高考数学复习 第九章 高考中的圆锥曲线问题
2024年新高考版数学专题1_9.5 圆锥曲线的综合问题(分层集训)

解析 (1)设动点P的坐标为(x,y),因为| PF | = 5 ,
d5
所以
(x 1)2 y2
=
5 ,即5[(x+1)2+y2]=|x+5|2,整理得 x2 + y2 =1.所以动点P的
| x5|
5
54
轨迹方程为 x2 + y2 =1.
54
(2)设M(x1,y1),N(x2,y2),由(1)可得点A的坐标为(0,-2),故直线AM:y=
AC
·BC
=1,
则点C的轨迹为 ( )
A.圆 B.椭圆 C.抛物线 D.直线
答案 A
3.(2023届贵州遵义新高考协作体入学质量监测,8)已知圆C的方程为(x-1)2
+y2=16,B(-1,0),A为圆C上任意一点,若点P为线段AB的垂直平分线与直线
AC的交点,则点P的轨迹方程为 ( )
A. x2 + y2 =1
2 2
+
y2 b2
=1(a>b>0)的离心率e=
2 ,四
2
个顶点组成的菱形的面积为8 2 ,O为坐标原点.
(1)求椭圆E的方程;
(2)过☉O:x2+y2= 8
上任意点P作☉O的切线l与椭圆E交于点M,N,求证:
PM
·
3
PN
为定值.
解析 (1)由题意得2ab=8 2 ,e= c = 2 ,a2=b2+c2,
2
3
6
,
0
,∴
PM
=
0,
2
3
6
,
PN
=
0,
2
6 3
,
∴
高考数学一轮复习 第九章 平面解析几何 第9讲 圆锥曲线的综合问题 第2课时 定点、定值、探索性问题

第2课时 定点、定值、探索性问题圆锥曲线中的定点问题(师生共研)(2020·某某模拟)过抛物线C :y 2=4x 的焦点F 且斜率为k 的直线l 交抛物线C于A ,B 两点,且|AB |=8.(1)求直线l 的方程;(2)若A 关于x 轴的对称点为D ,求证:直线BD 过定点,并求出该点的坐标. 【解】 (1)由y 2=4x 知焦点F 的坐标为(1,0),则直线l 的方程为y =k (x -1), 代入抛物线方程y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0, 由题意知k ≠0,且Δ=[-(2k 2+4)]2-4k 2·k 2=16(k 2+1)>0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2k 2+4k2,x 1x 2=1.由抛物线的弦长公式知|AB |=x 1+x 2+2=8,则2k 2+4k2=6,即k 2=1,解得k =±1.所以直线l 的方程为y =±(x -1).(2)由(1)及抛物线的对称性知,D 点的坐标为(x 1,-y 1), 直线BD 的斜率k BD =y 2+y 1x 2-x 1=y 2+y 1y 224-y 214=4y 2-y 1, 所以直线BD 的方程为y +y 1=4y 2-y 1(x -x 1), 即(y 2-y 1)y +y 2y 1-y 21=4x -4x 1.因为y 21=4x 1,y 22=4x 2,x 1x 2=1,所以(y 1y 2)2=16x 1x 2=16, 即y 1y 2=-4(y 1,y 2异号).所以直线BD 的方程为4(x +1)+(y 1-y 2)y =0, 对任意y 1,y 2∈R ,有⎩⎪⎨⎪⎧x +1=0,y =0,解得⎩⎪⎨⎪⎧x =-1,y =0,即直线BD 恒过定点(-1,0).求解圆锥曲线中定点问题的两种方法(1)特殊推理法:先从特殊情况入手,求出定点,再证明定点与变量无关.(2)直接推理法:①选择一个参数建立方程,一般将题目中给出的曲线方程(包含直线方程)中的常数k 当成变量,将变量x ,y 当成常数,将原方程转化为kf (x ,y )+g (x ,y )=0的形式;②根据曲线(包含直线)过定点时与参数没有关系(即方程对参数的任意值都成立),得到方程组⎩⎪⎨⎪⎧f (x ,y )=0g (x ,y )=0;③以②中方程组的解为坐标的点就是曲线所过的定点,若定点具备一定的限制条件,可以特殊解决.(2020·某某模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)上动点P 到两焦点F 1,F 2的距离之和为4,当点P 运动到椭圆C 的一个顶点时,直线PF 1恰与以原点O 为圆心,以椭圆C 的离心率e 为半径的圆相切.(1)求椭圆C 的方程;(2)设椭圆C 的左、右顶点分别为A ,B ,若直线PA ,PB 分别交直线x =6于不同的两点M ,N ,则以线段MN 为直径的圆是否过定点?若是,请求出该定点的坐标;若不是,请说明理由.解:(1)由椭圆的定义可知2a =4,解得a =2.若点P 运动到椭圆的左、右顶点时,直线PF 1与圆一定相交,则点P 只能在椭圆的上、下顶点,不妨设点P 运动到椭圆的上顶点(0,b ),F 1为左焦点(-c ,0),则直线PF 1:bx -cy +bc =0.由题意得原点O 到直线PF 1的距离等于椭圆C 的离心率e , 所以bc b 2+c 2=ca, 又a 2=b 2+c 2,故b 2=1.故椭圆C 的方程为x 24+y 2=1.(2)由题意知,直线PA ,PB 的斜率存在且都不为0, 设直线PA 的斜率为k ,点P (x 0,y 0),x 0≠±2, 又A (-2,0),B (2,0),所以k PA ·k PB =k ·k PB =y 0x 0+2·y 0x 0-2=y 20x 20-4=1-x 204x 20-4=-14,则k PB =-14k.所以直线PA 的方程为y =k (x +2), 令x =6,得y =8k ,则M (6,8k ); 直线PB 的方程为y =-14k (x -2),令x =6,得y =-1k,则N ⎝ ⎛⎭⎪⎫6,-1k .因为8k ·⎝ ⎛⎭⎪⎫-1k =-8<0,所以以线段MN 为直径的圆与x 轴交于两点,设点G ,H ,并设MN 与x 轴的交点为K , 在以线段MN 为直径的圆中应用相交弦定理,得|GK |·|HK |=|MK |·|NK |=|8k |·⎪⎪⎪⎪⎪⎪-1k =8,因为|GK |=|HK |,所以|GK |=|HK |=22,所以以线段MN 为直径的圆恒过点(6-22,0),点(6+22,0).圆锥曲线中的定值问题(多维探究) 角度一 定线段的长已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (1,0),且经过点P ⎝ ⎛⎭⎪⎫12,354.(1)求椭圆C 的方程;(2)若直线l 与椭圆C 相切,过点F 作FQ ⊥l ,垂足为Q ,求证:|OQ |为定值(其中O 为坐标原点).【解】 (1)由题意可知椭圆C 的左焦点为F ′(-1,0),则半焦距c =1. 由椭圆定义可知 2a =|PF |+|PF ′|=⎝ ⎛⎭⎪⎫1-122+⎝ ⎛⎭⎪⎫0-3542+⎝ ⎛⎭⎪⎫-1-122+⎝ ⎛⎭⎪⎫0-3542=4, 所以a =2,b 2=a 2-c 2=3,所以椭圆C 的方程为x 24+y 23=1. (2)证明:①当直线l 的斜率不存在时,l 的方程为x =±2,点Q 的坐标为(-2,0)或(2,0),此时|OQ |=2;②当直线l 的斜率为0时,l 的方程为y =±3,点Q 的坐标为(1,-3)或(1,3), 此时|OQ |=2;③当直线l 的斜率存在且不为0时,设直线l 的方程为y =kx +m (k ≠0). 因为FQ ⊥l ,所以直线FQ 的方程为y =-1k(x -1).由⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1消去y ,可得(3+4k 2)x 2+8kmx +4m 2-12=0.因为直线l 与椭圆C 相切,所以Δ=(8km )2-4×(3+4k 2)×(4m 2-12)=0, 整理得m 2=4k 2+3.(*)由⎩⎪⎨⎪⎧y =kx +m ,y =-1k (x -1)得Q ⎝ ⎛⎭⎪⎫1-km k 2+1,k +m k 2+1, 所以|OQ |=⎝ ⎛⎭⎪⎫1-km k 2+12+⎝ ⎛⎭⎪⎫k +m k 2+12=1+k 2m 2+k 2+m2(k 2+1)2, 将(*)式代入上式,得|OQ |=4(k 4+2k 2+1)(k 2+1)2=2. 综上所述,|OQ |为定值,且定值为2.直接探求,变量代换探求圆锥曲线中的定线段的长的问题,一般用直接求解法,即先利用弦长公式把要探求的线段表示出来,然后利用题中的条件(如直线与曲线相切等)得到弦长表达式中的相关量之间的关系式,把这个关系式代入弦长表达式中,化简可得弦长为定值.角度二 定几何图形的面积(2020·某某模拟)如图,设点A ,B 的坐标分别为(-3,0),(3,0),直线AP ,BP 相交于点P ,且它们的斜率之积为-23.(1)求点P 的轨迹方程;(2)设点P 的轨迹为C ,点M ,N 是轨迹C 上不同于A 、B 的两点,且满足AP ∥OM ,BP ∥ON ,求证:△MON 的面积为定值.【解】 (1)设点P 的坐标为(x ,y ),由题意得,k AP ·k BP =y x +3·y x -3=-23(x ≠±3),化简得,点P 的轨迹方程为x 23+y 22=1(x ≠±3). (2)证明:由题意可知,M ,N 是轨迹C 上不同于A 、B 的两点,且AP ∥OM ,BP ∥ON , 则直线OM ,ON 的斜率必存在且不为0,k OM ·k ON =k AP ·k BP =-23.①当直线MN 的斜率为0时,设M (x 0,y 0),N (-x 0,y 0),则⎩⎪⎨⎪⎧y 20x 20=23,x 203+y202=1,得⎩⎪⎨⎪⎧|x 0|=62,|y 0|=1, 所以S △MON =12|y 0||2x 0|=62.②当直线MN 的斜率不为0时,设直线MN 的方程为x =my +t ,代入x 23+y 22=1,得(3+2m 2)y 2+4mty +2t 2-6=0,(*)设M (x 1,y 1),N (x 2,y 2),则y 1,y 2是方程(*)的两根, 所以y 1+y 2=-4mt 3+2m 2,y 1y 2=2t 2-63+2m2.又k OM ·k ON =y 1y 2x 1x 2=y 1y 2m 2y 1y 2+mt (y 1+y 2)+t 2=2t 2-63t 2-6m 2,所以2t 2-63t 2-6m 2=-23,即2t 2=2m 2+3,满足Δ>0.又S △MON =12|t ||y 1-y 2|=|t |-24t 2+48m 2+722(3+2m 2), 所以S △MON =26t 24t 2=62. 综上,△MON 的面积为定值,且定值为62.探求圆锥曲线中几何图形的面积的定值问题,一般用直接求解法,即可先利用三角形面积公式(如果是其他凸多边形,可分割成若干个三角形分别求解)把要探求的几何图形的面积表示出来,然后利用题中的条件得到几何图形的面积表达式中的相关量之间的关系式,把这个关系式代入几何图形的面积表达式中,化简即可.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦点为F 1,F 2,离心率为12,点P 为其上一动点,且三角形PF 1F 2面积的最大值为3,O 为坐标原点.(1)求椭圆C 的方程;(2)若点M ,N 为C 上的两个动点,求常数m ,使OM →·ON →=m 时,点O 到直线MN 的距离为定值,求这个定值.解:(1)依题意知⎩⎪⎨⎪⎧c 2=a 2-b 2,bc =3,c a =12,解得⎩⎨⎧a =2,b =3,所以椭圆C 的方程为x 24+y 23=1.(2)设M (x 1,y 1),N (x 2,y 2),则x 1x 2+y 1y 2=m ,当直线MN 的斜率存在时,设其方程为y =kx +n ,则点O 到直线MN 的距离d =|n |k 2+1=n 2k 2+1,联立,得⎩⎪⎨⎪⎧3x 2+4y 2=12,y =kx +n ,消去y ,得(4k 2+3)x 2+8knx +4n 2-12=0,由Δ>0得4k 2-n2+3>0,则x 1+x 2=-8kn 4k 2+3,x 1x 2=4n 2-124k 2+3,所以x 1x 2+(kx 1+n )(kx 2+n )=(k 2+1)x 1x 2+kn (x 1+x 2)+n 2=m ,整理得7n2k 2+1=12+m (4k 2+3)k 2+1.因为d =n 2k 2+1为常数,则m =0,d =127=2217,此时7n 2k 2+1=12满足Δ>0. 当MN ⊥x 轴时,由m =0得k OM =±1,联立,得⎩⎪⎨⎪⎧3x 2+4y 2=12,y =±x ,消去y ,得x 2=127,点O 到直线MN 的距离d =|x |=2217亦成立.综上,当m =0时,点O 到直线MN 的距离为定值,这个定值是2217.圆锥曲线中的探索性问题(师生共研)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点分别为F 1,F 2,短轴的一个端点为P ,△PF 1F 2内切圆的半径为b3,设过点F 2的直线l 被椭圆C 截得的线段为RS ,当l ⊥x 轴时,|RS |=3.(1)求椭圆C 的标准方程;(2)在x 轴上是否存在一点T ,使得当l 变化时,总有TS 与TR 所在直线关于x 轴对称?若存在,请求出点T 的坐标;若不存在,请说明理由.【解】 (1)由内切圆的性质,得12×2c ×b =12×(2a +2c )×b 3,得c a =12.将x =c 代入x 2a 2+y 2b 2=1,得y =±b 2a ,所以2b2a=3.又a 2=b 2+c 2,所以a =2,b =3, 故椭圆C 的标准方程为x 24+y 23=1.(2)当直线l 垂直于x 轴时,显然x 轴上任意一点T 都满足TS 与TR 所在直线关于x 轴对称.当直线l 不垂直于x 轴时,假设存在T (t ,0)满足条件,设l 的方程为y =k (x -1),R (x 1,y 1),S (x 2,y 2).联立方程,得⎩⎪⎨⎪⎧y =k (x -1),3x 2+4y 2-12=0,得(3+4k 2)x 2-8k 2x +4k 2-12=0, 由根与系数的关系得⎩⎪⎨⎪⎧x 1+x 2=8k23+4k2,x 1x 2=4k 2-123+4k2①,其中Δ>0恒成立, 由TS 与TR 所在直线关于x 轴对称,得k TS +k TR =0(显然TS ,TR 的斜率存在), 即y 1x 1-t +y 2x 2-t=0 ②.因为R ,S 两点在直线y =k (x -1)上, 所以y 1=k (x 1-1),y 2=k (x 2-1),代入②得k (x 1-1)(x 2-t )+k (x 2-1)(x 1-t )(x 1-t )(x 2-t )=k [2x 1x 2-(t +1)(x 1+x 2)+2t ](x 1-t )(x 2-t )=0,即2x 1x 2-(t +1)(x 1+x 2)+2t =0 ③,将①代入③得8k 2-24-(t +1)8k 2+2t (3+4k 2)3+4k 2=6t -243+4k 2=0 ④,则t =4,综上所述,存在T (4,0),使得当l 变化时,总有TS 与TR 所在直线关于x 轴对称.存在性问题的求解策略解决存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件. (3)当要讨论的量能够确定时,可先确定,再证明结论符合题意.已知圆O :x 2+y 2=4,点F (1,0),P 为平面内一动点,以线段FP 为直径的圆内切于圆O ,设动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)M ,N 是曲线C 上的动点,且直线MN 经过定点⎝ ⎛⎭⎪⎫0,12,问在y 轴上是否存在定点Q ,使得∠MQO =∠NQO ,若存在,请求出定点Q ,若不存在,请说明理由.解:(1)设PF 的中点为S ,切点为T ,连接OS ,ST ,则|OS |+|SF |=|OT |=2,取F 关于y 轴的对称点F ′,连接F ′P ,所以|PF ′|=2|OS |,故|F ′P |+|FP |=2(|OS |+|SF |)=4,所以点P 的轨迹是以F ′,F 分别为左、右焦点,且长轴长为4的椭圆, 则曲线C 的方程为x 24+y 23=1.(2)假设存在满足题意的定点Q ,设Q (0,m ),当直线MN 的斜率存在时,设直线MN 的方程为y =kx +12,M (x 1,y 1),N (x 2,y 2).联立,得⎩⎪⎨⎪⎧x 24+y 23=1,y =kx +12,消去y ,得(3+4k 2)x 2+4kx -11=0,则Δ>0,x 1+x 2=-4k3+4k 2,x 1x 2=-113+4k2, 由∠MQO =∠NQO ,得直线MQ 与NQ 的斜率之和为零,易知x 1或x 2等于0时,不满足题意,故y 1-m x 1+y 2-mx 2=kx 1+12-m x 1+kx 2+12-m x 2=2kx 1x 2+⎝ ⎛⎭⎪⎫12-m (x 1+x 2)x 1x 2=0,即2kx 1x 2+⎝ ⎛⎭⎪⎫12-m (x 1+x 2)=2k ·-113+4k 2+⎝ ⎛⎭⎪⎫12-m ·-4k 3+4k 2=4k (m -6)3+4k 2=0,当k ≠0时,m =6,所以存在定点(0,6),使得∠MQO =∠NQO ;当k =0时,定点(0,6)也符合题意.易知当直线MN 的斜率不存在时,定点(0,6)也符合题意. 综上,存在定点(0,6),使得∠MQO =∠NQO .解析几何减少运算量的常见技巧技巧一 巧用平面几何性质已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A.13 B .12 C.23D .34【解析】 设OE 的中点为N ,如图,因为MF ∥OE ,所以有ON MF =a a +c ,MF OE =a -ca.又因为OE =2ON ,所以有12=aa +c ·a -c a ,解得e =c a =13,故选A.【答案】 A此题也可以用解析法解决,但有一定的计算量,巧用三角形的相似比可简化计算. 技巧二 设而不求,整体代换对于直线与圆锥曲线相交所产生的中点弦问题,涉及求中点弦所在直线的方程,或弦的中点的轨迹方程的问题时,常常可以用“点差法”求解.已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B两点.若AB 的中点坐标为M (1,-1),则E 的标准方程为( )A.x 245+y 236=1 B .x 236+y 227=1 C.x 227+y 218=1 D .x 218+y 29=1 【解析】 通解:设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=2,y 1+y 2=-2,⎩⎪⎨⎪⎧x 21a 2+y 21b2=1,①x 22a 2+y22b 2=1,②①-②得(x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2)b2=0, 所以k AB =y 1-y 2x 1-x 2=-b 2(x 1+x 2)a 2(y 1+y 2)=b 2a 2.又k AB =0+13-1=12,所以b 2a 2=12.又9=c 2=a 2-b 2,解得b 2=9,a 2=18, 所以椭圆E 的标准方程为x 218+y 29=1.优解:由k AB ·k OM =-b 2a 2得,-1-01-3×-11=-b 2a2得,a 2=2b 2,又a 2-b 2=9,所以a 2=18,b 2=9,所以椭圆E 的标准方程为x 218+y 29=1.【答案】 D本题设出A ,B 两点的坐标,却不求出A ,B 两点的坐标,巧妙地表达出直线AB 的斜率,通过将直线AB 的斜率“算两次”建立几何量之间的关系,从而快速解决问题.技巧三 巧用“根与系数的关系”,化繁为简某些涉及线段长度关系的问题可以通过解方程、求坐标,用距离公式计算长度的方法来解;但也可以利用一元二次方程,使相关的点的同名坐标为方程的根,由根与系数的关系求出两根间的关系或有关线段长度间的关系.后者往往计算量小,解题过程简捷.已知椭圆x 24+y 2=1的左顶点为A ,过A 作两条互相垂直的弦AM ,AN 交椭圆M ,N两点.(1)当直线AM 的斜率为1时,求点M 的坐标;(2)当直线AM 的斜率变化时,直线MN 是否过x 轴上的一定点?若过定点,请给出证明,并求出该定点;若不过定点,请说明理由.【解】 (1)直线AM 的斜率为1时,直线AM 的方程为y =x +2,代入椭圆方程并化简得5x 2+16x +12=0.解得x 1=-2,x 2=-65,所以M ⎝ ⎛⎭⎪⎫-65,45.(2)设直线AM 的斜率为k ,直线AM 的方程为y =k (x +2),联立方程⎩⎪⎨⎪⎧y =k (x +2),x 24+y 2=1, 化简得(1+4k 2)x 2+16k 2x +16k 2-4=0. 则x A +x M =-16k21+4k 2,又x A =-2,则x M =-x A -16k 21+4k 2=2-16k 21+4k 2=2-8k21+4k 2.同理,可得x N =2k 2-8k 2+4.由(1)知若存在定点,则此点必为P ⎝ ⎛⎭⎪⎫-65,0. 证明如下:因为k MP =y Mx M +65=k ⎝ ⎛⎭⎪⎫2-8k 21+4k 2+22-8k 21+4k 2+65=5k4-4k 2, 同理可计算得k PN =5k4-4k2. 所以直线MN 过x 轴上的一定点P ⎝ ⎛⎭⎪⎫-65,0.本例在第(2)问中可应用根与系数的关系求出x M =2-8k21+4k 2,这体现了整体思想.这是解决解析几何问题时常用的方法,简单易懂,通过设而不求,大大降低了运算量.技巧四 巧妙“换元”减少运算量变量换元的关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而将非标准型问题转化为标准型问题,将复杂问题简单化.变量换元法常用于求解复合函数的值域、三角函数的化简或求值等问题.如图,已知椭圆C 的离心率为32,点A ,B ,F 分别为椭圆的右顶点、上顶点和右焦点,且S △ABF =1-32.(1)求椭圆C 的方程;(2)已知直线l :y =kx +m 与圆O :x 2+y 2=1相切,若直线l 与椭圆C 交于M ,N 两点,求△OMN 面积的最大值.【解】 (1)由已知椭圆的焦点在x 轴上,设其方程为x 2a 2+y 2b 2=1(a >b >0),则A (a ,0),B (0,b ),F (c ,0)(c =a 2-b 2).由已知可得e 2=a 2-b 2a 2=34,所以a 2=4b 2,即a =2b ,可得c =3b ①.S △AFB =12×|AF |×|OB |=12(a -c )b =1-32②.将①代入②,得12(2b -3b )b =1-32,解得b =1,故a =2,c = 3.所以椭圆C 的方程为x 24+y 2=1.(2)圆O 的圆心为坐标原点,半径r =1,由直线l :y =kx +m 与圆O :x 2+y 2=1相切,得|m |1+k2=1,故有m 2=1+k 2③. 由⎩⎪⎨⎪⎧x 24+y 2=1,y =kx +m ,消去y ,得⎝ ⎛⎭⎪⎫14+k 2x 2+2kmx +m 2-1=0.由题可知k ≠0,即(1+4k 2)x 2+8kmx +4(m 2-1)=0, 所以Δ=16(4k 2-m 2+1)=48k 2>0.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.所以|x 1-x 2|2=(x 1+x 2)2-4x 1x 2=⎝ ⎛⎭⎪⎫-8km 4k 2+12-4×4m 2-44k 2+1=16(4k 2-m 2+1)(4k 2+1)2④. 将③代入④中,得|x 1-x 2|2=48k2(4k 2+1)2,故|x 1-x 2|=43|k |4k 2+1.所以|MN |=1+k 2|x 1-x 2|=1+k 2×43|k |4k 2+1=43k 2(k 2+1)4k 2+1. 故△OMN 的面积S =12|MN |×1=12×43k 2(k 2+1)4k 2+1×1=23k 2(k 2+1)4k 2+1. 令t =4k 2+1,则t ≥1,k 2=t -14,代入上式,得S =23×t -14⎝ ⎛⎭⎪⎫t -14+1t2=32(t -1)(t +3)t2=32t 2+2t -3t 2=32-3t 2+2t+1=32-1t 2+23t +13=32-⎝ ⎛⎭⎪⎫1t -132+49, 所以当t =3,即4k 2+1=3,解得k =±22时,S 取得最大值,且最大值为32×49=1.破解此类题的关键:一是利用已知条件,建立关于参数的方程,解方程,求出参数的值,二是通过变量换元法将所给函数转化为值域容易确定的另一函数,求得其值域,从而求得原函数的值域,形如y =ax +b ±cx +d (a ,b ,c ,d 均为常数,且ac ≠0)的函数常用此法求解,但在换元时一定要注意新元的取值X 围,以保证等价转化,这样目标函数的值域才不会发生变化.[基础题组练]1.已知直线l 与双曲线x 24-y 2=1相切于点P ,l 与双曲线的两条渐近线交于M ,N 两点,则OM →·ON →的值为( )A .3B .4C .5D .与P 的位置有关解析:选A.依题意,设点P (x 0,y 0),M (x 1,y 1),N (x 2,y 2),其中x 20-4y 20=4,则直线l 的方程是x 0x 4-y 0y =1,题中双曲线的两条渐近线方程为y =±12x .①当y 0=0时,直线l 的方程是x =2或x =-2.由⎩⎪⎨⎪⎧x =2x 24-y 2=0,得⎩⎪⎨⎪⎧x =2y =±1,此时OM →·ON →=(2,-1)·(2,1)=4-1=3,同理可得当直线l 的方程是x =-2时,OM →·ON →=3.②当y 0≠0时,直线l 的方程是y =14y 0(x 0x -4).由⎩⎪⎨⎪⎧y =14y 0(x 0x -4)x24-y 2=0,得(4y 2-x 20)x2+8x 0x -16=0(*),又x 20-4y 20=4,因此(*)即是-4x 2+8x 0x -16=0,x 2-2x 0x +4=0,x 1x 2=4,OM →·ON →=x 1x 2+y 1y 2=x 1x 2-14x 1x 2=34x 1x 2=3.综上所述,OM →·ON →=3,故选A.2.已知抛物线y 2=2px (p >0)的焦点为F ,△ABC 的顶点都在抛物线上,且满足FA →+FB →+FC →=0,则1k AB +1k AC +1k BC=________.解析:设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),F ⎝ ⎛⎭⎪⎫p 2,0,由FA →+FB →=-FC →,得y 1+y 2+y 3=0.因为k AB =y 2-y 1x 2-x 1=2p y 1+y 2,所以k AC =2p y 1+y 3,k BC =2p y 2+y 3,所以1k AB +1k AC +1k BC =y 1+y 22p +y 3+y 12p+y 2+y 32p=0. 答案:03.(2020·某某模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2.点M在椭圆C 上滑动,若△MF 1F 2的面积取得最大值4时,有且仅有2个不同的点M 使得△MF 1F 2为直角三角形.(1)求椭圆C 的方程;(2)过点P (0,1)的直线l 与椭圆C 分别相交于A ,B 两点,与x 轴交于点Q .设QA →=λPA →,QB →=μPB →,求证:λ+μ为定值,并求该定值.解:(1)由对称性知,点M 在短轴端点时,△MF 1F 2为直角三角形且∠F 1MF 2=90°,且S △MF 1F 2=4,所以b =c 且S =12·2c ·b =bc=4,解得b =c =2,a 2=b 2+c 2=8, 所以椭圆C 的方程为x 28+y 24=1.(2)证明:显然直线l 的斜率不为0,设直线l :x =t (y -1),联立⎩⎪⎨⎪⎧x 28+y 24=1,x =t (y -1),消去x ,得(t 2+2)y 2-2t 2y +t 2-8=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2t 2t 2+2,y 1y 2=t 2-8t 2+2.令y =0,则x =-t ,所以Q (-t ,0), 因为QA →=λPA →,所以y 1=λ(y 1-1), 所以λ=y 1y 1-1.因为QB →=μPB →,所以y 2=μ(y 2-1),所以μ=y 2y 2-1.所以λ+μ=y 1y 1-1+y 2y 2-1=2y 1y 2-(y 1+y 2)y 1y 2-(y 1+y 2)+1=83. 4.(2020·某某某某联考)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,下顶点为A ,O 为坐标原点,点O 到直线AF 2的距离为22,△AF 1F 2为等腰直角三角形. (1)求椭圆C 的标准方程;(2)直线l 与椭圆C 分别相交于M ,N 两点,若直线AM 与直线AN 的斜率之和为2,证明:直线l 恒过定点,并求出该定点的坐标.解:(1)由题意可知,直线AF 2的方程为x c +y-b=1, 即-bx +cy +bc =0,则bc b 2+c 2=bc a=22.因为△AF 1F 2为等腰直角三角形,所以b =c , 又a 2=b 2+c 2,可得a =2,b =1,c =1, 所以椭圆C 的标准方程为x 22+y 2=1.(2)证明:由(1)知A (0,-1).当直线l 的斜率存在时,设直线l 的方程为y =kx +t (t ≠±1), 代入x 22+y 2=1,得(1+2k 2)x 2+4ktx +2t 2-2=0,所以Δ=16k 2t 2-4(1+2k 2)(2t 2-2)>0,即t 2-2k 2<1. 设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-4kt1+2k 2,x 1x 2=2t 2-21+2k2.因为直线AM 与直线AN 的斜率之和为2, 所以k AM +k AN =y 1+1x 1+y 2+1x 2=kx 1+t +1x 1+kx 2+t +1x 2=2k +(t +1)(x 1+x 2)x 1x 2=2k -(t +1)·4kt2t 2-2=2, 整理得t =1-k .所以直线l 的方程为y =kx +t =kx +1-k =k (x -1)+1,显然直线y =k (x -1)+1经过定点(1,1).当直线l 的斜率不存在时,设直线l 的方程为x =m .因为直线AM 与直线AN 的斜率之和为2,设M (m ,n ),则N (m ,-n ), 所以k AM +k AN =n +1m +-n +1m =2m=2,解得m =1, 此时直线l 的方程为x =1,显然直线x =1也经过该定点(1,1). 综上,直线l 恒过点(1,1).[综合题组练]1.(2020·某某五市十校联考)已知动圆C 过定点F (1,0),且与定直线x =-1相切. (1)求动圆圆心C 的轨迹E 的方程;(2)过点M (-2,0)的任一条直线l 与轨迹E 分别相交于不同的两点P ,Q ,试探究在x 轴上是否存在定点N (异于点M ),使得∠QNM +∠PNM =π?若存在,求点N 的坐标;若不存在,说明理由.解:(1)法一:由题意知,动圆圆心C 到定点F (1,0)的距离与其到定直线x =-1的距离相等,又由抛物线的定义,可得动圆圆心C 的轨迹是以F (1,0)为焦点,x =-1为准线的抛物线,其中p =2.所以动圆圆心C 的轨迹E 的方程为y 2=4x .法二:设动圆圆心C (x ,y ),由题意知(x -1)2+y 2=|x +1|, 化简得y 2=4x ,即动圆圆心C 的轨迹E 的方程为y 2=4x . (2)假设存在点N (x 0,0),满足题设条件.由∠QNM +∠PNM =π可知,直线PN 与QN 的斜率互为相反数,即k PN +k QN =0.① 由题意知直线PQ 的斜率必存在且不为0,设直线PQ 的方程为x =my -2.联立⎩⎪⎨⎪⎧y 2=4x ,x =my -2,得y 2-4my +8=0.由Δ=(-4m )2-4×8>0,得m >2或m <- 2. 设P (x 1,y 1),Q (x 2,y 2),则y 1+y 2=4m ,y 1y 2=8. 由①式得k PN +k QN =y 1x 1-x 0+y 2x 2-x 0=y 1(x 2-x 0)+y 2(x 1-x 0)(x 1-x 0)(x 2-x 0)=0,所以y 1(x 2-x 0)+y 2(x 1-x 0)=0, 即y 1x 2+y 2x 1-x 0(y 1+y 2)=0.消去x 1,x 2,得14y 1y 22+14y 2y 21-x 0(y 1+y 2)=0,14y 1y 2(y 1+y 2)-x 0(y 1+y 2)=0, 因为y 1+y 2≠0,所以x 0=14y 1y 2=2,所以存在点N (2,0).使得∠QNM +∠PNM =π.2.(2020·某某某某教学质量监测)已知抛物线C :x 2=2py (p >0)的焦点为F ,过点F 的直线分别交抛物线于A ,B 两点.(1)若以AB 为直径的圆的方程为(x -2)2+(y -3)2=16,求抛物线C 的标准方程; (2)过点A ,B 分别作抛物线的切线l 1,l 2,证明:l 1,l 2的交点在定直线上. 解:(1)设AB 中点为M ,A 到准线的距离为d 1,B 到准线的距离为d 2,M 到准线的距离为d ,则d =y M +p2.由抛物线的定义可知,d 1=|AF |,d 2=|BF |,所以d 1+d 2=|AB |=8, 由梯形中位线可得d =d 1+d 22=4,所以y M +p2=4.又y M =3,所以3+p2=4,可得p =2,所以抛物线C 的标准方程为x 2=4y .(2)证明:设A (x 1,y 1),B (x 2,y 2),由x 2=2py ,得y =x 22p ,则y ′=xp,所以直线l 1的方程为y -y 1=x 1p (x -x 1),直线l 2的方程为y -y 2=x 2p(x -x 2),联立得x =x 1+x 22,y =x 1x 22p, 即直线l 1,l 2的交点坐标为⎝⎛⎭⎪⎫x 1+x 22,x 1x 22p .因为AB 过焦点F ⎝ ⎛⎭⎪⎫0,p 2,由题可知直线AB 的斜率存在,故可设直线AB 方程为y -p2=kx ,代入抛物线x 2=2py 中,得x 2-2pkx -p 2=0,所以x 1x 2=-p 2,y =x 1x 22p =-p 22p =-p2,p 2上.所以l1,l2的交点在定直线y=-。
高考数学复习第九章解析几何9.8.1直线与圆锥曲线文市赛课公开课一等奖省优质课获奖课件

由xy22=+-y2m= 1 x1+,b
消去 y,得
12+m12x2-2mbx+b2-1=0.
39/43
因为直线 y=-m1 x+b 与椭圆x22+y2=1 有两个不同的交点,
所以 Δ=-2b2+2+m42>0.①
将线段 AB 中点 Mm22m+b2,mm2+2b2代入直线方程 y=mx+12解 得 b=-m22m+22.②
6/43
[典题 1] (1)[2017·甘肃兰州检测]若直线 mx+ny=4 和
圆 O:x2+y2=4 没有交点,则过点(m,n)的直线与椭圆x92+y42
=1 的交点个数为( B )
A.至多一个 B.2
C.1
D.0
7/43
[解析] ∵直线 mx+ny=4 和圆 O:x2+y2=4 没有交点,∴
解得 k=-12.
31/43
故此弦所在的直线方程为 y-1=-12(x-1), 即 x+2y-3=0. 解法二:易知此弦所在直线的斜率存在,所以设斜率为 k, A(x1,y1),B(x2,y2), 则xx441222+ +yy222221= =11, ,① ② ①-②得x1+x24x1-x2+y1+y22y1-y2=0,
24/43
(1)求椭圆 C 的方程; (2)当△AMN 的面积为 310时,求 k 的值.
a=2, 解:(1)由题意得ac= 22,
a2=b2+c2, 解得 b= 2,所以椭圆 C 的方程为x42+y22=1.
y=kx-1, (2)由x42+y22=1,
25/43
得(1+2k2)x2-4k2x+2k2-4=0.
35/43
[解析] 设 A(x1,y1),B(x2,y2), 抛物线方程为 y2=2px, 则yy1222==22ppxx21., 两式相减可得 2p=yx11- -yx22×(y1+y2) =kAB×2=2,解得 p=1, ∴抛物线 C 的方程为 y2=2x.
2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)

题型一:弦的垂直平分线问题题型二:动弦过定点的问题题型三:过已知曲线上定点的弦的问题题型四:向量问题题型五:面积问题题型六:弦或弦长为定值、最值问题题型七:直线问题圆锥曲线九大题型归纳题型八:对称问题题型九:存在性问题:(存在点,存在直线y =kx +m ,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆)题型一:弦的垂直平分线问题1过点T (-1,0)作直线l 与曲线N :y 2=x 交于A 、B 两点,在x 轴上是否存在一点E (x 0,0),使得ΔABE 是等边三角形,若存在,求出x 0;若不存在,请说明理由。
2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)【涉及到弦的垂直平分线问题】这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。
有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。
2例题分析1:已知抛物线y =-x 2+3上存在关于直线x +y =0对称的相异两点A 、B ,则|AB |等于题型二:动弦过定点的问题1已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为32,且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。
(I )求椭圆的方程;(II )若直线l :x =t (t >2)与x 轴交于点T ,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭圆的焦点?并证明你的结论题型三:过已知曲线上定点的弦的问题1已知点A 、B 、C 是椭圆E :x 2a 2+y 2b 2=1(a >b >0)上的三点,其中点A (23,0)是椭圆的右顶点,直线BC 过椭圆的中心O ,且AC ∙BC =0,BC =2AC ,如图。
圆锥曲线问题在高考的常见题型及解题技巧

圆锥曲线问题在高考的常见题型及解题技巧圆锥曲线作为高等数学中的重要内容,在高考中常常出现,并且是考察学生数学运算能力和理解能力的重要方面。
圆锥曲线问题在高考中的常见题型有:直线与圆锥曲线的交点问题、圆锥曲线的参数方程问题、圆锥曲线的性质和应用问题等。
下面我们来一一介绍这些常见题型的解题技巧。
一、直线与圆锥曲线的交点问题这是圆锥曲线问题中最常见的一个题型,题目通常要求求出直线与圆锥曲线的交点坐标。
解题技巧如下:1. 分析题目给出的直线和圆锥曲线,确定直线方程和圆锥曲线方程;2. 将直线方程代入圆锥曲线方程中,解方程得出交点坐标;3. 特别要注意,当圆锥曲线为椭圆或双曲线时,有两个交点,需要分别求解;4. 当圆锥曲线为抛物线时,还需要注意直线的位置与抛物线的开口方向。
二、圆锥曲线的参数方程问题圆锥曲线的参数方程问题通常考查学生对参数方程的理解和应用能力,解答这类问题的关键在于用参数代换替换变量。
解题技巧如下:1. 给出的圆锥曲线通常可以用参数方程表示,将已知的参数方程代入题目求解;2. 注意参数方程的参数范围,有时需要根据范围重新调整参数;3. 对于给出的参数方程,需要将参数代换替换变量,进而得出答案。
三、圆锥曲线的性质和应用问题圆锥曲线的性质和应用问题通常要求学生掌握圆锥曲线的基本性质,以及如何应用这些性质解决实际问题。
解题技巧如下:1. 需要牢记圆锥曲线的基本性质,例如椭圆的焦点、双曲线的渐近线等;2. 掌握各种类型圆锥曲线的标准方程和参数方程;3. 对于应用问题,需要在掌握了基本性质的前提下,将问题转化为数学模型,进而解决。
以上就是圆锥曲线问题在高考中的常见题型及解题技巧,希望对大家备战高考有所帮助。
在复习期间,建议大家多做练习题,加深对圆锥曲线知识的理解,提高解题能力。
多思考,灵活运用各种解题技巧,相信大家一定能在高考中取得好成绩!。
2024年高考数学专项复习圆锥曲线中的“设而不求”(解析版)

圆锥曲线中的“设而不求”考情分析研究曲线方程及由方程研究曲线的有关性质问题,是圆锥曲线中的一个重要内容,其特点是代数的运算较为繁杂,许多学生会想而不善于运算,往往是列出式子后“望式兴叹”.在解决圆锥曲线问题时若能恰当使用“设而不求”的策略,可避免盲目推演造成的无效运算,从而达到准确、快速的解题效果.、解题秘籍(一)“设而不求”的实质及注意事项1.设而不求是解析几何解题的基本手段,是比较特殊的一种思想方法,其实质是整体结构意义上的变式和整体思想的应用.设而不求的灵魂是通过科学的手段使运算量最大限度地减少,通过设出相应的参数,利用题设条件加以巧妙转化,以参数为过渡,设而不求.2.在运用圆锥曲线问题中的设而不求方法技巧时,需要做到:①凡是不必直接计算就能更简洁地解决问题的,都尽可能实施“设而不求”;②“设而不求”不可避免地要设参、消参,而设参的原则是宜少不宜多.3. “设而不求”最常见的类型一是涉及动点问题,设出动点坐标,在运算过程中动点坐标通过四则运算消去,或利用根与系数的关系转化为关于其他参数的问题;二是涉及动直线问题,把斜率或截距作为参数,设出直线的方程,再通过运算消去.1(2023届山西省临汾市等联考高三上学期期中)已知椭圆C :x 2a2+y 2b 2=1a >b >0 的长轴长为4,F 1,F 2为C 的左、右焦点,点P x 0,y 0 y 0≠0 在C 上运动,且cos ∠F 1PF 2的最小值为12.连接PF 1,PF 2并延长分别交椭圆C 于M ,N 两点.(1)求C 的方程;(2)证明:S △OPF 1S △OMF1+S△OPN S △OF 2N 为定值.2024年高考数学专项复习圆锥曲线中的“设而不求”(解析版)2(2023届江苏省连云港市高三上学期10月联考)已知椭圆中有两顶点为A -1,0 ,B 1,0 ,一个焦点为F 0,1 .(1)若直线l 过点F 且与椭圆交于C ,D 两点,当CD =322时,求直线l 的方程;(2)若直线l 过点T 0,t t ≠0 且与椭圆交于C ,D 两点,并与x 轴交于点P ,直线AD 与直线BC 交于点Q ,当点P 异A ,B 两点时,试问OP ⋅OQ是否是定值?若是,请求出此定值,若不是,请说明理由.(二)设点的坐标在涉及直线与圆锥曲线位置关系时,如何避免求交点,简化运算,是处理这类问题的关键,求解时常常设出点的坐标,设坐标方法即通过设一些辅助点的坐标,然后以坐标为参数,利用点的特性(条件)建立关系(方程).显然,这里的坐标只是为寻找关系而作为“搭桥”用的,在具体解题中是通过“设而不求”与“整体消元”解题策略进行的.3(2023届湖南省郴州市高三上学期质量监测)已知椭圆E :x 2a 2+y 2b 2=1a >b >0 的离心率为22,过坐标原点O 的直线交椭圆E 于P ,A 两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC .当C 为椭圆的右焦点时,△PAC 的面积为2.(1)求椭圆E 的方程;(2)若B 为AC 的延长线与椭圆E 的交点,试问:∠APB 是否为定值,若是,求出这个定值;若不是,说明理由.4(2023届江苏省南通市如皋市高三上学期期中)作斜率为32的直线l 与椭圆C :x 24+y 29=1交于A ,B 两点,且P 2,322在直线l 的左上方.(1)当直线l 与椭圆C 有两个公共点时,证明直线l 与椭圆C 截得的线段AB 的中点在一条直线上;(2)证明:△PAB 的内切圆的圆心在一条定直线上.(三)设参数在求解与动直线有关的定点、定值或最值与范围问题时常设直线方程,因为动直线方程不确定,需要引入参数,这时常引入斜率、截距作为参数.5(2022届湖南省益阳市高三上学期月考)已知椭圆C :x 2a 2+y 2b 2=1a >b >0 的左右焦点分别为F 1,F 2,其离心率为32,P 为椭圆C 上一动点,△F 1PF 2面积的最大值为3.(1)求椭圆C 的方程;(2)过右焦点F 2的直线l 与椭圆C 交于A ,B 两点,试问:在x 轴上是否存在定点Q ,使得QA ⋅QB为定值?若存在,求出点Q 的坐标;若不存在,请说明理由.(四)中点弦问题中的设而不求与中点弦有个的问题一般是设出弦端点坐标P x 1,y1,Q x2,y2代入圆锥曲线方程作差,得到关于y1-y2x1-x2,x1+x2,y1+y2的关系式,再结合题中条件求解.6中心在原点的双曲线E焦点在x轴上且焦距为4,请从下面3个条件中选择1个补全条件,并完成后面问题:①该曲线经过点A2,3;②该曲线的渐近线与圆x2-8x+y2+4=0相切;③点P在该双曲线上,F1、F2为该双曲线的焦点,当点P的纵坐标为32时,恰好PF1⊥PF2.(1)求双曲线E的标准方程;(2)过定点Q1,1能否作直线l,使l与此双曲线相交于Q1、Q2两点,且Q是弦Q1Q2的中点?若存在,求出l的方程;若不存在,说明理由.三、跟踪检测1(2023届河南省洛平许济高三上学期质量检测)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的右焦点为F ,离心率为12,上顶点为0,3 .(1)求椭圆C 的方程;(2)过点F 的直线l 与椭圆C 交于P ,Q 两点,与y 轴交于点M ,若MP =λPF ,MQ =μQF,判断λ+μ是否为定值?并说明理由.2(2023届江西省南昌市金太阳高三上学期10月联考)如图,长轴长为4的椭圆C :x 2a 2+y 2b 2=1a >b >0 的左顶点为A ,过原点O 的直线(与坐标轴不重合)与椭圆C 交于P ,Q 两点,直线PA ,QA 与y 轴分别交于M ,N 两点,当直线PQ 的斜率为22时,PQ =23.(1)求椭圆C 的方程.(2)试问是否存在定点T ,使得∠MTN =90°恒成立?若存在,求出定点T 的坐标;若不存在,说明理由.3(2023届黑龙江省大庆铁人中学高三上学期月考)已知椭圆C:x2a2+y2b2=1a>b>0的离心率为12,椭圆的短轴端点与双曲线y22-x2=1的焦点重合,过点P4,0且不垂直于x轴的直线l与椭圆相交于A,B两点.(1)求椭圆C的方程;(2)若点B关于x轴的对称点为点E,证明:直线AE与x轴交于定点.4(2023届江西省赣州厚德外国语学校、丰城中学高三上学期10月联考)已知双曲线C:x2a2-y2b2=1经过点2,-3,两条渐近线的夹角为60°,直线l交双曲线于A,B两点.(1)求双曲线C的方程.(2)若动直线l经过双曲线的右焦点F2,是否存在x轴上的定点M m,0,使得以线段AB为直径的圆恒过M点?若存在,求实数m的值;若不存在,请说明理由.5(2023届内蒙古自治区赤峰市高三上学期月考)平面内一动点P到定直线x=4的距离,是它与定点F1,0的距离的两倍.(1)求点P的轨迹方程C;(2)过F点作两条互相垂直的直线l1,l2(直线l1不与x轴垂直).其中,直线l1交曲线C于A,B两点,直线l2交曲线C于E,N两点,直线l2与直线x=m m>2交于点M,若直线MB,MF,MA的斜率k MB,k MF,k MA构成等差数列,求m的值.6(2023届福建省福州华侨中学高三上学期考试)在平面直角坐标系xOy中,已知点F(2,0),直线l:x=12,点M到l的距离为d,若点M满足|MF|=2d,记M的轨迹为C.(1)求C的方程;(2)过点F(2,0)且斜率不为0的直线与C交于P,Q两点,设A(-1,0),证明:以P,Q为直径的圆经过点A.7(2023届河南省安阳市高三上学期10月月考)已知椭圆M1:x2a2+y2b2=1a>b>0的左、右焦点分别为F1,F2,F1F2=2,面积为487的正方形ABCD的顶点都在M1上.(1)求M1的方程;(2)已知P为椭圆M2:x22a2+y22b2=1上一点,过点P作M1的两条切线l1和l2,若l1,l2的斜率分别为k1,k2,求证:k1k2为定值.8(2023届浙江省浙里卷天下高三上学期10月测试)已知F1,F2分别为椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点,过点F1(-1,0)且与x轴不重合的直线与椭圆C交于A,B两点,△ABF2的周长为8.(1)若△ABF2的面积为1227,求直线AB的方程;(2)过A,B两点分别作直线x=-4的垂线,垂足分别是E,F,证明:直线EB与AF交于定点.9(2023届江苏省南京市六校高三上学期10月联考)已知双曲线Γ:x 2a 2-y 2b 2=1(a >0,b >0)的焦距为4,且过点P 2,33(1)求双曲线Γ的方程;(2)过双曲线Γ的左焦点F 分别作斜率为k 1,k 2的两直线l 1与l 2,直线l 1交双曲线Γ于A ,B 两点,直线l 2交双曲线Γ于C ,D 两点,设M ,N 分别为AB 与CD 的中点,若k 1⋅k 2=-1,试求△OMN 与△FMN 的面积之比.10(2022届北京市海淀区高三上学期期末)已知点A 0,-1 在椭圆C :x 23+y 2b 2=1上.(1)求椭圆C 的方程和离心率;(2)设直线l :y =k x -1 (其中k ≠1)与椭圆C 交于不同两点E ,F ,直线AE ,AF 分别交直线x =3于点M ,N .当△AMN 的面积为33时,求k 的值.11(2022届天津市第二中学高三上学期12月月考)已知椭圆x2a2+y2b2=1a>b>0的长轴长是4,且过点B0,1.(1)求椭圆的标准方程;(2)直线l:y=k x+2交椭圆于P,Q两点,若点B始终在以PQ为直径的圆内,求实数k的取值范围.12(2022届广东省华南师范大学附属中学高三上学期1月模拟)已知椭圆C1:x2a2+y2b2=1(a>b>0)的右顶点与抛物线C2:y2=2px(p>0)的焦点重合,椭圆C1的离心率为12,过椭圆C1的右焦点F且垂直于x轴的直线截抛物线所得弦的长度为42.(1)求椭圆C1和抛物线C2的方程.(2)过点A(-4,0)的直线l与椭圆C1交于M,N两点,点M关于x轴的对称点为E.当直线l绕点A旋转时,直线EN是否经过一定点?请判断并证明你的结论.13(2022届河北省高三上学期省级联测)已知椭圆P焦点分别是F1(0,-3)和F2(0,3),直线y= 3与椭圆P相交所得的弦长为1.(1)求椭圆P的标准方程;(2)将椭圆P绕原点逆时针旋转90°得到椭圆Q,在椭圆Q上存在A,B,C三点,且坐标原点为△ABC的重心,求△ABC的面积.14(2022届广东省佛山市高三上学期期末)已知双曲线C的渐近线方程为y=±33x,且过点P(3,2).(1)求C的方程;(2)设Q(1,0),直线x=t(t∈R)不经过P点且与C相交于A,B两点,若直线BQ与C交于另一点D,求证:直线AD过定点.15(2022届江苏省盐城市、南京市高三上学期1月模拟)设双曲线C:x2a2-y2b2=1(a,b>0)的右顶点为A,虚轴长为2,两准线间的距离为26 3.(1)求双曲线C的方程;(2)设动直线l与双曲线C交于P,Q两点,已知AP⊥AQ,设点A到动直线l的距离为d,求d的最大值.16(2022届浙江省普通高中强基联盟高三上学期统测)如图,已知椭圆C1:x24+y23=1,椭圆C2:y29+x24=1,A-2,0、B2,0.P为椭圆C2上动点且在第一象限,直线PA、PB分别交椭圆C1于E、F两点,连接EF交x轴于Q点.过B点作BH交椭圆C1于G,且BH⎳PA.(1)证明:k BF⋅k BG为定值;(2)证明直线GF过定点,并求出该定点;(3)若记P、Q两点的横坐标分别为x P、x Q,证明:x P x Q为定值.17(2022届湖北省新高考联考协作体高三上学期12月联考)已知圆O :x 2+y 2=2,椭圆C :x 2a 2+y 2b2=1a >b >2 的离心率为22,P 是C 上的一点,A 是圆O 上的一点,PA 的最大值为6+2.(1)求椭圆C 的方程;(2)点M 是C 上异于P 的一点,PM 与圆O 相切于点N ,证明:PO 2=PM ⋅PN .18已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的实轴长为8,离心率e =54.(1)求双曲线C 的方程;(2)直线l 与双曲线C 相交于P ,Q 两点,弦PQ 的中点坐标为A 8,3 ,求直线l 的方程.圆锥曲线中的“设而不求”考情分析研究曲线方程及由方程研究曲线的有关性质问题,是圆锥曲线中的一个重要内容,其特点是代数的运算较为繁杂,许多学生会想而不善于运算,往往是列出式子后“望式兴叹”.在解决圆锥曲线问题时若能恰当使用“设而不求”的策略,可避免盲目推演造成的无效运算,从而达到准确、快速的解题效果.、解题秘籍(一)“设而不求”的实质及注意事项1.设而不求是解析几何解题的基本手段,是比较特殊的一种思想方法,其实质是整体结构意义上的变式和整体思想的应用.设而不求的灵魂是通过科学的手段使运算量最大限度地减少,通过设出相应的参数,利用题设条件加以巧妙转化,以参数为过渡,设而不求.2.在运用圆锥曲线问题中的设而不求方法技巧时,需要做到:①凡是不必直接计算就能更简洁地解决问题的,都尽可能实施“设而不求”;②“设而不求”不可避免地要设参、消参,而设参的原则是宜少不宜多.3. “设而不求”最常见的类型一是涉及动点问题,设出动点坐标,在运算过程中动点坐标通过四则运算消去,或利用根与系数的关系转化为关于其他参数的问题;二是涉及动直线问题,把斜率或截距作为参数,设出直线的方程,再通过运算消去.1(2023届山西省临汾市等联考高三上学期期中)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的长轴长为4,F 1,F 2为C 的左、右焦点,点P x 0,y 0 y 0≠0 在C 上运动,且cos ∠F 1PF 2的最小值为12.连接PF 1,PF 2并延长分别交椭圆C 于M ,N 两点.(1)求C 的方程;(2)证明:S △OPF 1S △OMF 1+S △OPN S △OF 2N为定值.【解析】(1)由题意得a =2,设PF 1 ,PF 2 的长分别为m ,n ,m +n =2a =4则cos ∠F 1PF 2=m 2+n 2-4c 22mn =m +n 2-4c 2-2mn 2mn =2b 2mn-1≥2b 2m +n 22-1=2b 2a2-1,当且仅当m=n 时取等号,从而2b 2a 2-1=12,得b 2a 2=34,∴b 2=3,则椭圆的标准方程为x 24+y 23=1;(2)由(1)得F 1-1,0 ,F 21,0 ,设M x 1,y 1 ,N x 2,y 2 ,设直线PM 的方程为x =x 0+1y 0y -1,直线PN 的方程为x =x 0-1y 0y +1,由x =x 0+1y 0y -1x 24+y 23=1,得3x 0+1 2y 02+4 y 2-6x 0+1 y 0y -9=0,则y 0y 1=-93x 0+1 2y 02+4=-9y 023x 0+1 2+4y 02=-9y 023x 02+4y 02+6x 0+3=-3y 022x 0+5,∴y 1=-3y 02x 0+5,同理可得y 2=-3y 05-2x 0,所以S △OPF 1S △OMF 1+S △OPN S △OF 2N =12OF 1 y 0 12OF 1 y 1 +12OF 2y 0 +y 2 12OF 2 y 2 =-y 0y 1+y 0y 2+1=-y 0-3y 02x 0+5+y 0-3y 05-2x 0+1=133.所以S △OPF 1S △OMF 1+S △OPN S △OF 2N 为定值133.2(2023届江苏省连云港市高三上学期10月联考)已知椭圆中有两顶点为A -1,0 ,B 1,0 ,一个焦点为F 0,1 .(1)若直线l 过点F 且与椭圆交于C ,D 两点,当CD =322时,求直线l 的方程;(2)若直线l 过点T 0,t t ≠0 且与椭圆交于C ,D 两点,并与x 轴交于点P ,直线AD 与直线BC 交于点Q ,当点P 异A ,B 两点时,试问OP ⋅OQ是否是定值?若是,请求出此定值,若不是,请说明理由.【解析】(1)∵椭圆的焦点在y 轴上,设椭圆的标准方程为y 2a 2+x 2b 2=1(a >b >0),由已知得b =1,c =1,所以a =2,椭圆的方程为y 22+x 2=1,当直线l 与x 轴垂直时与题意不符,设直线l 的方程为y =kx +1,C x 1,y 1 ,D x 2,y 2 ,将直线l 的方程代入椭圆的方程化简得k 2+2 x 2+2kx -1=0,则x 1+x 2=-2k k 2+2,x 1⋅x 2=-1k 2+2,∴CD =1+k 2⋅x 1+x 22-4x 1x 2=1+k 2⋅-2k k 2+22+4⋅1k 2+2=22(k 2+1)k 2+2=322,解得k =±2.∴直线l 的方程为y =±2x +1;(2)当l ⊥x 轴时,AC ⎳BD ,不符合题意,当l 与x 轴不垂直时,设l :y =kx +t ,则P -tk ,0 ,设C x 1,y 1 ,D x 2,y 2 ,联立方程组y =kx +tx 2+y 22=1 得2+k 2 x 2+2ktx +t 2-2=0,∴x 1+x 2=-2kt 2+k 2,x 1x 2=t 2-22+k 2,又直线AD :y =y 2x 2+1(x +1),直线BC :y =y 1x 1-1(x -1),由y =y2x 2+1(x +1)y =y 1x 1-1(x -1) 可得y 2x 2+1(x +1)=y 1x 1-1(x -1),即kx 2+t x 2+1(x +1)=kx 1+t x 1-1(x -1),kx 2+t x 1-1 (x +1)=kx 1+t x 2+1 (x -1),kx 1x 2-kx 2+tx 1-t x +1 =kx 1x 2+kx 1+tx 2+t x -1 ,k x 1+x 2 +t x 2-x 1 +2t x =2kx 1x 2-k x 2-x 1 +t x 1+x 2 ,k ⋅-2kt 2+k 2+t x 2-x 1 +2t x =2k ⋅t 2-22+k 2-k x 2-x 1 +t ⋅-2kt 2+k 2,4t 2+k 2+t x 2-x 1 x =-4k 2+k 2-k x 2-x 1 ,即t 42+k 2+x 2-x 1 x =-k 42+k 2+x 2-x 1 ,得x =-k t,∴Q 点坐标为Q -kt,y Q ,∴OP ⋅OQ =-t k ,0 ⋅-k t ,y Q =-t k-kt +0⋅y Q =1,所以OP ⋅OQ=1为定值.(二)设点的坐标在涉及直线与圆锥曲线位置关系时,如何避免求交点,简化运算,是处理这类问题的关键,求解时常常设出点的坐标,设坐标方法即通过设一些辅助点的坐标,然后以坐标为参数,利用点的特性(条件)建立关系(方程).显然,这里的坐标只是为寻找关系而作为“搭桥”用的,在具体解题中是通过“设而不求”与“整体消元”解题策略进行的.3(2023届湖南省郴州市高三上学期质量监测)已知椭圆E :x 2a 2+y 2b 2=1a >b >0 的离心率为22,过坐标原点O 的直线交椭圆E 于P ,A 两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC .当C 为椭圆的右焦点时,△PAC 的面积为2.(1)求椭圆E 的方程;(2)若B 为AC 的延长线与椭圆E 的交点,试问:∠APB 是否为定值,若是,求出这个定值;若不是,说明理由.【解析】(1)∵椭圆离心率e =c a =22,∴c 2=12a 2,则b 2=a 2-c 2=12a 2,当C 为椭圆右焦点时,PC =b 2a =12a ;∵S △PAC =2S △POC =2×12c ⋅12a =12ac =24a 2=2,解得:a 2=4,∴b 2=2,∴椭圆E 的方程为:x 24+y 22=1.(2)由题意可设直线AP :y =kx k >0 ,P x 0,kx 0 ,B x 1,y 1 ,则A -x 0,-kx 0 ,C x 0,0 ,∴k AC =kx 0x 0+x0=k2,∴直线AC :y =k2x -x 0 ;由y =k 2x -x 0x24+y22=1得:k 2+2 x 2-2k 2x 0x +k 2x 20-8=0,∴-x 0+x 1=2k 2x 0k 2+2,则x 1=2k 2x 0k 2+2+x 0,∴y 1=k 2x 1-x 0 =k 22k 2x 0k 2+2+x 0-x 0=k 3x 0k 2+2,∴B 2k 2x 0k 2+2+x 0,k 3x 0k 2+2;∴PB =2k 2x 0k 2+2,-2kx 0k 2+2,又PA =-2x 0,-2kx 0 ,∴PA ⋅PB =-2x 0⋅2k 2x 0k 2+2+-2kx 0 ⋅-2kx 0k 2+2=0,则PA ⊥PB ,∴∠APB 为定值90°.4(2023届江苏省南通市如皋市高三上学期期中)作斜率为32的直线l 与椭圆C :x 24+y 29=1交于A ,B 两点,且P 2,322在直线l 的左上方.(1)当直线l 与椭圆C 有两个公共点时,证明直线l 与椭圆C 截得的线段AB 的中点在一条直线上;(2)证明:△PAB 的内切圆的圆心在一条定直线上.【解析】(1)设A x 1,y 1 ,B x 2,y 2 ,AB 中点坐标为x 0,y 0 ,AB :y =32x +m 所以有x 0=x 1+x 22y 0=y 1+y 22,联立x 24+y 29=1y =32x +m,得9x 2+6mx +2m 2-18=0,得Δ=6m 2-4×92m 2-18 >0,得m 2<18,由韦达定理可知x 1+x 2=-2m 3,x 1x 2=2m 2-189,所以y 1+y 2=32x 1+m +32x 2+m =32x 1+x 2 +2m =m ,所以x 0=-m 3y 0=m 2,化简得:y 0=-32x 0,所以线段AB 的中点在直线y =-32x 上.(2)由题可知PA ,PB 的斜率分别为k PA =y 1-322x 1-2,k PB =y 2-322x 2-2,所以k PA +k PB =y 1-322x 1-2+y 2-322x 2-2=y 1-322 x 2-2 +y 2-322 x 1-2x 1x 2-2x 1+x 1 +2,因为y 1=32x 1+m ,y 2=32x 2+m 得k PA +k PB =3x 1x 2+m -32 x 1+x 1 -22m +6x 1x 2-2x 1+x 1 +2由(1)可知x 1+x 2=-2m 3,x 1x 2=2m 2-189,所以k PA +k PB =32m 2-189 +m -32 -23m -22m +62m 2-189-2-23m+2=0,又因为P 2,322在直线l 的左上方,所以∠APB 的角平分线与y 轴平行,所以△PAB 的内切圆的圆心在x =2这条直线上.(三)设参数在求解与动直线有关的定点、定值或最值与范围问题时常设直线方程,因为动直线方程不确定,需要引入参数,这时常引入斜率、截距作为参数.5(2022届湖南省益阳市高三上学期月考)已知椭圆C :x 2a 2+y 2b 2=1a >b >0 的左右焦点分别为F 1,F 2,其离心率为32,P 为椭圆C 上一动点,△F 1PF 2面积的最大值为3.(1)求椭圆C 的方程;(2)过右焦点F 2的直线l 与椭圆C 交于A ,B 两点,试问:在x 轴上是否存在定点Q ,使得QA ⋅QB为定值?若存在,求出点Q 的坐标;若不存在,请说明理由.【解析】(1)设椭圆C 的半焦距为c ,因离心率为32,则c a =32,由椭圆性质知,椭圆短轴的端点到直线F 1F 2的距离最大,则有S △F 1PF 2max =12⋅2c ⋅b =bc ,于是得bc =3,又a 2=b 2+c 2,联立解得a =2,b =1,c =3,所以椭圆C 的方程为:x 24+y 2=1.(2)由(1)知,点F 23,0 ,当直线斜率存在时,不妨设l :y =k (x -3),A x 1,y 1 ,B x 2,y 2 ,由y =k (x -3)x 2+4y 2=4消去y 并整理得,(1+4k 2)x 2-83k 2x +12k 2-4=0,x 1+x 2=83k 21+4k 2,x 1x 2=12k 2-41+4k2,假定在x 轴上存在定点Q 满足条件,设点Q (t ,0),则QA ⋅QB=(x 1-t )(x 2-t )+y 1y 2=x 1x 2-t (x 1+x 2)+t 2+k 2(x 1-3)(x 2-3)=(1+k 2)x 1x 2-(3k 2+t )(x 1+x 2)+t 2+3k 2=(1+k 2)⋅12k 2-41+4k 2-(3k 2+t )⋅83k 21+4k 2+t 2+3k2=(4t 2-83t +11)k 2+t 2-41+4k 2,当t 2-4=4t 2-83t +114,即t =938时,QA ⋅QB =t 2-4=-1364,当直线l 斜率不存在时,直线l :x =-3与椭圆C 交于点A ,B ,由对称性不妨令A 3,12 ,B 3,-12,当点Q 坐标为938,0时,QA =-38,12 ,QB =-38,-12 ,QA ⋅QB =-38,12⋅-38,-12 =-1364,所以存在定点Q 938,0,使得QA ⋅QB 为定值-1364.(四)中点弦问题中的设而不求与中点弦有个的问题一般是设出弦端点坐标P x 1,y 1 ,Q x 2,y 2 代入圆锥曲线方程作差,得到关于y 1-y 2x 1-x 2,x 1+x 2,y 1+y 2的关系式,再结合题中条件求解.6中心在原点的双曲线E 焦点在x 轴上且焦距为4,请从下面3个条件中选择1个补全条件,并完成后面问题:①该曲线经过点A 2,3 ;②该曲线的渐近线与圆x 2-8x +y 2+4=0相切;③点P 在该双曲线上,F 1、F 2为该双曲线的焦点,当点P 的纵坐标为32时,恰好PF 1⊥PF 2.(1)求双曲线E 的标准方程;(2)过定点Q 1,1 能否作直线l ,使l 与此双曲线相交于Q 1、Q 2两点,且Q 是弦Q 1Q 2的中点?若存在,求出l 的方程;若不存在,说明理由.【解析】(1)设双曲线E 的标准方程为x 2a 2-y 2b 2=1a >b >0 .选①:由题意可知,双曲线E 的两个焦点分别为F 1-2,0 、F 22,0 ,由双曲线的定义可得2a =AF 1 -AF 2 =42+32-3 =2,则a =1,故b =c 2-a 2=3,所以,双曲线E 的标准方程为x 2-y 23=1.选②:圆x 2-8x +y 2+4=0的标准方程为x -4 2+y 2=12,圆心为4,0 ,半径为23,双曲线E 的渐近线方程为y =±bax ,由题意可得4b a 1+b a2=23,解得ba=3,即b =3a ,因为c =a 2+b 2=2a =2,则a =1,b =3,因此,双曲线E 的标准方程为x 2-y 23=1.选③:由勾股定理可得PF 1 2+PF 2 2=4c 2=16=PF 1 -PF 2 2+2PF 1 ⋅PF 2 =4a 2+2PF 1 ⋅PF 2 ,所以,PF 1 ⋅PF 2 =2c 2-a 2 =2b 2,则S △F 1PF 2=12PF 1 ⋅PF 2 =b 2=12×32×4,则b =3,故a =c 2-b 2=1,所以,双曲线E 的标准方程为x 2-y 23=1.(2)假设满足条件的直线l 存在,设点Q 1x 1,y 1 、Q 2x 2,y 2 ,则x 1+x 2=2y 1+y 2=2,由题意可得x 21-y 213=1x 22-y 223=1,两式作差得x 1-x 2 x 1+x 2 =y 1-y 2 y 1+y 23,所以,直线l 的斜率为k =y 1-y 2x 1-x 2=3,所以,直线l 的方程为y -1=3x -1 ,即y =3x -2.联立y =3x -2x 2-y 23=1 ,整理可得6x 2-12x +7=0,Δ=122-4×6×7<0,因此,直线l 不存在.三、跟踪检测1(2023届河南省洛平许济高三上学期质量检测)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的右焦点为F ,离心率为12,上顶点为0,3 .(1)求椭圆C 的方程;(2)过点F 的直线l 与椭圆C 交于P ,Q 两点,与y 轴交于点M ,若MP =λPF ,MQ =μQF,判断λ+μ是否为定值?并说明理由.【解析】(1)由题意可得b =3e =c a =12a 2=b 2+c 2,解得a =2b =3c =1,故椭圆C 的方程x 24+y 23=1.(2)λ+μ为定值-83,理由如下:由(1)可得F 1,0 ,由题意可知直线l 的斜率存在,设直线l :y =k x -1 ,P x 1,y 1 ,Q x 2,y 2 ,则M 0,-k ,联立方程y =k x -1x 24+y 23=1,消去y 得4k 2+3 x 2-8k 2x +4k 2-12=0,则Δ=-8k 2 2-44k 2+3 4k 2-12 =144k 2+1 >0,x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3,MP =x 1,y 1+k ,PF =1-x 1,-y 1 ,MQ =x 2,y 2+k ,QF=1-x 2,-y 2 ,∵MP =λPF ,MQ =μQF ,则x 1=λ1-x 1 x 2=μ1-x 2 ,可得λ=x11-x 1μ=x 21-x2,λ+μ=x 11-x 1+x 21-x 2=x 1+x 2 -2x 1x 21-x 1+x 2 +x 1x 2=8k 24k 2+3-24k 2-12 4k 2+31-8k 24k 2+3+4k 2-124k 2+3=-83(定值).2(2023届江西省南昌市金太阳高三上学期10月联考)如图,长轴长为4的椭圆C :x 2a 2+y 2b 2=1a >b >0 的左顶点为A ,过原点O 的直线(与坐标轴不重合)与椭圆C 交于P ,Q 两点,直线PA ,QA 与y 轴分别交于M ,N 两点,当直线PQ 的斜率为22时,PQ =23.(1)求椭圆C 的方程.(2)试问是否存在定点T ,使得∠MTN =90°恒成立?若存在,求出定点T 的坐标;若不存在,说明理由.【解析】(1)由题意可知2a =4,a =2,则椭圆方程C :x 2a 2+y 2b 2=1a >b >0 即x 24+y 2b 2=1,当直线PQ 的斜率为22时,PQ =23,故设P x 0,22x 0 ,∴x 20+22x 0 2=3,解得x 20=2,将P x 0,22x 0 代入x 24+y 2b 2=1得x 024+x 022b 2=1,即24+22b2=1,故b 2=2,所以椭圆的标准方程为x 24+y 22=1;(2)设P (x 0,y 0),x 0∈[-2,2],则Q (-x 0,-y 0),则x 204+y 202=1,∴x 20+2y 20=4,由椭圆方程x 24+y 22=1可得A (-2,0),∴直线PA 方程为︰y =y 0x 0+2(x +2),令x =0可得M 0,2y 0x 0+2,直线QA 方程为:y =y 0x 0-2(x +2),令x =0得N 0,2y 0x 0-2,假设存在定点T ,使得∠MTN =90°,则定点T 必在以MN 为直径的圆上,以MN 为直径的圆为x 2+y -2x 0y 0x 02-42=16y 02x 20-42,即x 2+y 2-4x 0y 0x 20-4y +4y 20x 20-4=0,∵x 20+2y 20=4,即x 20-4=-2y 20,∴x 2+y 2+2x 0y 0y -2=0,令y =0,则x 2-2=0,解得x =±2,∴以MN 为直径的圆过定点(±2,0),即存在定点T (±2,0),使得∠MTN =90°.3(2023届黑龙江省大庆铁人中学高三上学期月考)已知椭圆C :x 2a 2+y 2b 2=1a >b >0 的离心率为12,椭圆的短轴端点与双曲线y 22-x 2=1的焦点重合,过点P 4,0 且不垂直于x 轴的直线l 与椭圆相交于A ,B 两点.(1)求椭圆C 的方程;(2)若点B 关于x 轴的对称点为点E ,证明:直线AE 与x 轴交于定点.【解析】(1)由双曲线y 22-x 2=1得焦点0,±3 ,得b =3,由题意可得b =3a 2=b 2+c 2e =c a =12 ,解得a =2,c =1,故椭圆C 的方程为;x 24+y 23=1.(2)设直线l :y =k x -4 ,点A x 1,y 1 ,B x 2,y 2 ,则点E x 2,-y 2 .由y =k x -4x 24+y 23=1,得4k 2+3 x 2-32k 2x +64k 2-12=0,Δ=32k 2 2-44k 2+3 64k 2-12 >0,解得-12<k <12,从而x 1+x 2=32k 24k 2+3,x 1x 2=64k 2-124k 2+3,直线AE 的方程为y -y 1=y 1+y 2x 1-x 2x -x 1 ,令y =0得x =x 1y 2+x 2y 1y 1+y 2,又∵y 1=k x 1-4 ,y 2=k x 2-4 ,则x =kx 1x 2-4 +kx 2x 1-4 k x 1-4 +k x 2-4 =2x 1x 2-4x 1+x 2x 1+x 2-8,即x =2⋅64k 2-124k 2+3-4⋅32k 24k 2+332k 24k 2+3-8=1,故直线AE 与x 轴交于定点1,0 .4(2023届江西省赣州厚德外国语学校、丰城中学高三上学期10月联考)已知双曲线C :x 2a 2-y 2b 2=1经过点2,-3 ,两条渐近线的夹角为60°,直线l 交双曲线于A ,B 两点.(1)求双曲线C 的方程.(2)若动直线l 经过双曲线的右焦点F 2,是否存在x 轴上的定点M m ,0 ,使得以线段AB 为直径的圆恒过M 点?若存在,求实数m 的值;若不存在,请说明理由.【解析】(1)∵两条渐近线的夹角为60°,∴渐近线的斜率±b a =±3或±33,即b =3a 或b =33a ;当b =3a 时,由4a 2-9b 2=1得:a 2=1,b 2=3,∴双曲线C 的方程为:x 2-y 23=1;当b =33a 时,方程4a 2-9b2=1无解;综上所述:∴双曲线C 的方程为:x 2-y 23=1.(2)由题意得:F 22,0 ,假设存在定点M m ,0 满足题意,则MA ⋅MB =0恒成立;方法一:①当直线l 斜率存在时,设l :y =k x -2 ,A x 1,y 1 ,B x 2,y 2 ,由y =k x -2x 2-y 23=1得:3-k 2x 2+4k 2x -4k 2+3 =0,∴3-k 2≠0Δ=361+k 2 >0 ,∴x 1+x 2=4k 2k 2-3,x 1x 2=4k 2+3k 2-3,∴MA ⋅MB=x 1-m x 2-m +y 1y 2=x 1x 2-m x 1+x 2 +m 2+k 2x 1x 2-2x 1+x 2 +4 =1+k 2 x 1x 2-2k 2+m x 1+x 2 +4k 2=4k 2+3 1+k 2k 2-3-4k 22k 2+mk 2-3+m 2+4k 2=0,∴4k 2+3 1+k 2 -4k 22k 2+m +m 2+4k 2 k 2-3 =0,整理可得:k 2m 2-4m -5 +3-3m 2 =0,由m 2-4m -5=03-3m 2=0得:m =-1;∴当m =-1时,MA ⋅MB=0恒成立;②当直线l 斜率不存在时,l :x =2,则A 2,3 ,B 2,-3 ,当M -1,0 时,MA =3,3 ,MB =3,-3 ,∴MA ⋅MB=0成立;综上所述:存在M -1,0 ,使得以线段AB 为直径的圆恒过M 点.方法二:①当直线l 斜率为0时,l :y =0,则A -1,0 ,B 1,0 ,∵M m ,0 ,∴MA =-1-m ,0 ,MB=1-m ,0 ,∴MA ⋅MB=m 2-1=0,解得:m =±1;②当直线l 斜率不为0时,设l :x =ty +2,A x 1,y 1 ,B x 2,y 2 ,由x =ty +2x 2-y 23=1得:3t 2-1 y 2+12ty +9=0,∴3t 2-1≠0Δ=123t 2+3 >0 ,∴y 1+y 2=-12t 3t 2-1,y 1y 2=93t 2-1,∴MA ⋅MB=x 1-m x 2-m +y 1y 2=x 1x 2-m x 1+x 2 +m 2+y 1y 2=ty 1+2 ty 2+2 -m ty 1+2+ty 2+2+m 2+y 1y 2=t 2+1 y 1y 2+2t -mt y 1+y 2 +4-4m +m 2=9t 2+1 3t 2-1-12t 2t -mt 3t 2-1+4-4m +m 2=12m -15 t2+93t 2-1+2-m 2=0;当12m -153=9-1,即m =-1时,MA ⋅MB =0成立;综上所述:存在M -1,0 ,使得以线段AB 为直径的圆恒过M 点.5(2023届内蒙古自治区赤峰市高三上学期月考)平面内一动点P 到定直线x =4的距离,是它与定点F 1,0 的距离的两倍.(1)求点P 的轨迹方程C ;(2)过F 点作两条互相垂直的直线l 1,l 2(直线l 1不与x 轴垂直).其中,直线l 1交曲线C 于A ,B 两点,直线l 2交曲线C 于E ,N 两点,直线l 2与直线x =m m >2 交于点M ,若直线MB ,MF ,MA 的斜率k MB ,k MF ,k MA 构成等差数列,求m 的值.【解析】(1)设点P x ,y ,由题,有PFx -4 =12,即x -1 2+y 2x -4=12,解得3x 2+4y 2=12,所以所求P 点轨迹方程为x 24+y 23=1(2)由题,直线l 1的斜率存在且不为0,设直线l 1的方程为y =k x -1 ,与曲线C 联立方程组得y =k x -1x 24+y 23=1,解得4k 2+3 x 2-8k 2x +4k 2-12=0,设A x 1,y 1 ,B x 2,y 2 ,则有x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3依题意有直线l 2的斜率为-1k ,则直线l 2的方程为y =-1k x -1 ,令x =m ,则有M 点的坐标为m ,-m -1k,由题,k MF =m -1k 1-m =-1k ,k MA +k MB =y 1+m -1kx 1-m+y 2+m -1kx 2-m=y 1x 1-m +y 2x 2-m +1k m -1x 1-m+m -1x 2-m=k x 1-1 x 1-m +k x 2-1 x 2-m +1k m -1x 1-m+m -1x 2-m=k ×2x 1x 2-1+m x 1+x 2 +2m x 1x 2-x 1+x 2 m +m 2+1k ×m -1 x 1+x 2-2m x 1x 2-x 1+x 2 m +m 2=k ×6m -244k 2+34k 2-124k 2+3-m ×8k 24k 2+3+m2+1k×m -18k 24k 2+3-2m4k 2-124k 2+3-m ×8k 24k 2+3+m 2,因为2k MF =k MA +k MB ,所以k ×6m -244k 2+34k 2-124k 2+3-m ×8k 24k 2+3+m 2+1k×m -18k 24k 2+3-2m4k 2-124k 2+3-m ×8k 24k 2+3+m 2=-2k解得m -4 k 2+1 =0,则必有m -4=0,所以m =4.6(2023届福建省福州华侨中学高三上学期考试)在平面直角坐标系xOy 中,已知点F (2,0),直线l :x =12,点M 到l 的距离为d ,若点M 满足|MF |=2d ,记M 的轨迹为C .(1)求C 的方程;(2)过点F (2,0)且斜率不为0的直线与C 交于P ,Q 两点,设A (-1,0),证明:以P ,Q 为直径的圆经过点A .【解析】(1)设点M x ,y ,则d =x -12,MF =(x -2)2+y 2,由MF =2d ,得(x -2)2+y 2=2x -12,两边平方整理得3x 2-y 2=3,则所求曲线C 的方程为x 2-y 23=1.(2)设直线m 的方程为x =ty +2,P x 1,y 1 ,Q x 2,y 2 ,联立方程x =ty +2,3x 2-y 2=3,消去x 并整理得3t 2-1 y 2+12ty +9=0,,因为直线m 与C 交于两点,故t ≠±33,此时Δ=(12t )2-43t 2-1 ⋅9=36t 2+1 >0,所以y 1+y 2=-12t 3t 2-1,y 1y 2=93t 2-1,而x 1+x 2=t y 1+y 2 +4,x 1x 2=ty 1+2 ty 2+2 =t 2y 1y 2+2t y 1+y 2 +4.又AP =x 1+1,y 1 ,AQ=x 2+1,y 2 ,所以AP ⋅AQ=x 1+1 x 2+1 +y 1y 2=y 1y 2+x 1+x 2+x 1x 2+1=t 2+1 y 1y 2+3t y 1+y 2 +9=9t 2+93t 2-1-36t 23t 2-1+9=9-3t 2+1 3t 2-1+9=0.所以AP ⊥AQ ,即以P ,Q 为直径的圆经过点A .7(2023届河南省安阳市高三上学期10月月考)已知椭圆M 1:x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,F 1F 2 =2,面积为487的正方形ABCD 的顶点都在M 1上.(1)求M 1的方程;(2)已知P 为椭圆M 2:x 22a 2+y 22b 2=1上一点,过点P 作M 1的两条切线l 1和l 2,若l 1,l 2的斜率分别为k 1,k 2,求证:k 1k 2为定值.【解析】(1)根据对称性,不妨设正方形的一个顶点为A x ,x ,由x 2a 2+x 2b 2=1,得x 2=a 2b 2a 2+b 2,所以2a 2b 2a 2+b 2×2a 2b 2a 2+b2=487,整理得12a 2+b 2 =7a 2b 2.①又a 2-b 2=F 1F 222=1,②由①②解得a 2=4,b 2=3,故所求椭圆方程为x 24+y 23=1.(2)由已知及(1)可得M 2:x 28+y 26=1,设点P x 0,y 0 ,则y 20=61-x 208.设过点P 与M 1相切的直线l 的方程为y -y 0=k x -x 0 ,与x 24+y 23=1联立消去y 整理可得4k 2+3 x 2+8k y 0-kx 0 x +4y 0-kx 0 2-3 =0,令Δ=8k y 0-kx 0 2-4×4k 2+3 ×4y 0-kx 0 2-3 =0,整理可得x 20-4 k 2-2kx 0y 0+y 20-3=0,③根据题意k 1和k 2为方程③的两个不等实根,所以k 1k 2=y 20-3x 20-4=61-x 28 -3x 20-4=-34x 20-4 x 20-4=-34,即k 1k 2为定值-34.8(2023届浙江省浙里卷天下高三上学期10月测试)已知F 1,F 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过点F 1(-1,0)且与x 轴不重合的直线与椭圆C 交于A ,B 两点,△ABF 2的周长为8.(1)若△ABF 2的面积为1227,求直线AB 的方程;(2)过A ,B 两点分别作直线x =-4的垂线,垂足分别是E ,F ,证明:直线EB 与AF 交于定点.【解析】(1)因△ABF 2的周长为8,由椭圆定义得4a =8,即a =2,而半焦距c =1,又a 2=b 2+c 2,则b 2=3,椭圆C 的方程为x 24+y 23=1,依题意,设直线AB 的方程为x =my -1,由x =my -13x 2+4y 2=12消去x 并整理得3m 2+4 y 2-6my -9=0,设A x 1,y 1 ,B x 2,y 2 ,则y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4,|y 1-y 2|=(y 1+y 2)2-4y 1y 2=6m 3m 2+42+363m 2+4=12m 2+13m 2+4,因此S △F 2AB =12F 1F 2 ⋅y 1-y 2 =12×2×12m 2+13m 2+4=1227,解得m =±1,所以直线AB 的方程为x -y +1=0或x +y +1=0.(2)由(1)知A x 1,y 1 ,B x 2,y 2 ,则E -4,y 1 ,F -4,y 2 ,设直线EB 与AF 交点为M (x ,y ),则FA =(x 1+4,y 1-y 2),FM =(x +4,y -y 2),EB =(x 2+4,y 2-y 1),EM =(x +4,y -y 1),而FA ⎳FM ,EB ⎳EM ,则(x +4)(y 1-y 2)=(y -y 2)(x 1+4),(x +4)(y 2-y 1)=(y -y 1)(x 2+4),两式相加得:y (x 1+x 2+8)-y 2(my 1+3)-y 1(my 2+3)=0,而x 1+x 2+8>0,则y (x 1+x 2+8)=2my 1y 2+3(y 1+y 2)=2m ⋅-93m 2+4+3⋅6m3m 2+4=0,因此y =0,两式相减得:2(x +4)(y 1-y 2)=-y 2(x 1+4)+y 1(x 2+4)=-y 2(my 1+3)+y 1(my 2+3)=3(y 1-y 2),而y 1-y 2≠0,则x =-52,即M -52,0 ,所以直线EB 与AF 交于定点M -52,0 .9(2023届江苏省南京市六校高三上学期10月联考)已知双曲线Γ:x 2a 2-y 2b 2=1(a >0,b >0)的焦距为4,且过点P 2,33(1)求双曲线Γ的方程;(2)过双曲线Γ的左焦点F 分别作斜率为k 1,k 2的两直线l 1与l 2,直线l 1交双曲线Γ于A ,B 两点,直线l 2交双曲线Γ于C ,D 两点,设M ,N 分别为AB 与CD 的中点,若k 1⋅k 2=-1,试求△OMN 与△FMN 的面积之比.【解析】(1)由题意得2c =4,得c =2,所以a 2+b 2=4,因为点P 2,33在双曲线上,所以4a 2-13b 2=1,解得a 2=3,b 2=1,所以双曲线方程为x 23-y 2=1,(2)F (-2,0),设直线l 1方程为y =k 1(x +2),A (x 1,y 1),B (x 2,y 2),由y =k 1(x +2)x 23-y 2=1,得(1-3k 12)x 2-12k 12x -12k 12-3=0则x 1+x 2=12k 121-3k 12,x 1x 2=-12k 12-31-3k 12,所以x 1+x 22=6k 121-3k 12,所以AB 的中点M 6k 121-3k 12,2k 11-3k 12,因为k 1⋅k 2=-1,所以用-1k 1代换k 1,得N 6k 12-3,-2k 1k 12-3,当6k 121-3k 12=61-3k 12,即k 1=±1时,直线MN 的方程为x =-3,过点E (-3,0),当k 1≠±1时,k MN =2k 11-3k 12--2k 1k 12-36k121-3k 12-6k 12-3=-2k 13(k 12-1),直线MN 的方程为y -2k 11-3k 12=-2k 13(k 12-1)x -6k 121-3k 12,令y =0,得x =3(k 12-1)1-3k 12+6k 121-3k 12=-3,所以直线MN 也过定点E (-3,0),所以S △OMN S △FMN =12y N-y M OE 12y M-y N FE =OE FE =310(2022届北京市海淀区高三上学期期末)已知点A 0,-1 在椭圆C :x 23+y 2b 2=1上.(1)求椭圆C 的方程和离心率;(2)设直线l :y =k x -1 (其中k ≠1)与椭圆C 交于不同两点E ,F ,直线AE ,AF 分别交直线x =3于点M ,N .当△AMN 的面积为33时,求k 的值.【解析】(1)将点A 0,-1 代入x 23+y 2b 2=1,解得b 2=1,所以椭圆C 的方程为x 23+y 2=1又c 2=a 2-b 2=3-1=2,离心率e =c 2a 2=23=63(2)联立y =k x -1x 23+y 2=1,整理得(1+3k 2)x 2-6k 2x +3k 2-3=0设点E ,F 的坐标分别为(x 1,y 1),(x 2,y 2)由韦达定理得:x 1+x 2=6k 21+3k 2,x 1x 2=3k 2-31+3k 2直线AE 的方程为y +1=y 1+1x 1x ,令x =3,得y =3y 1+3x 1-1,即M 3,3y 1+3x 1-1直线AF 的方程为y +1=y 2+1x 2x ,令x =3,得y =3y 2+3x 2-1,即N 3,3y 2+3x 2-1MN =3y 2+3x 2-1-3y 1+3x 1-1=3×x 1y 2-x 2y 1+x 1-x 2x 1x 2 =3×k -1 x 1-x2x 1x 2=3×k -1x 1+x 22-4x 1x 2x 1x 22=3×k -1 ×232k 2+1k 2-1 =23×2k 2+1k +1 所以△AMN 的面积S =12×MN ×3=32×MN =33×2k 2+1k +1 =33即2k 2+1k +1 =1⇒2k 2+1=k +1 ,解得k =0或k =2所以k 的值为0或211(2022届天津市第二中学高三上学期12月月考)已知椭圆x 2a 2+y 2b 2=1a >b >0 的长轴长是4,且过点B 0,1 .(1)求椭圆的标准方程;(2)直线l :y =k x +2 交椭圆于P ,Q 两点,若点B 始终在以PQ 为直径的圆内,求实数k 的取值范围.【解析】(1)由题意,得2a =4,b =1,所以椭圆的标准方程为x 24+y 2=1;(2)设P (x 1,y 1),Q (x 2,y 2),联立y =k (x +2)x 24+y 2=1,得x 2+4k 2(x +2)2-4=0,即(1+4k 2)x 2+16k 2x +16k 2-4=0,则x 1+x 2=-16k 21+4k 2,因为直线y =k x +2 恒过椭圆的左顶点(-2,0),所以x 1=-2,y 1=0,则x 2=-16k 21+4k 2+2=2-8k 21+4k 2,y 2=k (x 2+2)=4k1+4k 2,因为点B 始终在以PQ 为直径的圆内,所以π2<∠PBQ ≤π,即BP ·BQ <0,又BP =-2,-1 ,BQ=(x 2,y 2-1),则BP ·BQ=-2x 2-y 2+1<0,即4-16k 21+4k 2+4k 1+4k 2-1>0,即20k 2-4k -3<0,解得-310<k<12,所以实数k的取值范围为-310<k<12.12(2022届广东省华南师范大学附属中学高三上学期1月模拟)已知椭圆C1:x2a2+y2b2=1(a>b>0)的右顶点与抛物线C2:y2=2px(p>0)的焦点重合,椭圆C1的离心率为12,过椭圆C1的右焦点F且垂直于x轴的直线截抛物线所得弦的长度为42.(1)求椭圆C1和抛物线C2的方程.(2)过点A(-4,0)的直线l与椭圆C1交于M,N两点,点M关于x轴的对称点为E.当直线l绕点A旋转时,直线EN是否经过一定点?请判断并证明你的结论.【解析】(1)设椭圆C1的半焦距为c.依题意,可得a=p2,则C2:y2=4ax,代入x=c,得y2=4ac,即y=±2ac,所以4ac=42,则有ac=2ca=12a2=b2+c2,所以a=2,b=3,所以椭圆C1的方程为x24+y23=1,抛物线C2的方程为y2=8x.(2)依题意,当直线l的斜率不为0时,设其方程为x=ty-4,由x=ty-43x2+4y2=12,得(3t2+4)y2-24ty+36=0.设M(x1,y1),N(x2,y2),则E(x1,-y1).由Δ>0,得t<-2或t>2,且y1+y2=24t3t2+4,y1y2=363t2+4.根据椭圆的对称性可知,若直线EN过定点,此定点必在x轴上,设此定点为Q(m,0).因为k NQ=k EQ,所以y2x2-m=-y1x1-m,(x1-m)y2+(x2-m)y1=0,即(ty1-4-m)y2+(ty2-4-m)y1=0,2ty1y2-(m+4)(y1+y2)=0,即2t·363t2+4-(m+4)·24t3t2+4=0,得(3-m-4)t=(-m-1)t=0,由t是大于2或小于-2的任意实数知m=-1,所以直线EN过定点Q(-1,0).当直线l的斜率为0时,直线EN的方程为y=0,也经过点Q(-1,0),所以当直线l绕点A旋转时,直线EN恒过一定点Q(-1,0).13(2022届河北省高三上学期省级联测)已知椭圆P焦点分别是F1(0,-3)和F2(0,3),直线y= 3与椭圆P相交所得的弦长为1.(1)求椭圆P的标准方程;(2)将椭圆P绕原点逆时针旋转90°得到椭圆Q,在椭圆Q上存在A,B,C三点,且坐标原点为△ABC的重心,求△ABC的面积.。
高考数学中圆锥曲线的对称问题
高考数学中圆锥曲线的对称问题全文共四篇示例,供读者参考第一篇示例:在高考数学中,圆锥曲线是一个十分重要的内容,其中对称问题是一个常见但又十分关键的概念。
在解题过程中,对称性的运用常常能够简化问题的复杂度,同时也有助于更快地找到解题的思路。
掌握圆锥曲线的对称性质对于高考数学的学习十分重要。
我们来看一下圆锥曲线在平面直角坐标系中的对称性质。
对于椭圆、双曲线和抛物线这三种常见的圆锥曲线,它们都具有不同的对称性质。
在平面直角坐标系中,我们可以将这三种圆锥曲线分别绕着x轴、y轴、原点进行对称。
这种对称性质不仅有助于我们确定曲线的性质,还能够方便我们进行求解和计算。
以椭圆为例,椭圆具有关于x轴和y轴的对称性。
具体来说,如果一个点(x, y)在椭圆上,则点(x, -y)、(-x, y)、(-x, -y)也在椭圆上。
这种对称性质不仅可以用于确定椭圆的形状和位置,还可以用于求解椭圆上的点的坐标,简化计算过程。
对于双曲线,它具有关于x轴和y轴的对称性以及关于原点的对称性。
这种对称性质同样可以用于求解双曲线上的点的坐标,简化计算过程。
除了在平面直角坐标系中的对称性质外,圆锥曲线还存在着一些特殊的对称性质。
对于一个椭圆的长轴和短轴,它们的交换并不改变椭圆的性质,这是椭圆的一种特殊对称性质。
这种特殊的对称性质对于解题有一定的指导意义,能够帮助我们更好地理解椭圆的性质。
对称性还可以帮助我们求解一些特殊的问题。
当我们需要计算一条平行于坐标轴的直线与圆锥曲线的交点时,可以利用对称性质将问题简化,降低解题的难度。
除了在平面直角坐标系中的对称性质外,圆锥曲线还有一些其他的对称性。
在极坐标系中,椭圆和双曲线具有关于极轴和极点的对称性。
这种对称性质同样可以应用在计算中,帮助我们更好地理解和解决问题。
在解题过程中,对称性质是一个十分有用的工具。
通过合理地利用曲线的对称性,我们可以更快地找到解题思路,简化计算过程,提高解题效率。
在学习圆锥曲线的过程中,我们应该重点掌握曲线的对称性质,并灵活地运用于解题中。
圆锥曲线问题在高考的常见题型及解题技巧
圆锥曲线问题在高考的常见题型及解题技巧圆锥曲线是数学中的一个重要概念,在高考数学考试中经常出现。
圆锥曲线问题在高考中的题型多样,涉及到椭圆、双曲线和抛物线等各种不同的情况。
学生需要掌握不同类型圆锥曲线的基本知识和解题方法,才能在考试中取得好成绩。
本文将详细介绍圆锥曲线问题在高考中的常见题型及解题技巧。
一、椭圆问题在高考数学中,椭圆问题是圆锥曲线中的一个常见题型。
椭圆是圆锥曲线中的一种,其数学方程一般表示为x²/a² + y²/b² = 1。
椭圆问题在高考中主要涉及到椭圆的性质、方程和相关的几何问题。
下面是一些常见的椭圆问题和解题技巧:1. 椭圆的性质椭圆有许多独特的性质,例如焦点、长轴、短轴等。
解决椭圆问题时,首先需要熟悉椭圆的基本性质,包括焦点的坐标、长轴和短轴的长度等。
了解这些性质可以帮助学生更好地理解和解决椭圆相关的问题。
2. 椭圆的方程学生需要掌握椭圆的标准方程和一般方程,以及如何从一个方程中得到椭圆的相关信息。
如何通过椭圆的方程确定焦点和长轴的长度等。
熟练掌握椭圆的方程和相关的计算方法是解决椭圆问题的关键。
3. 几何问题在高考中,椭圆问题经常涉及到与椭圆相关的几何问题,例如椭圆的切线、法线、焦点、离心率等。
解决这些问题需要学生具有一定的几何直觉和解题技巧,可以通过画图、几何推理等方法来解决。
二、双曲线问题三、抛物线问题在解决圆锥曲线问题时,学生需要注意以下几个解题技巧:1. 画图对于圆锥曲线相关的几何问题,画图是非常重要的。
学生可以通过画图来直观地理解问题,并且可以通过几何推理来解决问题。
2. 几何推理圆锥曲线问题往往需要一定的几何推理能力,例如通过推导得到相关的性质和结论。
学生需要熟练掌握几何推理的方法,以便解决圆锥曲线问题。
3. 代数计算除了几何推理,对于圆锥曲线的方程和相关计算问题,学生还需要掌握代数计算的方法,包括因式分解、配方法、求导等。
高考数学中圆锥曲线的对称问题
高考数学中圆锥曲线的对称问题
圆锥曲线的对称问题在高考数学中是一个常见的考点。
这类问题通常涉及到对圆锥曲线(如椭圆、双曲线和抛物线)的对称性质的理解和应用。
首先,我们需要明确圆锥曲线的对称性质:
1. 椭圆:椭圆关于其长轴和短轴都是对称的。
这意味着,如果点P(x, y)在椭圆上,那么点P'(-x, y)和P''(x, -y)也都在椭圆上。
2. 双曲线:双曲线关于其主轴和次轴都是对称的。
如果点P(x, y)在双曲线上,那么点P'(-x, y)和P''(x, -y)也都在双曲线上。
3. 抛物线:抛物线关于其对称轴是对称的。
如果点P(x, y)在抛物线上,那么点P'(x, -y)也在抛物线上。
在解决这类问题时,我们通常会利用这些对称性质来简化计算或找到解题的线索。
例如,如果我们知道一个点在一个圆锥曲线上,那么我们可以利用对称性质来找到其他也在该曲线上的点。
此外,我们还需要注意一些特殊的对称情况,如中心对称和轴对称。
这些对称性质也可以帮助我们更好地理解和解决圆锥曲线的对称问题。
总的来说,解决圆锥曲线的对称问题需要我们对圆锥曲线的对称性质有深入的理解,并能够灵活应用这些性质来解决问题。
同时,我们还需要注意一些特殊的对称情况,以便更好地应对各种复杂的题目。
湘教版高考总复习一轮数学精品课件 第9章平面解析几何 第8节直线与圆锥曲线的位置关系
2 2
+
2 2
=1(a>b>0)的弦,A(x1,y1),B(x2,y2),x1≠x2,弦的中点为
M(x0,y0),请你推出直线AB的斜率的表达式.
提示 因为点 A(x1,y1),B(x2,y2)在椭圆上,所以
21 -22
①-②得 2
的斜率
+
21 -22
2 0
k=-2 .
2
综上可知,过点 M(0,-1)且与双曲线 4
2
− 9 =1 仅有一个公共点的直线共有 4 条.
[对点训练1](1)直线3x-4y=0与双曲线
A.0
B.1
解析 (方法一)由
2 2
9 16
2 2
−
9 16
C.2
= 1,
3-4 = 0,
=1的交点个数是( A )
D.3
2
消去 x,得 9
8
相交于A,B两点,则|AB|=
.
= -1,
解析 设A(x1,y1),B(x2,y2),联立 2 = 4,消去y,整理得x2-6x+1=0,则x1+x2=6.
因为直线y=x-1过抛物线焦点,所以|AB|=x1+x2+p=6+2=8.
题组三连线高考
8.(2023·新高考Ⅱ,5)已知椭圆
2 2
由直线 MN 与曲线 x +y =1(x>0)相切可得
2
2
||
=1,所以 m2=k2+1,
2 +1
= + ,
联立
2
3
+ 2 = 1,
消去 y,整理得(1+3k2)x2+6kmx+3m2-3=0,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
②
①与②联立解得 M42kk+ -21,2k4-k 1.
由 D(0,1),P84kk22- +21,-4k42+k 1,N(x,0)三点共线知
-844kk22k- +42+k21-1-01=0x--01,解得 N42kk-+21,0.
所以 MN 的斜率为 m=42kk+-2k4-21k-1-42kk- +0 21
Go the distance
专题五 高考中的圆锥曲线问题
1. 已知 F1、F2 为椭圆2x52 +y92=1 的两个焦点,过 F1 的直线交椭圆于 A、B 两点.若|F2A|+
|F2B|=12,则|AB|=________. 答案 8
解析 由题意知(|AF1|+|AF2|)+(|BF1|+|BF2|) =|AB|+|AF2|+|BF2|=2a+2a, 又由 a=5,可得|AB|+(|BF2|+|AF2|)=20, 即|AB|=8. 2. 设 AB 为过抛物线 y2=2px(p>0)的焦点的弦,则|AB|的最小值为
由于 y0≠1 可得 Ny-0-x01,0,
y=12x+2
联立
,
y=x0y-0 2x-2
解得 M42yy00+-2xx00+-24,2y0-4yx00+2,
设 B(x,y),则 x=|OB|sin 30°=4 3,y=|OB|cos 30°=12.
因为点 B(4 3,12)在 x2=2py 上,
所以(4 3)2=2p×12,解得 p=2. 故抛物线 E 的方程为 x2=4y.
(2)证明 方法一 由(1)知 y=14x2,y′=12x.
设 P(x0,y0),则 x0≠0,且 l 的方程为 y-y0=12x0(x-x0),即 y=12x0x-14x20.
即 3x±ay=0, 圆(x-2)2+y2=4 的圆心为 C(2,0),半径为 r=2,
如图,由圆的弦长公式得弦心距|CD|= 22-12= 3,另一方 面,圆心 C(2,0)到双曲线ax22-y32=1 的渐近线 3x-ay=0 的距
离为 d=|
3×2-a×0|= 3+a2
23, 3+a2
所以
23= 3+a2
3
3
代入 a+b=3 得,c= 3,a=2,b=1. 故椭圆 C 的方程为x42+y2=1.
(2)证明 方法一 因为 B(2,0),点 P 不为椭圆顶点,则直线 BP 的方程为 y=k(x-2)(k≠0,
k≠±12),
①
①代入x42+y2=1,解得 P84kk22- +21,-4k42+k 1.
直线 AD 的方程为 y=12x+1.
3 A.4
B.-34
C.3
D.-3
答案 B
解析 方法一 (特殊值法)
抛物线的焦点为 F12,0,过 F 且垂直于 x 轴的直线交抛物线于 A(12,1),B(12,-1),
∴O→A·O→B=12,1·12,-1=14-1=-34.
方法二 设 A(x1,y1),B(x2,y2), 则O→A·O→B=x1x2+y1y2. 由抛物线的过焦点的弦的性质知:
=2 1+4m2m-m2
∴d= 1|A+B4|m2=2 m1-m≤m+(1-m)=1,
当且仅当 m=1-m,即 m=12时,上式等号成立,
又 m=12满足 Δ=4m-4m2>0.
∴d 的最大值为 1.
思维升华 圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲
Go the distance
由y=12x0x-14x20, y=-1
得x=x202-x04, y=-1.
所以 Q 为x202-x04,-1.
设 M(0,y1),令M→P·M→Q=0 对满足 y0=14x20(x0≠0)的 x0,y0 恒成立.
由于M→P=(x0,y0-y1),M→Q=x202-x04,-1-y1,
由M→P·M→Q=0,得x20-2 4-y0-y0y1+y1+y12=0, 即(y12+y1-2)+(1-y1)y0=0.(*) 由于(*)式对满足 y0=14x20(x0≠0)的 y0 恒成立,
3,解得 a2=1,即 a=1,该双曲线的实轴长
为 2a=2.
4. 在抛物线 y=2x2 上有一点 P,它到 A(1,3)的距离与它到焦点的距离之和最小,则点 P 的
坐标是
Go the distance
()
A.(-2,1)
B.(1,2)
C.(2,1)
D.(-1,2)
答案 B
解析 如图所示,直线 l 为抛物线 y=2x2 的准线,F 为其焦点,PN⊥l,
(2)记 d=
|AB| ,求 1+4m2
d
的最大值.
Go the distance
思维启迪 (1)依条件,构建关于 p,t 的方程;
(2)建立直线 AB 的斜率 k 与线段 AB 中点坐标间的关系,并表示弦 AB 的长度,运用函数
的性质或基本不等式求 d 的最大值.
解 (1)y2=2px(p>0)的准线 x=-p2,
即|y1-y2|的最大值为 3. 所以△APQ 面积的最大值为 3, 此时直线 PQ 的方程为 x=1. 题型二 圆锥曲线中的定点、定值问题
例 2 (2012·福建)如图,等边三角形 OAB 的边长为 8 3,且其三个 顶
点均在抛物线 E:x2=2py(p>0)上. (1)求抛物线 E 的方程; (2)设动直线 l 与抛物线 E 相切于点 P,与直线 y=-1 相交于点 Q, 证明:以 PQ 为直径的圆恒过 y 轴上某定点. 思维启迪 既然圆过 y 轴上的点,即满足M→P·M→Q=0,对任意 P、Q 恒成立可待定 M(0, y1),也可给定特殊的 P 点,猜想 M 点坐标,再证明. (1)解 依题意,得|OB|=8 3,∠BOy=30°.
x1x2=p42=14,y1y2=-p2=-1.
∴O→A·O→B=14-1=-34.
题型一 圆锥曲线中的范围、最值问题 例 1 (2012·浙江改编)如图所示,在直角坐标系 xOy 中,点 P(1,12)
到抛物线 C:y2=2px(p>0)的准线的距离为54.点 M(t,1)是 C 上的定 点,A,B 是 C 上的两动点,且线段 AB 的中点 Q(m,n)在直线 OM 上. (1)求曲线 C 的方程及 t 的值.
得x=x202-x04, y=-1.
所以 Q 为x202-x04,-1.
取 x0=2,此时 P(2,1),Q(0,-1), 以 PQ 为直径的圆为(x-1)2+y2=2,
交 y 轴于点 M1(0,1)或 M2(0,-1);
取 x0=1,此时 P1,14,Q-32,-1,
以 PQ 为直径的圆为x+142+y+382=16245,
故 k·2m=1,
所以直线 AB 的方程为 y-m=21m(x-m),
即 x-2my+2m2-m=0.
由xy- 2=2xmy+2m2-m=0, 消去 x,
整理得 y2-2my+2m2-m=0, 所以 Δ=4m-4m2>0,y1+y2=2m,y1y2=2m2-m.
从而|AB|=
1+k12·|y1-y2|= 1+4m2· 4m-4m2
|A→M|2+|B→M|2-2|A→M|·|B→M|cos 2θ=4. 即(|A→M|+|B→M|)2-2|A→M|·|B→M|(1+cos 2θ)=4. (|A→M|+|B→M|)2-4|A→M|·|B→M|cos2θ=4. 而|A→M|·|B→M|cos2θ=3, 所以(|A→M|+|B→M|)2-4×3=4. 所以|A→M|+|B→M|=4. 又|A→M|+|B→M|=4>2=|AB|, 因此点 M 的轨迹是以 A,B 为焦点的椭圆(点 M 在 x 轴上也符合题意),a=2,c=1. 所以曲线 C 的方程为x42+y32=1.
∴1-(-p2)=54,p=12, ∴抛物线 C 的方程为 y2=x.
又点 M(t,1)在曲线 C 上,∴t=1.
(2)由(1)知,点 M(1,1),从而 n=m,即点 Q(m,m),
依题意,直线 AB 的斜率存在,且不为 0,
设直线 AB 的斜率为 k(k≠0).
且 A(x1,y1),B(x2.y2), 由yy2212==xx21,, 得(y1-y2)(y1+y2)=x1-x2,
=22k+41k22-k+212k-12=2k+4 1. 则 2m-k=2k+2 1-k=12(定值).
方法二 设 P(x0,y0)(x0≠0,±2),则 k=x0y-0 2, 直线 AD 的方程为 y=12(x+2),
直线 BP 的方程为 y=x0y-0 2(x-2), 直线 DP 的方程为 y-1=y0x-0 1x,令 y=0,
所以1y21-+yy11=-02,=0, 解得 y1=1. 故以 PQ 为直径的圆恒过 y 轴上的定点 M(0,1).
方法二 由(1)知 y=14x2,y′=12x.
设 P(x0,y0),则 x0≠0, 且 l 的方程为 y-y0=12x0(x-x0),
即 y=12x0x-14x02.
由y=12x0x-14x20, y=-1
(1)求椭圆 C 的方程;
(2)如图所示,A、B、D 是椭圆 C 的顶点,P 是椭圆 C 上除顶点外的任意一点,直线 DP
交 x 轴于点 N,直线 AD 交 BP 于点 M,设 BP 的斜率为 k,MN 的斜率为 m.证明:2m-
k 为定值.
(1)解 因为 e= 23=ac,
所以 a= 2 c,b= 1 c.
AN1⊥l,由抛物线的定义知,|PF|=|PN|, ∴|AP|+|PF|=|AP|+|PN|≥|AN1|, 当且仅当 A、P、N 三点共线时取等号.
∴P 点的横坐标与 A 点的横坐标相同即为 1,
则可排除 A、C、D,故选 B.
5. 设坐标原点为 O,抛物线 y2=2x 与过焦点的直线交于 A、B 两点,则O→A·O→B等于( )