到了重要的作用。
总之,中国古代数学的特点是多方面的,它涵盖了从数理化、计算技术,几何学到文献记录的多种特点,为古代中国科技文化发展作出了重要贡献。
数学史--第三讲 古代中国的数学--课件

3.1 《周髀算经》和《九章算术》
3.1.1 《周髀算经》
作者不祥,成书不晚于公元前2世纪西汉时期。 内容涉及数学和天文知识,有的可以追溯到西周(前 11世纪-前8世纪)。 最突出的成就:勾股定理 记载西周开国时期周公与大夫商高讨论勾股测量的对 话,商高答周公问时提到“勾广三,股修四,径隅五”, 这是勾股定理的特例。卷上另一处叙述周公后人荣方与 陈子(约前6、7世纪)的对话中,包含了勾股定理的一 般形式:
3.3 宋元数学
“宋元四大家” 杨辉、秦九韶、李治和朱世杰 3.3.1 从“贾宪三角”到“正负开方”术 宋元数学最突出的成就之一是高次方程求数值解,这是《九章算 术》中开方术(开平方和开立方)的继承和发展。 目前有明确记载保留下来的最早的高次开方法是北宋时期的贾宪 创造的“增乘开方法”。 贾宪的“增乘开方法”原则上可以用于求解高次方程,但贾宪本 人并没有认识到一点。南宋数学家秦九韶在他的代表著作《数学 九章》(1247年)中将增乘开方法推广到了高次方程的一般情形, 他将自己的方法称为“正负开方术”。
第三讲 古代中国数学
• 古代中国是世界四大文明古国之一。在商朝的甲骨 文中已经使用完整的十进制记数(约公元前1600年 左右)。至迟到春秋战国时期,又开始出现严格的 十进位值制筹算记数(约公元前500年)。 • 关于几何学,据《史记·夏本纪》记载,夏禹治水时 已使用了规、矩、准、绳等作图与测量工具。从 战国时代的著作《考工记》中也可以看到与手工制 作有关的实用几何知识。
“。。。以日下为勾,日高为股,勾股各自乘,并而开 方除之,得邪至日。” 《周髀算经》中还讨论了测量“日高”的方法。 图 3.1 • 中国数学史上最先完成勾股定理证明的数学家是公元3 世纪三国时期的赵爽。赵爽注《周髀算经》,运用面 积出入相补证明了勾股定理。赵爽还证明了《周髀算 经》中的日高公式。 图3.2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 筹算
―运筹于帷幄之中,决胜于千里之外” “筹”——筹策,小竹棍; “算筹”(counting rods)——用于计算的 小竹棍,算器 记数规则:纵式筹码,横式筹码 空位:□ 〇 0
敦煌纸卷中的“九九表”(AD900)
三 《九章算术》与刘徽
琢磨推敲细思量, 说方道圆话短长。 若把《原本》比《算术》, 此中翘楚是《九章》。 ——严敦杰
宋元:960-1368AD
中国古代数学的辉煌时代 秦九韶:《数书九章》1247 杨辉: 《杨辉算法》1275 李冶: 《测圆海镜》1248 朱世杰:《四元玉鉴》1303
明代:1368-1644AD
吴敬:《九章算法比类大全》1450 商业数学—珠算 程大位:《算法统宗》1592
刘徽:《九章算术注》(264AD) 祖冲之:3.1415926<π<3.1415927
刘 徽(造像)
祖冲之(造像)
隋唐:589-960AD
国家数学教育 国子监:明算科 李淳风:编纂“十部算经” 周髀算经、九章算术、海岛算经 缀术(唐朝佚) 数术记遗(南宋补) 孙子算经、张丘建算经、夏侯阳算经 五曹算经、五经算术 缉古算经
―算术”乃社稷民生之大用!
昔者周公问于商高曰:窃闻乎大夫善数也。请问 古者包牺立周天历度,夫天不可阶而升,地不可 得尺寸而度。请问数安从出? 商高曰:数之法出于圆方。圆出于方,方出于矩, 矩出于九九八十一。故折矩以为句广三,股修四, 径隅五。既方之,外半其一矩,环而共盘,得成 三四五。两矩共长二十有五,是谓积矩。故禹之 所以治天下者,此数之所生也。 周公曰:大哉言数。 …… ---《周髀算经》
方田 与田亩丈量有关的面积、 分数问题; 粟米 以谷物交换为例的各类比 例问题; 衰分 按比例分配和等差数列问 题; 少广 由田亩计算引出的分数、 开方问题; 商功 与土方工程有关的体积问 题; 均输 与摊派劳役和税收有关的 比例问题; 盈不足 由两次假设求解复杂算 术问题的特殊算法; “方程” 一次线性方程组问题; 勾股 勾股定理及其应用。
1 《九章算术》
成书年代 “往者暴秦焚书,经术散坏。自时厥后,汉北平侯 张苍、大司农中丞耿寿昌皆以善算命世。苍等因 旧文之遗残,各称删补。故校其目与古或异,所 论者多近语也。” ——刘徽:《九章算术注》 张苍,北平侯,250—152BC,秦汉两朝官员 耿寿昌,大司农,73BC, 由此推测《九章算术》初成于秦,修订于汉。
西方数学的第一次传入
1607 徐光启、利玛窦合译 《几何原本》 1609 李之藻、利玛窦合译 《同文算指》
徐光启与利玛窦
清代:1665-1910AD
中国古典数学渐次衰微 乾嘉时期 《数理精蕴》100卷 梅文鼎 年希尧、明安图、汪莱、李锐、戴煦
西方数学的再次传入
《几何原本》1857,李善兰,伟烈亚利 又译《代数术》《代微积拾级》 《代数术》 《微积溯源》《三角数理》 1874,华蘅芳, 傅兰雅 《决疑数学》1876,华蘅芳,傅兰雅 《形学备旨》1884,刘永锡、狄考文 《代数备旨》1891,邹立文、狄考文 《八线备旨》1893,谢洪赉、潘慎文
第三讲
中国古代数学
概 述
石器时代(4000BC)
—仰韶文化· 西安半坡遗址 陶器上的刻划符号—文字的起源
人面陶盆中 的几何图案
几何图案 —对称
三角形数?
夏商周:青铜时代 —1600BC
数字符号的形成
甲骨文
金文
甲骨文中的数 字符号
伏羲执矩,女娲执规:数学崇拜? 东汉画像石(山东武梁祠)
近代数学在中国的兴起
1912 北京大学数学系-中国第一个大学数学系: 冯祖荀(日本京都帝国大学) 1920 清华大学“算学系”:郑之蕃(美国康 奈尔大学) 1920 南开大学数学系:姜立夫(哈佛大学) …… 1928 上海交通大学数学系 1935 中国数学会—上海交大图书馆成立大会
最初筹码中没有“零”的符号,先是用空位表示,后来为 了避免运算过程中出错,借用古书缺字符号“□”,而 “□”的书写很自然的演化为○,这一记号在宋元算书的 演算中广泛使用。
意义
―用十个记号来表示一切的数,每个记号不但有绝对 的值,而且有位置的值,这种巧妙的方法出自印度。 这是一个深远而又重要的思想,它今天看来如此简 单,以致我们忽视了它的真正伟绩。但恰恰是它的 简单性以及对一切计算都提供了极大的方便,才使 我们的算术在一切有用的发明中列在首位;而当我 们想到它竟逃过了古代最伟大的两位人物阿基米德 和阿波罗尼斯的天才思想的关注时,我们更感到这 成就的伟大了。” ——拉普拉斯
Байду номын сангаас
春秋战国:400BC
“九九口诀”—齐恒公招贤纳士 《墨经》:圜,一中同长也; 平,同高也; 《庄子》:“一尺之棰” 《考工记》:分数算法
秦汉:221BC-220AD
初等数学体系的形成 《算数书》 《周髀算经》 《九章算术》
魏晋南北朝:220-588AD
初等数学理论的发展
甲骨文数字:十进位位值制的萌芽
1983年陕西旬阳出土的西汉象牙算筹
10进位位值制记数法
纵式筹码
横式筹码
记数规则
―凡算之法,先识其位。一纵十横,百立千僵; 千十相望,万百相当” (《孙子算经》)
“满六以上,五在上方,六不积算,五不单张” (《夏侯阳算经》) 例如:752836
用空位符号“□”表示零,后演变为“○”。
一 算筹与筹算
1 数字的起源 从“数”谈起
數 数
《易 · 系辞传》:“上古结绳而治,后世圣 人易之以书契”
郑玄(东汉):“事大,大结其绳;事小, 小结其绳。结之多少,随物众寡。
(左)基普(quipu) 南美印加(Inca)部落用来记事的结绳,秘鲁 利马Larco博物馆馆藏。 (右) “基普”上的绳结,上面一结5道,表示500;中间的结8道, 表示80;下面的结为6道,表示6。这样就表示了586。
2
注释者
刘徽,魏晋间人,263AD年注释《九章算术》 “徽幼习《九章》,长再详览。观阴阳之割裂, 总算术之根源,探赜之暇,遂悟其意。是以敢 竭顽鲁,采其所见,为之作注。” ——刘徽:《九章算术注》