八年级上数学全等三角形、轴对称测试题
人教版八年级数学上《全等三角形》《轴对称》期末复习提优题及答案解析

八年级[上]数学期末《全等三角形》《轴对称》复习一.选择题(共4小题)1.如图,Rt△ACB中,∠ACB=90°,∠ABC的角平分线BE和∠BAC的外角平分线AD相交于点P,分别交AC 和BC的延长线于E,D.过P作PF⊥AD交AC的延长线于点H,交BC的延长线于点F,连接AF交DH于点G.则下列结论:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH.其中正确的是()A.①②③B.①②④C.②③④D.①②③④2.如图,将30°的直角三角尺ABC绕直角顶点A逆时针旋转到ADE的位置,使B点的对应点D落在BC边上,连接EB、EC,则下列结论:①∠DAC=∠DCA;②ED为AC的垂直平分线;③EB平分∠AED;④ED=2AB.其中正确的是()A.①②③B.①②④C.②③④D.①②③④3.如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②PF=PA;③AH+BD=AB;④S四边形ABDE =S△ABP,其中正确的是()A.①③B.①②④C.①②③D.②③4.如图,在四边形ABCD中,∠B=∠C=90°,∠DAB与∠ADC的平分线相交于BC边上的M点,则下列结论:①∠AMD=90°;②M为BC的中点;③AB+CD=AD;④;⑤M到AD的距离等于BC的一半;其中正确的有()1A.2个B.3个C.4个D.5个二.解答题(共8小题)5.如图1,在Rt△ACB中,∠ACB=90°,∠ABC=30°AC=1点D为AC上一动点,连接BD,以BD为边作等边△BDE,EA的延长线交BC的延长线于F,设CD=n,(1)当n=1时,则AF=_________;(2)当0<n<1时,如图2,在BA上截取BH=AD,连接EH,求证:△AEH为等边三角形.6.两个等腰直角△ABC和等腰直角△DCE如图1摆放,其中D点在AB上,连接BE.(1)则=_________,∠CBE=_________度;(2)当把△DEF绕点C旋转到如图2所示的位置时(D点在BC上),连接AD并延长交BE于点F,连接FC,则=_________,∠CFE=_________度;(3)把△DEC绕点C旋转到如图3所示的位置时,请求出∠CFE的度数_________.7.已知△ABC为边长为10的等边三角形,D是BC边上一动点:①如图1,点E在AC上,且BD=CE,BE交AD于F,当D点滑动时,∠AFE的大小是否变化?若不变,请求出其度数.②如图2,过点D作∠ADG=60°与∠ACB的外角平分线交于G,当点D在BC上滑动时,有下列两个结论:①DC+CG 的值为定值;②DG﹣CD的值为定值.其中有且只有一个是正确的,请你选择正确的结论加以证明并求出其值.8.如图,点A、C分别在一个含45°的直角三角板HBE的两条直角边BH和BE上,且BA=BC,过点C作BE的垂线CD,过E点作EF上AE交∠DCE的角平分线于F点,交HE于P.(1)试判断△PCE的形状,并请说明理由;(2)若∠HAE=120°,AB=3,求EF的长.9.如图,AD是△ABC的角平分线,H,G分别在AC,AB上,且HD=BD.(1)求证:∠B与∠AHD互补;(2)若∠B+2∠DGA=180°,请探究线段AG与线段AH、HD之间满足的等量关系,并加以证明.10.如图,在等腰Rt△ABC与等腰Rt△DBE中,∠BDE=∠ACB=90°,且BE在AB边上,取AE的中点F,CD 的中点G,连接GF.(1)FG与DC的位置关系是_________,FG与DC的数量关系是_________;(2)若将△BDE绕B点逆时针旋转180°,其它条件不变,请完成下图,并判断(1)中的结论是否仍然成立?请证明你的结论.11.如图1,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE 和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.(1)试探究EP与FQ之间的数量关系,并证明你的结论.(2)若连接EF交GA的延长线于H,由(1)中的结论你能判断并证明EH与FH的大小关系吗?(3)图2中的△ABC与△AEF的面积相等吗?(不用证明)12.已知如图1:△ABC中,AB=AC,∠B、∠C的平分线相交于点O,过点O作EF∥BC交AB、AC于E、F.①图中有几个等腰三角形?请说明EF与BE、CF间有怎样的关系.②若AB≠AC,其他条件不变,如图2,图中还有等腰三角形吗?如果有,请分别指出它们.另第①问中EF与BE、CF间的关系还存在吗?③若△ABC中,∠B的平分线与三角形外角∠ACD的平分线CO交于O,过O点作OE∥BC交AB于E,交AC 于F.如图3,这时图中还有哪几个等腰三角形?EF与BE、CF间的关系如何?为什么?八年级[丄]数学期末《全等三角形》《轴对称》复习提优题【大海之音组卷】参考答案与试题解析一.选择题(共4小题)1.如图,Rt△ACB中,∠ACB=90°,∠ABC的角平分线BE和∠BAC的外角平分线AD相交于点P,分别交AC 和BC的延长线于E,D.过P作PF⊥AD交AC的延长线于点H,交BC的延长线于点F,连接AF交DH于点G.则下列结论:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH.其中正确的是()A.①②③B.①②④C.②③④D.①②③④考点:直角三角形的性质;角平分线的定义;垂线;全等三角形的判定与性质.专题:推理填空题.分析:①根据三角形的一个外角等于与它不相邻的两个内角的和与角平分线的定义表示出∠CAP,再根据角平分线的定义∠ABP=∠ABC,然后利用三角形的内角和定理整理即可得解;②③先根据直角的关系求出∠AHP=∠FDP,然后利用角角边证明△AHP与△FDP全等,根据全等三角形对应边相等可得DF=AH,对应角相等可得∠PFD=∠HAP,然后利用平角的关系求出∠BAP=∠BFP,再利用角角边证明△ABP与△FBP全等,然后根据全等三角形对应边相等得到AB=BF,从而得解;④根据PF⊥AD,∠ACB=90°,可得AG⊥DH,然后求出∠ADG=∠DAG=45°,再根据等角对等边可得DG=AG,再根据等腰直角三角形两腰相等可得GH=GF,然后求出DG=GH+AF,有直角三角形斜边大于直角边,AF>AP,从而得出本小题错误.解答:解:①∵∠ABC的角平分线BE和∠BAC的外角平分线,∴∠ABP=∠ABC,∠CAP=(90°+∠ABC)=45°+∠ABC,在△ABP中,∠APB=180°﹣∠BAP﹣∠ABP,=180°﹣(45°+∠ABC+90°﹣∠ABC)﹣∠ABC,=180°﹣45°﹣∠ABC﹣90°+∠ABC﹣∠ABC,=45°,故本小题正确;②③∵∠ACB=90°,PF⊥AD,∴∠FDP+∠HAP=90°,∠AHP+∠HAP=90°,∴∠AHP=∠FDP,∵PF⊥AD,∴∠APH=∠FPD=90°,在△AHP与△FDP中,,∴△AHP≌△FDP(AAS),∴DF=AH,∵AD为∠BAC的外角平分线,∠PFD=∠HAP,∴∠PAE+∠BAP=180°,又∵∠PFD+∠BFP=180°,∴∠PAE=∠PFD,∵∠ABC的角平分线,∴∠ABP=∠FBP,在△ABP与△FBP中,,∴△ABP≌△FBP(AAS),∴AB=BF,AP=PF故②小题正确;∵BD=DF+BF,∴BD=AH+AB,∴BD﹣AH=AB,故③小题正确;④∵PF⊥AD,∠ACB=90°,∴AG⊥DH,∵AP=PF,PF⊥AD,∴∠PAF=45°,∴∠ADG=∠DAG=45°,∴DG=AG,∵∠PAF=45°,AG⊥DH,∴△ADG与△FGH都是等腰直角三角形,∴DG=AG,GH=GF,∴DG=GH+AF,∵AF>AP,∴DG=AP+GH不成立,故本小题错误,综上所述①②③正确.故选A.点评:本题考查了直角三角形的性质,全等三角形的判定,以及等腰直角三角形的判定与性质,等角对等边,等边对等角的性质,综合性较强,难度较大,做题时要分清角的关系与边的关系.2.如图,将30°的直角三角尺ABC绕直角顶点A逆时针旋转到ADE的位置,使B点的对应点D落在BC边上,连接EB、EC,则下列结论:①∠DAC=∠DCA;②ED为AC的垂直平分线;③EB平分∠AED;④ED=2AB.其中正确的是()A.①②③B.①②④C.②③④D.①②③④考点:旋转的性质;含30度角的直角三角形.分析:根据直角三角形中30°的角所对的直角边等于斜边的一半,以及旋转的性质即可判断.解答:解:①根据旋转的性质可以得到:AB=AD,而∠ABD=60°,则△ABD是等边三角形,可得到∠DAC=30°,∴∠DAC=∠DCA,故正确;②根据①可得AD=CD,并且根据旋转的性质可得:AC=AE,∠EAC=60°,则△ACE是等边三角形,则EA=EC,即D、E都到AC两端的距离相等,则DE在AC的垂直平分线上,故正确;③根据条件AB∥DE,而AB≠AE,即可证得EB平分∠AED不正确,故错误;④根据旋转的性质,DE=BC,而BC=2AB,即可证得ED=2AB,故正确;故正确的是:①②④.故选B.点评:正确理解旋转的性质,图形旋转前后两个图形全等是解决本题的关键.3.如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②PF=PA;③AH+BD=AB;④S四边形ABDE=S△ABP,其中正确的是()A.①③B.①②④C.①②③D.②③考点:全等三角形的判定与性质;等腰三角形的性质.分析:根据三角形全等的判定和性质以及三角形内角和定理逐条分析判断.解答:解:在△ABC中,AD、BE分别平分∠BAC、∠ABC,∵∠ACB=90°,∴∠A+∠B=90°,又∵AD、BE分别平分∠BAC、∠ABC,∴∠BAD+∠ABE=(∠A+∠B)=45°,∴∠APB=135°,故①正确.∴∠BPD=45°,又∵PF⊥AD,∴∠FPB=90°+45°=135°,∴∠APB=∠FPB,又∵∠ABP=∠FBP,BP=BP,∴△ABP≌△FBP,∴∠BAP=∠BFP,AB=FB,PA=PF,故②正确.在△APH和△FPD中,∵∠APH=∠FPD=90°,∠PAH=∠BAP=∠BFP,PA=PF,∴△APH≌△FPD,∴AH=FD,又∵AB=FB,∴AB=FD+BD=AH+BD.故③正确.∵△ABP≌△FBP,△APH≌△FPD,∴S四边形ABDE=S△ABP+S△BDP+S△APH﹣S△EOH+S△DOP=S△ABP+S△ABP﹣S△EOH+S△DOP=2S△ABP﹣S△EOH+S△DOP.故选C.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.如图,在四边形ABCD中,∠B=∠C=90°,∠DAB与∠ADC的平分线相交于BC边上的M点,则下列结论:①∠AMD=90°;②M为BC的中点;③AB+CD=AD;④;⑤M到AD的距离等于BC的一半;其中正确的有()A.2个B.3个C.4个D.5个考点:全等三角形的判定与性质;角平分线的性质.分析:过M作ME⊥AD于E,得出∠MDE=∠CDA,∠MAD=∠BAD,求出∠MDA+∠MAD=(∠CDA+∠BAD)=90°,根据三角形内角和定理求出∠AMD,即可判断①;根据角平分线性质求出MC=ME,ME=MB,即可判断②和⑤;由勾股定理求出DC=DE,AB=AE,即可判断③;根据SSS证△DEM≌△DCM,推出S=S三角形DCM,同理得出S三角形AEM=S三角形ABM,即可判断④.三角形DEM解答:解:过M作ME⊥AD于E,∵∠DAB与∠ADC的平分线相交于BC边上的M点,∴∠MDE=∠CDA,∠MAD=∠BAD,∵DC∥AB,∴∠CDA+∠BAD=180°,∴∠MDA+∠MAD=(∠CDA+∠BAD)=×180°=90°,∴∠AMD=180°﹣90°=90°,∴①正确;∵DM平分∠CDE,∠C=90°(MC⊥DC),ME⊥DA,∴MC=ME,同理ME=MB,∴MC=MB=ME=BC,∴②正确;∴M到AD的距离等于BC的一半,∴⑤正确;∵由勾股定理得:DC2=MD2﹣MC2,DE2=MD2﹣ME2,又∵ME=MC,MD=MD,∴DC=DE,同理AB=AE,∴AD=AE+DE=AB+DC,∴③正确;∵在△DEM和△DCM中,∴△DEM≌△DCM(SSS),∴S三角形DEM=S三角形DCM同理S三角形AEM=S三角形ABM,∴S三角形AMD=S梯形ABCD,∴④正确;故选D.点评:本题考查了角平分线性质,垂直定义,直角梯形,勾股定理,全等三角形的性质和判定等知识点的应用,主要考查学生运用定理进行推理的能力.二.解答题(共8小题)5.如图1,在Rt△ACB中,∠ACB=90°,∠ABC=30°AC=1点D为AC上一动点,连接BD,以BD为边作等边△BDE,EA的延长线交BC的延长线于F,设CD=n,(1)当n=1时,则AF=2;(2)当0<n<1时,如图2,在BA上截取BH=AD,连接EH,求证:△AEH为等边三角形.考点:含30度角的直角三角形;全等三角形的判定与性质;等边三角形的性质.专题:动点型.分析:(1)根据三角形内角和定理求出∠BAC=60°,再根据平角等于180°求出∠FAC=60°,然后求出∠F=30°,根据30°角所对的直角边等于斜边的一半求解即可;(2)根据三角形的任意一个外角等于与它不相邻的两个内角的和利用∠CBD表示出∠ADE=30°+∠CBD,又∠HBE=30°+∠CBD,从而得到∠ADE=∠HBE,然后根据边角边证明△ADE与△HBE全等,根据全等三角形对应边相等可得AE=HE,对应角相等可得∠AED=∠HEB,然后推出∠AEH=∠BED=60°,再根据等边三角形的判定即可证明.解答:(1)解:∵△BDE是等边三角形,∴∠EDB=60°,∵∠ACB=90°,∠ABC=30°,∴∠BAC=180°﹣90°﹣30°=60°,∴FAC=180°﹣60°﹣60°=60°,∴∠F=180°﹣90°﹣60°=30°,∵∠ACB=90°,∴∠ACF=180°﹣90°,∴AF=2AC=2×1=2;(2)证明:∵△BDE是等边三角形,∴BE=BD,∠EDB=∠EBD=60°,在△BCD中,∠ADE+∠EDB=∠CBD+∠C,即∠ADE+60°=∠CBD+90°,∴∠ADE=30°+∠CBD,∵∠HBE+∠ABD=60°,∠CBD+∠ABD=30°,∴∠HBE=30°+∠CBD,∴∠ADE=∠HBE,在△ADE与△HBE中,,∴△ADE≌△HBE(SAS),∴AE=HE,∠AED=∠HEB,∴∠AED+∠DEH=∠DEH+∠HEB,即∠AEH=∠BED=60°,∴△AEH为等边三角形.点评:本题考查了30°角所对的直角边等于斜边的一半的性质,全等三角形的判定与性质,等边三角形的性质与判定,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,(2)中求出∠ADE=∠HBE是解题的关键.6.两个等腰直角△ABC和等腰直角△DCE如图1摆放,其中D点在AB上,连接BE.(1)则=1,∠CBE=45度;(2)当把△DEF绕点C旋转到如图2所示的位置时(D点在BC上),连接AD并延长交BE于点F,连接FC,则=1,∠CFE=45度;(3)把△DEC绕点C旋转到如图3所示的位置时,请求出∠CFE的度数135°.考点:圆周角定理;全等三角形的判定与性质;等腰直角三角形;确定圆的条件.分析:(1)先证明∠ACD=∠BCE,再根据边角边定理证明△ACD≌△BCE,然后根据全等三角形对应边相等和对应角相等解答;(2)根据(1)的思路证明△ACD和△BCE全等,再根据全等三角形对应边相等得BE=AD,对应角相等得∠DAC=∠DBF,又AC⊥CD,所以AF⊥BF,从而可以得到C、E、F、D四点共圆,根据同弧所对的圆周角相等即可求出∠CFE=∠CDE=45°;(3)同(2)的思路,证明C、F、D、E四点共圆,得出∠CFD=∠CED=45°,而∠DEF=90°,所以∠CFE 的度数即可求出.解答:解:(1)∵△ABC和△DCE是等腰三角形,∴AC=BC,CD=CE,∵∠ACB=∠DCE=90°,∴∠ACB﹣∠BCD=∠DCE﹣∠BCD,即∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴BE=AD,∠CBE=∠CAD=45°,因此=1,∠CBE=45°;(2)同(1)可得BE=AD,∴=1,∠CBE=∠CAD;又∵∠ACD=90°,∠ADC=∠BDF,∴∠BFD=∠ACD=90°;又∵∠DCE=90°,∴C、E、F、D四点共圆,∴∠CFE=∠CDE=45°;(3)同(2)可得∠BFA=90°,∴∠DFE=90°;又∵∠DCE=90°,∴C、F、D、E四点共圆,∴∠CFD=∠CED=45°,∴∠CFE=∠CFD+∠DFE=45°+90°=135°.点评:本题综合考查了等边对等角的性质,三角形全等的判定和全等三角形的性质,四点共圆以及同弧所对的圆周角相等的性质,需要熟练掌握并灵活运用.7.已知△ABC为边长为10的等边三角形,D是BC边上一动点:①如图1,点E在AC上,且BD=CE,BE交AD于F,当D点滑动时,∠AFE的大小是否变化?若不变,请求出其度数.②如图2,过点D作∠ADG=60°与∠ACB的外角平分线交于G,当点D在BC上滑动时,有下列两个结论:①DC+CG 的值为定值;②DG﹣CD的值为定值.其中有且只有一个是正确的,请你选择正确的结论加以证明并求出其值.考点:等边三角形的性质;全等三角形的判定与性质.专题:探究型.分析:①∠AFE的大小不变,其度数为60°,理由如下:由三角形ABC为等边三角形,得到三条边相等,三个内角相等,都为60°,可得出AB=BC,∠ABD=∠C,再由BD=CE,利用SAS可得出三角形ABD与三角形BCE全等,根据全等三角形的对应角相等可得出∠BAD=∠CBE,在三角形ABD中,由∠ABD为60°,得到∠BAD+∠ADB的度数,等量代换可得出∠CBE+∠ADB的度数,利用三角形的内角和定理求出∠BFD 的度数,根据对应角相等可得出∠AFE=∠BFD,可得出∠AFE的度数不变;②连接AG,如图所示,由三角形ABC为等边三角形,得出三条边相等,三个内角都相等,都为60°,再由CG为外角平分线,得出∠ACG也为60°,由∠ADG为60°,可得出A,D,C,G四点共圆,根据圆内接四边形的对角互补可得出∠DAG与∠DCG互补,而∠DCG为120°,可得出∠DAG为60°,根据∠BAD+∠DAC=∠DAC+∠CAG=60°,利用等式的性质得到∠BAD=∠CAG,利用ASA可证明三角形ABD 与三角形ACG全等,利用全等三角形的对应边相等可得出BD=CG,由BC=BD+DC,等量代换可得出CG+CD=BC,而BC=10,即可得到DC+CG为定值10,得证.解答:解:①∠AFE的大小不变,其度数为60°,理由为:∵△ABC为等边三角形,∴AB=BC,∠ABD=∠C=60°,在△ABD和△BCE中,,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,又∠BAD+∠ADB=120°,∴∠CBE+∠ADB=120°,∴∠BFD=60°,则∠AFE=∠BFD=60°;②正确的结论为:DC+CG的值为定值,理由如下:连接AG,如图2所示:∵△ABC为等边三角形,∴AB=BC=AC,∠ABD=∠ACB=∠BAC=60°,又CG为∠ACB的外角平分线,∴∠ACG=60°,又∵∠ADG=60°,∴∠ADG=∠ACG,即A,D,C,G四点共圆,∴∠DAG+∠DCG=180°,又∠DCG=120°,∴∠DAG=60°,即∠DAC+∠CAG=60°,又∵∠BAD+∠DAC=60°,∴∠BAD=∠GAC,在△ABD和△ACG中,∵,∴△ABD≌△ACG(ASA),∴DB=GC,又BC=10,则BC=BD+DC=DC+CG=10,即DC+CG的值为定值.点评:此题考查了等边三角形的判定与性质,全等三角形的判定与性质,四点共圆的条件,以及圆内接四边形的性质,利用了等量代换及转化的思想,熟练掌握等边三角形的判定与性质是解本题的关键.8.如图,点A、C分别在一个含45°的直角三角板HBE的两条直角边BH和BE上,且BA=BC,过点C作BE的垂线CD,过E点作EF上AE交∠DCE的角平分线于F点,交HE于P.(1)试判断△PCE的形状,并请说明理由;(2)若∠HAE=120°,AB=3,求EF的长.考点:全等三角形的判定与性质;等腰直角三角形.专题:计算题;证明题.分析:(1)根据∠PCE=∠DCE=×90°=45°,求证∠CPE=90°,然后即可判断三角形的形状.(2)根据∠HEB=∠H=45°得HB=BE,再根据BA=BC和∠HAE=120°,利用ASA求证△HAE≌△CEF,得AE=EF,又因为AE=2AB.然后即可求得EF.解答:解:(1)△PCE是等腰直角三角形,理由如下:∵∠PCE=∠DCE=×90°=45°∠PEC=45°∴∠PCE=∠PEC∠CPE=90°∴△PCE是等腰直角三角形(2)∵∠HEB=∠H=45°∴HB=BE∵BA=BC∴AH=CE而∠HAE=120°∴∠BAE=60°,∠AEB=30°又∵∠AEF=90°∴∠CEF=120°=∠HAE而∠H=∠FCE=45°∴△HAE≌△CEF(ASA)∴AE=EF又∵AE=2AB=2×3=6∴EF=6点评:此题主要考查学生对全等三角形的判定与性质和等腰直角三角形等知识点的理解和掌握,解答(2)的关键是利用ASA求证△HAE≌△CEF,此题有一定的拔高难度,属于中档题.9.如图,AD是△ABC的角平分线,H,G分别在AC,AB上,且HD=BD.(1)求证:∠B与∠AHD互补;(2)若∠B+2∠DGA=180°,请探究线段AG与线段AH、HD之间满足的等量关系,并加以证明.考点:全等三角形的判定与性质.专题:证明题.分析:(1)在AB上取一点M,使得AM=AH,连接DM,则利用SAS可得出△AHD≌△AMD,从而得出HD=MD=DB,即有∠DMB=∠B,通过这样的转化可证明∠B与∠AHD互补.(2)由(1)的结论中得出的∠AHD=∠AMD,结合三角形的外角可得出∠DGM=∠GDM,可将HD转化为MG,从而在线段AG上可解决问题.解答:证明:(1)在AB上取一点M,使得AM=AH,连接DM,∵,∴△AHD≌△AMD,∴HD=MD,∠AHD=∠AMD,∵HD=DB,∴DB=MD,∴∠DMB=∠B,∵∠AMD+∠DMB=180°,∴∠AHD+∠B=180°,即∠B与∠AHD互补.(2)由(1)∠AHD=∠AMD,HD=MD,∠AHD+∠B=180°,∵∠B+2∠DGA=180°,∠AHD=2∠DGA,∴∠AMD=2∠DGM,又∵∠AMD=∠DGM+∠GDM,∴2∠DGM=∠DGM+∠GDM,即∠DGM=∠GDM,∴MD=MG,∴HD=MG,∵AG=AM+MG,∴AG=AH+HD.点评:本题考查了全等三角形的判定及性质,结合了等腰三角形的知识,解决这两问的关键都是通过全等图形的对应边相等、对应角相等,将题目涉及的角或边进行转化.10.如图,在等腰Rt△ABC与等腰Rt△DBE中,∠BDE=∠ACB=90°,且BE在AB边上,取AE的中点F,CD的中点G,连接GF.(1)FG与DC的位置关系是FG⊥CD,FG与DC的数量关系是FG=CD;(2)若将△BDE绕B点逆时针旋转180°,其它条件不变,请完成下图,并判断(1)中的结论是否仍然成立?请证明你的结论.考点:全等三角形的判定与性质;等腰直角三角形.专题:探究型.分析:(1)证FG和CD的大小和位置关系,我们已知了G是CD的中点,猜想应该是FG⊥CD,FG=CD.可通过构建三角形连接FD,FC,证三角形DFC是等腰直角三角形来得出上述结论,可通过全等三角形来证明;延长DE交AC于M,连接FM,证明三角形DEF和FMC全等即可.我们发现BDMC是个矩形,因此BD=CM=DE.由于三角形DEB和ABC都是等腰直角三角形,∠BED=∠A=45°,因此∠AEM=∠A=45°,这样我们得出三角形AEM是个等腰直角三角形,F是斜边AE的中点,因此MF=EF,∠AMF=∠BED=45°,那么这两个角的补角也应当相等,由此可得出∠DEF=∠FMC,这样就构成了三角形DEF和CMF的全等的所有条件,可得到DF=FC,即三角形DFC是等腰三角形,下面证直角.根据两三角形全等,我们还能得出∠MFC=∠DFE,我们知道∠MFC+∠CFE=90°,因此∠DFE+∠CFE=∠DFC=90°,这样就得出三角形DFC是等腰直角三角形了,也就能得出FG⊥CD,FG=CD的结论了.(2)和(1)的证法完全一样.解答:解:(1)FG⊥CD,FG=CD.(2)延长ED交AC的延长线于M,连接FC、FD、FM,∴四边形BCMD是矩形.∴CM=BD.又△ABC和△BDE都是等腰直角三角形,∴ED=BD=CM.∵∠AEM=∠A=45°,∴△AEM是等腰直角三角形.又F是AE的中点,∴MF⊥AE,EF=MF,∠EDF=∠MCF.∵在△EFD和△MFC中,∴△EFD≌△MFC.∴FD=FC,∠EFD=∠MFC.又∠EFD+∠DFM=90°,∴∠MFC+∠DFM=90°.即△CDF是等腰直角三角形,又G是CD的中点,∴FG=CD,FG⊥CD.点评:本题中通过构建全等三角形来证明线段和角相等是解题的关键.11.如图1,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE 和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.(1)试探究EP与FQ之间的数量关系,并证明你的结论.(2)若连接EF交GA的延长线于H,由(1)中的结论你能判断并证明EH与FH的大小关系吗?(3)图2中的△ABC与△AEF的面积相等吗?(不用证明)考点:全等三角形的判定与性质;等腰直角三角形.分析:(1)根据全等三角形的判定得出△ABG≌△EAP,进而求出AG=EP.同理AG=FQ,即EP=FQ.(2)过点E作EP⊥GA,FQ⊥GA,垂足分别为P、Q.根据全等三角形的判定和性质即可解题.(3)由(1)、(2)中的全等三角形可以推知△ABC与△AEF的面积相等.解答:解:(1)EP=FQ,理由如下:如图1,∵Rt△ABE是等腰三角形,∴EA=BA.∵∠PEA+∠PAE=90°,∠PAE+∠BAG=90°,∴∠PEA=∠BAG在△EAP与△ABG中,,∴△EAP≌△ABG(AAS),∴EP=AG.同理AG=FQ.∴EP=FQ.(2)如图2,HE=HF.理由:过点E作EP⊥GA,FQ⊥GA,垂足分别为P、Q.由(1)知EP=FQ.在△EPH与△FQH中,∵,∴△EPH≌△FQH(AAS).∴HE=HF;(3)相等.理由如下:由(1)知,△ABG≌△EAP,△FQA≌△AGC,则S△ABG=S△EAP,S△FQA=S△AGC.由(2)知,△EPH≌△FQH,则S△EPH=S△FQH,所以S△ABC=S△ABG+S△AGC=S△EAP﹣S△EPH+S△FQA﹣S△FQH=S△EAP+S△FQA=S△AEF,即S△ABC=S△AEF.故图2中的△ABC与△AEF的面积相等.点评:本题考查了全等三角形的证明,考查了全等三角形对应边相等的性质,考查了三角形内角和为180°的性质,考查了等腰三角形腰长相等的性质,本题中求证△AFQ≌△CAG是解题的关键.12.已知如图1:△ABC中,AB=AC,∠B、∠C的平分线相交于点O,过点O作EF∥BC交AB、AC于E、F.①图中有几个等腰三角形?请说明EF与BE、CF间有怎样的关系.②若AB≠AC,其他条件不变,如图2,图中还有等腰三角形吗?如果有,请分别指出它们.另第①问中EF与BE、CF间的关系还存在吗?③若△ABC中,∠B的平分线与三角形外角∠ACD的平分线CO交于O,过O点作OE∥BC交AB于E,交AC 于F.如图3,这时图中还有哪几个等腰三角形?EF与BE、CF间的关系如何?为什么?考点:等腰三角形的判定与性质;平行线的性质.专题:计算题;证明题.分析:(1)根据EF∥BC,∠B、∠C的平分线交于O点,可得∠EOB=∠OBC,∠FOC=∠OCB,∠EOB=∠OBE,∠FCO=∠FOC,再加上题目中给出的AB=AC,共5个等腰三角形;根据等腰三角形的性质,即可得出EF 与BE、CF间有怎样的关系.(2)根据EF∥BC 和∠B、∠C的平分线交于O点,还可以证明出△OBE和△OCF是等腰三角形;利用几个等腰三角形的性质即可得出EF与BE,CF的关系.(3)EO∥BC和OB,OC分别是∠ABC与∠ACL的角平分线,还可以证明出△BEO和△CFO是等腰三角形.解答:解:(1)有5个等腰三角形,EF与BE、CF间有怎样的关系是:EF=BE+CF=2BE=2CF.理由如下:∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,又∠B、∠C的平分线交于O点,∴∠EBO=∠OBC,∠FCO=∠OCB,∴∠EOB=∠OBE,∠FCO=∠FOC,∴OE=BE,OF=CF,∴EF=OE+OF=BE+CF.又AB=AC,∴∠ABC=∠ACB,∴∠EOB=∠OBE=∠FCO=∠FOC,∴EF=BE+CF=2BE=2CF;(2)有2个等腰三角形分别是:等腰△OBE和等腰△OCF;第一问中的EF与BE,CF的关系是:EF=BE+CF.(3)有,还是有2个等腰三角形,△EBO,△OCF,EF=BE﹣CF,理由如下:∵EO∥BC,∴∠EOB=∠OBC,∠EOC=∠OCG(G是BC延长线上的一点)又∵OB,OC分别是∠ABC与∠ACG的角平分线∴∠EBO=∠OBC,∠ACO=∠OCG,∴∠EOB=∠EBO,∴BE=OE,∠FCO=∠FOC,∴CF=FO,又∵EO=EF+FO,∴EF=BE﹣CF.点评:此题主要考查学生对等腰三角形的判定与性质和平行线性质的理解和掌握,此题难度并不大,但是步骤繁琐,属于中档题,还有第(1)中容易忽略△ABC也是等腰三角形,因此这又是一道易错题.要求学生在证明此题时一定要仔细,认真.。
龙湖实验中学八年级数学测试卷(全等三角形、轴对称)

DAEMB C第6题第4题龙湖实验中学八年级数学测试卷(全等三角形、轴对称)(时间:90分钟满分:150分)2010年10月12日班级:姓名:座号:评分:一、选择题(本大题共8小题,每小题4分,共32分。
)1、小亮在镜中看到身后墙上的四个时钟如下, 你认为实际时间最接近8:00的是( ) A.B. C. D.2.下列两个三角形中,一定全等的是()。
A、有一个角是40°,腰相等的两个等腰三角形;B、两个等边三角形;C、有一个角是100°,底相等的两个等腰三角形;D、有一条边相等,有一个内角相等的两个等腰三角形。
3、将两个全等且含有60 的直角三角形拼成如下图所示的图形,其中两条较长直角边在同一直线上,则图中等腰三角形的个数是()A.4 B.3 C.2 D.14、如图,是一个经过改造的台球桌面示意图,图中四个角上的阴影部份分别表示四个入球孔.如果一个球按图中箭头所示的方向被击出(球碰到桌边可以经过多次反射),那么该球最后将落入的球袋是()A.1号袋 B.2号袋 C.3号袋 D.4号袋5、等腰三角形一腰上的高与另一腰的夹角为30º,则底角为()A、30ºB、60ºC、30º或60ºD、45º或60º6、如图所示,在△ABC中,BM平分∠ABC,CM平分∠ACB,过点M作DE∥BC,交AB于D,交AC于E,AB=10cm,AC=6cm.则△ADE的周长为()。
A、12cmB、16cmC、20cmD、12cm 或20 cm7、如图,把矩形纸片ABCD沿对角线折叠,若重叠部分为△EBD,那么下列说法错误的是().A、△EBD是等腰三角形B、折叠后∠ABE和∠CBD一定相等A F C DHBMEG第17题第18题C、折叠后得到的图形是轴对称图形D、△EBA和△EDC一定全等8、如图平面直角坐标系中,点P在X轴上,△AOP为等腰三角形,满足要求的点P的个数共有()个。
人教版八年级数学上册 全等三角形达标检测卷(Word版 含解析)

人教版八年级数学上册全等三角形达标检测卷(Word版含解析)一、八年级数学轴对称三角形填空题(难)1.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P有_____个.【答案】4【解析】【分析】由A点坐标可得OA=22,∠AOP=45°,分别讨论OA为腰和底边,求出点P在x轴正半轴和负半轴时,△APO是等腰三角形的P点坐标即可.【详解】(1)当点P在x轴正半轴上,①如图,以OA为腰时,∵A的坐标是(2,2),∴∠AOP=45°,OA=22,当∠AOP为顶角时,OA=OP=22,当∠OAP为顶角时,AO=AP,∴OPA=∠AOP=45°,∴∠OAP=90°,∴OP=2OA=4,∴P的坐标是(4,0)或(22,0).②以OA为底边时,∵点A的坐标是(2,2),∴∠AOP=45°,∵AP=OP,∴∠OAP=∠AOP=45°,∴∠OPA=90°,∴OP=2, ∴P 点坐标为(2,0).(2)当点P 在x 轴负半轴上,③以OA 为腰时,∵A 的坐标是(2,2),∴OA =22,∴OA =OP =22,∴P 的坐标是(﹣22,0).综上所述:P 的坐标是(2,0)或(4,0)或(22,0)或(﹣22,0).故答案为:4.【点睛】此题主要考查等腰三角形的判定及坐标与图形性质的综合运用,注意分类讨论思想的运用是解题关键.2.如图,在等边ABC ∆中取点P 使得PA ,PB ,PC 的长分别为3, 4, 5,则APC APB S S ∆∆+=_________.【答案】936 【解析】【分析】把线段AP 以点A 为旋转中心顺时针旋转60︒得到线段AD ,由旋转的性质、等边三角形的性质以及全等三角形的判定定理SAS证得△ADB≌△APC,连接PD,根据旋转的性质知△APD是等边三角形,利用勾股定理的逆定理可得△PBD为直角三角形,∠BPD=90︒,由△ADB≌△APC得S△ADB=S△APC,则有S△APC+S△APB=S△ADB+S△APB=S△ADP+S△BPD,根据等边三角形的面积为边长平方的3倍和直角三角形的面积公式即可得到S△ADP+S△BPD=3×32+12×3×4=936+.【详解】将线段AP以点A为旋转中心顺时针旋转60︒得到线段AD,连接PD ∴AD=AP,∠DAP=60︒,又∵△ABC为等边三角形,∴∠BAC=60︒,AB=AC,∴∠DAB+∠BAP=∠PAC+∠BAP,∴∠DAB=∠PAC,又AB=AC,AD=AP∴△ADB≌△APC∵DA=PA,∠DAP=60︒,∴△ADP为等边三角形,在△PBD中,PB=4,PD=3,BD=PC=5,∵32+42=52,即PD2+PB2=BD2,∴△PBD为直角三角形,∠BPD=90︒,∵△ADB≌△APC,∴S△ADB=S△APC,∴S△APC+S△APB=S△ADB+S△APB=S△ADP+S△BPD=34×32+12×3×4=9364+.故答案为:936+.【点睛】本题考查了等边三角形的性质与判定,解题的关键是熟知旋转的性质作出辅助线进行求解.3.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.以OC为一边作等边三角形OCD ,连接AC 、AD ,当△AOD 是等腰三角形时,求α的角度为______【答案】110°、125°、140°【解析】【分析】先求出∠DAO=50°,分三种情况讨论:①AO=AD ,则∠AOD=∠ADO ,②OA=OD ,则∠OAD=∠ADO ,③OD=AD ,则∠OAD=∠AOD ,分别求出α的角度即可.【详解】解:∵设∠CBO=∠CAD=a ,∠ABO=b ,∠BAO=c ,∠CAO=d ,则a+b=60°,b+c=180°﹣110°=70°,c+d=60°,∴b ﹣d=10°,∴(60°﹣a )﹣d=10°,∴a+d=50°,即∠DAO=50°,分三种情况讨论:①AO=AD ,则∠AOD=∠ADO ,∴190°﹣α=α﹣60°,∴α=125°;②OA=OD ,则∠OAD=∠ADO ,∴α﹣60°=50°,∴α=110°;③OD=AD ,则∠OAD=∠AOD ,∴190°﹣α=50°,∴α=140°;所以当α为110°、125°、140°时,三角形AOD 是等腰三角形,故答案为:110°、125°、140°.【点睛】本题是对等边三角形的考查,熟练掌握等边三角形的性质定理及分类讨论是解决本题的关键.4.如图,线段AB ,DE 的垂直平分线交于点C ,且72ABC EDC ∠=∠=︒,92AEB ∠=︒,则EBD ∠的度数为 ________ .【答案】128︒【解析】【分析】连接CE ,由线段AB ,DE 的垂直平分线交于点C ,得CA=CB ,CE=CD ,ACB=∠ECD=36°,进而得∠ACE=∠BCD ,易证∆ACE ≅∆BCD ,设∠AEC=∠BDC=x ,得则∠BDE=72°-x ,∠CEB=92°-x ,BDE 中,∠EBD=128°,根据三角形内角和定理,即可得到答案.【详解】连接CE ,∵线段AB ,DE 的垂直平分线交于点C ,∴CA=CB ,CE=CD ,∵72ABC EDC ∠=∠=︒=∠DEC ,∴∠ACB=∠ECD=36°,∴∠ACE=∠BCD ,在∆ACE 与∆BCD 中,∵CA CB ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩,∴∆ACE ≅∆BCD (SAS ), ∴∠AEC=∠BDC ,设∠AEC=∠BDC=x ,则∠BDE=72°-x ,∠CEB=92°-x ,∴∠BED=∠DEC-∠CEB=72°-(92°-x )=x-20°,∴在∆BDE 中,∠EBD=180°-(72°-x )-(x-20°)=128°.故答案是:128︒.【点睛】本题主要考查中垂线的性质,三角形全等的判定和性质定理以及三角形内角和定理,添加辅助线,构造全等三角形,是解题的关键.5.如图,点P是∠AOB内任意一点,OP=5,M,N分别是射线OA和OB上的动点,若△PMN周长的最小值为5,则∠AOB的度数为_____.【答案】30°.【解析】【分析】如图:分别作点P关于OB、AO的对称点P'、P'',分别连OP'、O P''、P' P''交OB、OA于M、N,则可证明此时△PMN周长的最小,由轴对称性,可证明△P'O P''为等边三角形,∠AOB=12∠P'O P''=30°.【详解】解:如图:分别作点P关于OB、AO的对称点P'、P'',分别连OP'、O 、P' 交OB、OA于M、N,由轴对称△PMN周长等于PN+NM+MP=P'N+NM+MP"=P'P"∴由两点之间线段最短可知,此时△PMN周长的最小∴P'P"=5由对称OP=OP'=OP"=5∴△P'OP"为等边三角形∴∠P'OP"=60∵∠P'OB=∠POB,∠P"OA=∠POA∴∠AOB=12∠P'O P''=30°.故答案为30°.【点睛】本题是动点问题的几何探究题,考查最短路径问题,应用了轴对称图形性质和等边三角形性质.6.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2,B3…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记a1,第2个等边三角形的边长记为a2,以此类推,若OA1=3,则a2=_______,a2019=_______.【答案】6; 3×22018.【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及a2=2a1=6,得出a3=4a1,a4=8a1,a5=16a1…进而得出答案.【详解】解:如图,∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA 1=A 1B 1=3,∴A 2B 1=3,∵△A 2B 2A 3、△A 3B 3A 4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A 1B 1∥A 2B 2∥A 3B 3,B 1A 2∥B 2A 3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴a 2=2a 1=6,a 3=4a 1,a 4=8a 1,a 5=16a 1,以此类推:a 2019=22018a 1=3×22018故答案是:6;3×22018.【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出a 2=2a 1=6,a 3=4a 1,a 4=8a 1,a 5=16a 1…进而发现规律是解题关键.7.等腰三角形顶角为30°,腰长是4cm ,则三角形的面积为__________【答案】4【解析】如图,根据30°角所对直角边等于斜边的一半的性质,可由等腰三角形的顶角为30°,腰长是4cm ,可求得BD=12AB =4×12=2,因此此三角形的面积为:S=12AC•BD=12×4×2=8×12=4(cm 2).故答案是:4.8.如图,ABC ∆中,AB AC =,点D 是ABC ∆内部一点,DB DC =,点E 是边AB上一点,若CD 平分ACE ∠,100AEC =∠,则BDC ∠=______°【答案】80【解析】【分析】根据角平分线得到∠ACE=2∠ACD ,再根据角的和差关系得到∠ECB =∠ACB -2∠ACD ,然后利用外角定理得到∠ABC+∠ECB=100°,代换化简得出∠ACB -∠ACD=50°,即∠DCB=50°,从而求出∠BDC 即可.【详解】∵CD 平分∠ACE ,∴∠ACE=2∠ACD=2∠ECD ,∴∠ECB=∠ACB -∠ACE=∠ACB -2∠ACD ,∵∠AEC=100°,∴∠ABC+∠ECB=100°,∴∠ABC+∠ACB -2∠ACD=100°,∵AB=AC ,∴∠ABC=∠ACB,∴2∠ACB -2∠ACD=100°,∴∠ACB -∠ACD=50°,即∠DCB=50°,∵DB=DC ,∴∠DBC=∠DCB ,∴∠BDC=180°-2∠DCB=180°-2×50°=80°.【点睛】本题考查了角平分线,三角形内角和,外角定理,及等边对等角的性质等知识,熟练掌握基本知识,找出角与角之间的关系是解题的关键.9.如图,∠BOC=60°,点A 是BO 延长线上的一点,OA=10cm ,动点P 从点A 出发沿AB 以2cm/s 的速度移动,动点Q 从点O 出发沿OC 以1cm/s 的速度移动,如果点P 、Q 同时出发,用t(s)表示移动的时间,当t=_____s 时,△POQ 是等腰三角形.【答案】103或10【解析】【分析】根据△POQ是等腰三角形,分两种情况进行讨论:点P在AO上,点P在BO上,分别计算,即可得解.【详解】当PO=QO时,△POQ是等腰三角形,如图1所示当点P在AO上时,∵PO=AO-AP=10-2t,OQ=t当PO=QO时,102t t-=解得103 t=当PO=QO 时,△POQ 是等腰三角形,如图2所示当点P 在BO 上时∵PO=AP-AO=2t-10,OQ=t当PO=QO 时,210t t -=解得10t =故答案为:103或10 【点睛】本题考查等腰三角形的性质及动点问题,熟练掌握等腰三角形的性质以及分类讨论思想是解题关键.10.如图:在ABC ∆中,D ,E 为边AB 上的两个点,且BD BC =,AE AC =,若108ACB ∠=︒,则DCE ∠的大小为______.【答案】036【解析】【分析】根据三角形内角和求出∠A+∠B,再根据AC=AE,BC=BD ,用∠A 表示∠AEC,用∠B 表示∠BDC,然后根据内角和求出∠DCE 的度数.【详解】∵∠ACB=1080,∴∠A+∠B=1800-1080=720,∵AC=AE,BC=BD,∴∠ACE=∠AEC,∠BCD=∠BDC,∴01(180)2AEC A ∠=-∠01902A =-∠ 01(180)2BDCB ∠=-∠=01902B -∠ ∵∠DCE+∠CDE+∠DEC=1800,∴0180DCE CDE CED ∠=-∠-∠= 00011180(90)(90)22A B --∠--∠ =1122A B ∠+∠ =1()2A B ∠+∠ =360【点睛】此题考察等腰三角形的性质,注意两条等边所在三角形,依此判断对应的两个底角相等.二、八年级数学轴对称三角形选择题(难)11.在平面直角坐标系中,等腰△ABC 的顶点A 、B 的坐标分别为(0,0)、(2,2),若顶点C 落在坐标轴上,则符合条件的点C 有( )个.A .5B .6C .7D .8【答案】D【解析】【分析】要使△ABC 是等腰三角形,可分三种情况(①若AC =AB ,②若BC =BA ,③若CA =CB )讨论,通过画图就可解决问题.【详解】①若AC =AB ,则以点A 为圆心,AB 为半径画圆,与坐标轴有4个交点;②若BC =BA ,则以点B 为圆心,BA 为半径画圆,与坐标轴有2个交点(A 点除外); ③若CA =CB ,则点C 在AB 的垂直平分线上.∵A (0,0),B (2,2),∴AB 的垂直平分线与坐标轴有2个交点.综上所述:符合条件的点C 的个数有8个.故选D .【点睛】本题考查了等腰三角形的判定、垂直平分线的性质的逆定理等知识,还考查了动手操作的能力,运用分类讨论的思想是解决本题的关键.12.已知:如图,点D,E分别在△ABC的边AC和BC上,AE与BD相交于点F,给出下面四个条件:①∠1=∠2;②AD=BE;③AF=BF;④DF=EF,从这四个条件中选取两个,不能判定△ABC是等腰三角形的是()A.①②B.①④C.②③D.③④【答案】C【解析】【分析】根据全等三角形的判定和性质以及等腰三角形的判定进行判断即可.【详解】选取①②:在ADF∆和BEF∆中1=2{12AFD BFEAD BEADF BEFAF BFFAB FBACAB CBAAC BC∠∠∠=∠=∴∆≅∆∴=∴∠=∠∠=∠∴∠=∠∴=选取①④:在ADF∆和BEF∆中1=2{12AFD BFEFD FEADF BEFAF BFFAB FBACAB CBAAC BC∠∠∠=∠=∴∆≅∆∴=∴∠=∠∠=∠∴∠=∠∴=选取③④:在ADF∆和BEF∆中={12AF BFAFD BFEFD FEADF BEFAF BFFAB FBACAB CBAAC BC∠=∠=∴∆≅∆∴=∴∠=∠∠=∠∴∠=∠∴=故选C.【点睛】本题考查了等腰三角形的性质和判定,全等三角形的性质和判定的应用,关键是熟练地运用定理进行推理,是一道开放性的题目,能培养学生分析问题的能力.13.平面直角坐标系中,已知A (2,0),B (0,2)若在坐标轴上取C 点,使△ABC 为等腰三角形,则满足条件的点C 的个数是( )A .4B .6C .7D .8【答案】C【解析】【分析】【详解】解:如图,①以A 为圆心,AB 为半径画圆,交坐标轴于点B ,C 1,C 2,C 5,得到以A 为顶点的等腰△ABC 1,△ABC 2,△ABC 5;②以B 为圆心,AB 为半径画圆,交坐标轴于点A ,C 3,C 6,C 7,得到以B 为顶点的等腰△BAC 3,△BAC 6,△BAC 7;③作AB 的垂直平分线,交x 轴于点C 4,得到以C 为顶点的等腰△C 4AB∴符合条件的点C 共7个故选C14.如图,AB⊥AC,CD、BE分别是△ABC的角平分线,AG∥BC,AG⊥BG,下列结论:①∠BAG=2∠ABF;②BA平分∠CBG;③∠ABG=∠ACB;④∠CFB=135°,其中正确的结论有()个A.1 B.2 C.3 D.4【答案】C【解析】【分析】由已知条件可知∠ABC+∠ACB=90°,又因为CD、BE分别是△ABC的角平分线,所以得到∠FBC+∠FCB=45°,所以求出∠CFB=135°;有平行线的性质可得到:∠ABG=∠ACB,∠BAG=2∠ABF.所以可知选项①③④正确.【详解】∵AB⊥AC.∴∠BAC=90°,∵∠BAC+∠ABC+∠ACB=180°,∴∠ABC+∠ACB=90°∵CD、BE分别是△ABC的角平分线,∴2∠FBC+2∠FCB=90°∴∠FBC+∠FCB=45°∴∠BFC=135°故④正确.∵AG∥BC,∴∠BAG =∠ABC∵∠ABC =2∠ABF∴∠BAG =2∠ABF 故①正确.∵AB ⊥AC ,∴∠ABC+∠ACB =90°,∵AG ⊥BG ,∴∠ABG+∠GAB =90°∵∠BAG =∠ABC ,∴∠ABG =∠ACB 故③正确.故选C .【点睛】本题考查了等腰三角形的判定与性质,平行线的性质.掌握相关的判定定理和性质定理是解题的关键.15.如图所示,△ABP 与△CDP 是两个全等的等边三角形,且PA ⊥PD ,有下列四个结论:①∠PBC =15°,②AD ∥BC ,③PC ⊥AB ,④四边形ABCD 是轴对称图形,其中正确的个数为( )A .1个B .2个C .3个D .4个【答案】D【解析】【分析】根据周角的定义先求出∠BPC 的度数,再根据对称性得到△BPC 为等腰三角形,∠PBC 即可求出;根据题意:有△APD 是等腰直角三角形;△PBC 是等腰三角形;结合轴对称图形的定义与判定,可得四边形ABCD 是轴对称图形,进而可得②③④正确.【详解】根据题意,BPC 36060290150∠=-⨯-= , BP PC =,()PBC 180150215∠∴=-÷=,①正确;根据题意可得四边形ABCD 是轴对称图形,④正确;∵∠DAB+∠ABC=45°+60°+60°+15°=180°,∴AD//BC ,②正确;∵∠ABC+∠BCP=60°+15°+15°=90°,∴PC ⊥AB ,③正确,所以四个命题都正确,故选D .【点睛】本题考查了等边三角形的性质、等腰直角三角形的性质、等腰三角形的判定与性质、轴对称图形的定义与判定等,熟练掌握各相关性质与定理是解题的关键.16.如图,已知:30MON ∠=︒,点1A 、2A 、3A …在射线ON 上,点1B 、2B 、3B …在射线OM 上,112A B A △、223A B A △、334A B A △…均为等边三角形,若112OA =,则667A B A 的边长为( )A .6B .12C .16D .32【答案】C【解析】【分析】 先根据等边三角形的各边相等且各角为60°得:∠B 1A 1A 2=60°,A 1B 1=A 1A 2,再利用外角定理求∠OB 1A 1=30°,则∠MON=∠OB 1A 1,由等角对等边得:B 1A 1=OA 1=12,得出△A 1B 1A 2的边长为12,再依次同理得出:△A 2B 2A 3的边长为1,△A 3B 3A 4的边长为2,△A 4B 4A 5的边长为:22=4,△A 5B 5A 6的边长为:23=8,则△A 6B 6A 7的边长为:24=16.【详解】解:∵△A 1B 1A 2为等边三角形,∴∠B 1A 1A 2=60°,A 1B 1=A 1A 2,∵∠MON=30°,∴∠OB 1A 1=60°-30°=30°,∴∠MON=∠OB 1A 1,∴B 1A 1=OA 1=12, ∴△A 1B 1A 2的边长为12, 同理得:∠OB 2A 2=30°, ∴OA 2=A 2B 2=OA 1+A 1A 2=12+12=1, ∴△A 2B 2A 3的边长为1,同理可得:△A3B3A4的边长为2,△A4B4A5的边长为:22=4,△A5B5A6的边长为:23=8,则△A6B6A7的边长为:24=16.故选:C.【点睛】本题考查等边三角形的性质和外角定理,运用类比的思想,依次求出各等边三角形的边长,解题关键是总结规律,得出结论.17.如图,在四边形ABCD中,AB AC=,60ABD∠=,75ADB∠=,30BDC∠=,则DBC∠=()°A.15 B.18 C.20 D.25【答案】A【解析】【分析】延长BD到M使得DM=DC,由△ADM≌△ADC,得AM=AC=AB,得△AMB是等边三角形,得∠ACD=∠M=60°,再求出∠BAO即可解决问题.【详解】如图,延长BD到M使得DM=DC.∵∠ADB=75°,∴∠ADM=180°﹣∠ADB=105°.∵∠ADB=75°,∠BDC=30°,∴∠ADC=∠ADB+∠BDC=105°,∴∠ADM=∠ADC.在△ADM和△ADC中,∵AD ADADM ADCDM DC=⎧⎪∠=∠⎨⎪=⎩,∴△ADM≌△ADC,∴AM=AC.∵AC=AB,∴AM=AC=AB,∠ABC=∠ACB.∵∠ABD=60°,∴△AMB是等边三角形,∴∠M=∠DCA=60°.∵∠DOC=∠AOB,∠DCO=∠ABO=60°,∴∠BAO=∠ODC=30°.∵∠CAB+∠ABC+∠ACB=180°,∴30°+2(60°+∠CBD)=180°,∴∠CBD=15°.故选:A.【点睛】本题考查了等边三角形的判定和性质、全等三角形的判定和性质等知识,解决问题的关键是添加辅助线构造全等三角形,题目有一定难度.18.如图,四边形ABCD中,∠C=,∠B=∠D=,E,F分别是BC,DC上的点,当△AEF的周长最小时,∠EAF的度数为().A.B.C.D.【答案】D【解析】【分析】【详解】作点A关于直线BC和直线CD的对称点G和H,连接GH,交BC、CD于点E、F,连接AE、AF,则此时△AEF的周长最小,由四边形的内角和为360°可知,∠BAD=360°-90°-90°-50°=130°,即∠1+∠2+∠3=130°①,由作图可知,∠1=∠G,∠3=∠H,△AGH的内角和为180°,则2(∠1+∠3)+ ∠2=180°②,又①②联立方程组,解得∠2=80°.故选D.考点:轴对称的应用;路径最短问题.19.如图,ABC △,AB AC =,56BAC ︒∠=,BAC ∠的平分线与AB 的垂直平分线交于O ,将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与O 点恰好重合,则∠OEC 的度数为( )A .132︒B .130︒C .112︒D .110︒【答案】C【解析】【分析】 连接OB 、OC ,根据角平分线的定义求出∠BAO ,根据等腰三角形两底角相等求出∠ABC ,再根据线段垂直平分线上的点到线段两端点的距离相等可得OA=OB ,根据等边对等角可得∠ABO=∠BAO ,再求出∠OBC ,然后判断出点O 是△ABC 的外心,根据三角形外心的性质可得OB=OC ,再根据等边对等角求出∠OCB=∠OBC ,根据翻折的性质可得OE=CE ,然后根据等边对等角求出∠COE ,再利用三角形内角和定理列式计算即可得出答案.【详解】如图,连接OB 、OC ,∵56BAC ︒∠=,AO 为BAC ∠的平分线 ∴11562822BAO BAC ︒︒∠=∠=⨯=又∵AB AC =,∴()()11180180566222ABC BAC ︒︒︒︒∠=-∠=-= ∵DO 是AB 的垂直平分线, ∴OA OB =.∴28ABO BAO ︒∠=∠=,∴622834OBC ABC ABO ︒︒︒∠=∠-∠=-=∵DO 是AB 的垂直平分线,AO 为BAC ∠的平分线∴点О是ABC △的外心,∴OB OC =,∴34OCB OBC ︒∠=∠=,∵将C ∠沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合∴OE CE =,∴34COE OCB ︒∠=∠=,在OCE △中,1801803434112OEC COE OCB ︒︒︒︒︒∠=-∠-∠=--=【点睛】本题主要考查了线段垂直平分线上的点到线段两端点距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,综合性较强,难度较大,做辅助线构造出等腰三角形是解决本题的关键.20.如图,在△ABC 中,BI ,CI 分别平分∠ABC,∠ACB,过I 点作DE∥BC,交AB 于D ,交AC 于E ,给出下列结论:①△DBI 是等腰三角形;②△ACI 是等腰三角形;③AI 平分∠BAC;④△ADE 周长等于AB +AC .其中正确的是( )A .①②③B .②③④C .①③④D .①②④【答案】C【解析】【分析】 根据角平分线的性质、平行线的性质、等腰三角形的判定与性质分别对各选项分析判断后利用排除法求解.【详解】①∵IB 平分∠ABC ,∴∠DBI =∠CBI .∵DE ∥BC ,∴∠DIB =∠CBI ,∴∠DBI =∠DIB ,∴BD =DI ,∴△DBI 是等腰三角形.故本选项正确;②∵∠BAC 不一定等于∠ACB ,∴∠IAC 不一定等于∠ICA ,∴△ACI 不一定是等腰三角形.故本选项错误;③∵三角形角平分线相交于一点,BI,CI分别是∠ABC和∠ACB的平分线,∴AI平分∠BAC.故本选项正确;④∵BD=DI,同理可得EI=EC,∴△ADE的周长=AD+DI+EI+AE=AD+BD+EC+AE=AB+AC.故本选项正确;其中正确的是①③④.故选C.【点睛】本题考查了等腰三角形的判定与性质,熟记三角形的角平分线相交于一点是解题的关键.。
八年级上册数学《轴对称》单元测试(含答案)

A. B. C. D.
二、填空题(每小题3分,共24分)
11.一个正五边形的对称轴共____条.
12.如图,在等边△A B C中,A D是高,若A B=6,则C D的长为:_____
13.已知点P(3,-1)关于y轴 对称点Q的坐标是(A+B,1-B),则A B的值为______.
A. B. C. D.
[答案]A
[解析]
[分析]
根据直角三角形的性质得到A B=2B C,根据线段垂直平分线的性质得到D A=D B,根据直角三角形的性质、角平分线的性质判断即可.
[详解]∵∠C=90°,∠A=30°,
∴∠A B C=60°,A B=2B C,
∵DE是A B的垂直平分线,
∴D A=D B,故B正确,不符合题意;
三、解答题(共66分)
19.如图,已知A B=A C,AE平分∠D A C,那么AE∥B C吗?为什么?
20.(8分)如图,在△A B C中,∠C=∠A B C,BE⊥A C,△B DE是正三角形.求∠C的度数.
21.如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
(1)在图中 点上标出相应字母A、B、C,并求出△A B C的面积;
5.如图,已知A B=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4,….若∠A=70°,则∠Bn-1AnAn-1的度数为()
A. B. C. D.
[答案]C
[解析]
在△A B A1中,∵∠A=70°,A B=A1B,∴∠B A1A=∠A=70°.
∵A1A2=A1B1,∠B A1A是△A1A2B1的外角,∴∠B1A2A1= =35°.
人教版八年级数学上册(三角形、全等三角形、轴对称、整式的乘法)竞赛培优题(含答案)

人教版八年级数学上册(三角形、全等三角形、轴对称、整式的乘法)竞赛培优题分数:100 考试时间:80分钟一、选择题(10×3=30分)1. 下列运算正确的是 ( )A 、x 2 + x 3 = x 5B 、-2x ·x 2 =-2x 3C 、x 6÷x 2 = x 3D 、(- x 2 )3 = x 62. (−2)m +2⋅(−2)m−1的值是( )A 、0B 、-2C 、2D 、(−2)m+1 3. 下列各组图形中,是全等形的是( )A.两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角形 4. 若二次三项式26x ax +-可分解成(x −2)(x +b),则a ,b 的值分别为( ) A . 1,3 B . 1-,3 C . 1,3- D . 1-,3-5.要使二次三项式25x x p -+在整数范围内能进行因式分解,那么整数p 的取值可以有( ) A . 2个 B . 4个 C . 6个 D .无数个6.如图,△ABC 中,∠C=90°,AC=3,∠B=30°,点P 是BC 边上的动点,则AP 的长不可能是( ) A 、3.5 B 、4.2 C 、5.8 D 、77.如图,把矩形纸片ABCD 纸沿对角线折叠,设重叠部分为△EBD ,对于下列结论,其中说法错误的是( )A.△EBD 是等腰三角形,EB =ED ;B .折叠后∠ABE 和∠CBD 一定相等;C .折叠后得到的图形是轴对称图形 ; D.△EBA 和△EDC 一定是全等三角形。
8.如图,等边三角形△ABC 的边长是6,面积是9√3,AD 是BC 边上的高, 点E 是AB 的中点,在AD 上求一点P ,则P B +PE 的和的最小值为( )A 、3B 、6C 、3√3D 、6√39. 如图,AD 是△ABC 的角平分线,DE ⊥AB 于E ,已知△ABC 的 面积为28.AC =6,DE =4,则AB 的长为( ) A .6 B .8 C .4 D .1010. 如图,四边形ABCD 中,AB =AD ,点B 关于AC 的对 称点B ′恰好落在CD 上,若∠BAD =100°,则∠ACB 的 度数为( )A .40°B .45° C .60° D .80° 二、填空题(5×3=15分)11. a 4b −6a 3b +9a 2b 分解因式得正确结果为 . 12. 满足(n −1)n+2=1的整数n 的值是 .13. 如图:在△FHI 中,HF +FG=GI ,HG ⊥FI ,∠F=058,则∠FHI= 度。
八年级全等三角形单元综合测试(Word版 含答案)

八年级全等三角形单元综合测试(Word版含答案)一、八年级数学轴对称三角形填空题(难)1.△ABC与△DEF是两个全等的等腰直角三角形,∠BAC=∠D=90°,AB=AC=6.现将△DEF与△ABC按如图所示的方式叠放在一起,使△ABC保持不动,△DEF运动,且满足点E在边BC上运动(不与B,C重合),边DE始终经过点A,EF与AC交于点M.在△DEF 运动过程中,若△AEM能构成等腰三角形,则BE的长为______.【答案】363【解析】【分析】分若AE=AM 则∠AME=∠AEM=45°;若AE=EM;若MA=ME 则∠MAE=∠AEM=45°三种情况讨论解答即可;【详解】解:①若AE=AM 则∠AME=∠AEM=45°∵∠C=45°∴∠AME=∠C又∵∠AME>∠C∴这种情况不成立;②若AE=EM∵∠B=∠AEM=45°∴∠BAE+∠AEB=135°,∠MEC+∠AEB=135°∴∠BAE=∠MEC在△ABE和△ECM中,BBAE CENAE EIIC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ECM(AAS),∴CE=AB6,∵AC=BC2AB=3∴BE=23﹣6;③若MA=ME 则∠MAE=∠AEM=45°∵∠BAC=90°,∴∠BAE=45°∴AE平分∠BAC∵AB=AC,∴BE=1BC=3.2故答案为23﹣6或3.【点睛】本题考查了等腰三角形的判定,掌握分类讨论的数学思想是解答本题的关键.2.在平面直角坐标系xOy中,已知点A(2,3),在x轴上找一点P,使得△AOP是等腰三角形,则这样的点P共有_____个.【答案】4【解析】【分析】以O为圆心,OA为半径画弧交x轴于点P1、P3,以A为圆心,AO为半径画弧交x轴于点P4,作OA的垂直平分线交x轴于P2.【详解】解:如图,使△AOP是等腰三角形的点P有4个.故答案为4.【点睛】本题考查了在平面直角坐标系中寻找等腰三角形,掌握两圆一线找等腰三角形是解题的关键.3.在ABC ∆中,边AB 、AC 的垂直平分线分别交边BC 于点D 、点E ,20DAE ∠=︒,则BAC ∠=______°.【答案】80或100【解析】【分析】根据题意,点D 和点E 的位置不确定,需分析谁靠近B 点,则有如下图(图见解析)两种情况:(1)图1中,点E 距离点B 近,根据垂直平分线性质可知,,BD AD AE CE ==,从而有1,2B DAE C DAE ∠=∠+∠∠=∠+∠,再根据三角形的内角和定理可得180B C BAC ∠+∠+∠=︒,联立即可求得;(2)图2中,点D 距离点B 近,根据垂直平分线性质可知,,BD AD AE CE ==,从而有3,4B C ∠=∠∠=∠,由三角形的内角和定理得180B C BAC ∠+∠+∠=︒,联立即可求得.【详解】由题意可分如下两种情况:(1)图1中,根据垂直平分线性质可知,,BD AD AE CE ==,1,2B DAE C DAE ∴∠=∠+∠∠=∠+∠(等边对等角),两式相加得12B C DAE DAE ∠+∠=∠+∠+∠+∠,又12DAE BAC ∠+∠+∠=∠20B C BAC DAE BAC ∴∠+∠=∠+∠=∠+︒,由三角形内角和定理得180B C BAC ∠+∠+∠=︒,20180BAC BAC ∴∠+︒+∠=︒,80BAC ∴∠=︒;(2)图2中,根据垂直平分线性质可知,,BD AD AE CE ==,3,4B C ∴∠=∠∠=∠(等边对等角),两式相加得34B C ∠+∠=∠+∠,又34DAE BAC ∠+∠+∠=∠,3420BAC DAE BAC ∴∠+∠=∠-∠=∠-︒,20B C BAC ∴∠+∠=∠-︒由三角形内角和定理得180B C BAC ∠+∠+∠=︒,20180BAC BAC ∴∠-︒+∠=︒,100BAC ∴∠=︒.故答案为80或100.【点睛】本题考查了垂直平分线的性质(垂直平分线上的点到线段两端点的距离相等)、等腰三角形的定义和性质(等边对等角)、以及三角形内角和定理,本题的难点在于容易漏掉第二种情况,出现漏解.4.如图,在01A BA △中,20B ∠=︒,01A B A B =,在1A B 上取点C ,延长01A A 到2A ,使得121A A AC =;在2A C 上取一点D ,延长12A A 到3A ,使得232A A A D =;…,按此做法进行下去,第n 个等腰三角形的底角n A ∠的度数为__________.【答案】11()802n -︒⋅.【解析】【分析】先根据等腰三角形的性质求出∠BA 1 A 0的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA 2A 1,∠DA 3A 2及∠EA 4A 3的度数,找出规律即可得出第n 个等腰三角形的底角∠A n 的度数.【详解】解:∵在△A 0BA 1中,∠B=20°,A 0B=A 1B , ∴∠BA 1 A 0= 1801802022B ︒︒︒-∠-= =80°, ∵A 1A 2=A 1C ,∠BA 1 A 0是△A 1A 2C 的外角,∴∠CA 2A 1= 108022BA A ︒∠= =40°; 同理可得,∠DA 3A 2=20°,∠EA 4A 3=10°,∴第n个等腰三角形的底角∠A n= 11()802n-︒⋅.【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠CA2A1,∠DA3A2及∠EA4A3的度数,找出规律是解答此题的关键.5.如图,线段AB,DE的垂直平分线交于点C,且72ABC EDC∠=∠=︒,92AEB∠=︒,则EBD∠的度数为 ________ .【答案】128︒【解析】【分析】连接CE,由线段AB,DE的垂直平分线交于点C,得CA=CB,CE=CD,ACB=∠ECD=36°,进而得∠ACE=∠BCD,易证∆ACE≅∆BCD,设∠AEC=∠BDC=x,得则∠BDE=72°-x,∠CEB=92°-x,BDE中,∠EBD=128°,根据三角形内角和定理,即可得到答案.【详解】连接CE,∵线段AB,DE的垂直平分线交于点C,∴CA=CB,CE=CD,∵72ABC EDC∠=∠=︒=∠DEC,∴∠ACB=∠ECD=36°,∴∠ACE=∠BCD,在∆ACE与∆BCD中,∵CA CBACE BCDCE CD=⎧⎪∠=∠⎨⎪=⎩,∴∆ACE≅∆BCD(SAS),∴∠AEC=∠BDC,设∠AEC=∠BDC=x,则∠BDE=72°-x,∠CEB=92°-x,∴∠BED=∠DEC-∠CEB=72°-(92°-x)=x-20°,∴在∆BDE中,∠EBD=180°-(72°-x)-(x-20°)=128°.故答案是:128︒.【点睛】本题主要考查中垂线的性质,三角形全等的判定和性质定理以及三角形内角和定理,添加辅助线,构造全等三角形,是解题的关键.6.如图,在ABC ∆中,AB AC =,点D 和点A 在直线BC 的同侧,,82,38BD BC BAC DBC =∠=︒∠=︒,连接,AD CD ,则ADB ∠的度数为__________.【答案】30°【解析】【分析】先根据等腰三角形的性质和三角形的内角和定理以及角的和差求出ABD ∠的度数,然后作点D 关于直线AB 的对称点E ,连接BE 、CE 、AE ,如图,则BE=BD ,∠EBA=∠DB ,∠BEA =∠BDA ,进而可得∠EBC=60°,由于BD=BC ,从而可证△EBC 是等边三角形,可得∠BEC =60°,EB=EC ,进一步即可根据SSS 证明△AEB ≌△AEC ,可得∠BEA 的度数,问题即得解决.【详解】解:∵AB AC =,82BAC ∠=︒,∴180492BAC ABC ︒-∠∠==︒, ∵38DBC ∠=︒,∴493811ABD ∠=︒-︒=︒,作点D 关于直线AB 的对称点E ,连接BE 、CE 、AE ,如图,则BE=BD ,∠EBA=∠DBA =11°,∴∠EBC=11°+11°+38°=60°,∵BD=BC,∴BE=BC,∴△EBC是等边三角形,∴∠BEC=60°,EB=EC,又∵AB=AC,EA=EA,∴△AEB≌△AEC(SSS),∴∠BEA=∠CEA=1302BEC∠=︒,∴∠ADB=30°.【点睛】本题考查了等腰三角形的性质、三角形的内角和定理、等边三角形的判定和性质、全等三角形的判定和性质以及轴对称的性质等知识,涉及的知识点多、综合性强,难度较大,作点D关于直线AB的对称点E,构造等边三角形和全等三角形的模型是解题的关键.7.如图,在△ABC中,AB=AC,∠BAC=120°,D为BC上一点,DA⊥AC,AD=24 cm,则BC 的长________cm.【答案】72【解析】【分析】按照等腰三角形的性质、角的和差以及含30°直角三角形的性质进行解答即可.【详解】解:∵AB=AC,∠BAC=120°∴∠B=∠C=30°∵DA⊥AC,AD=24 cm∴DC=2AD=48cm,∵∠BAC=120°,DA⊥AC∴∠BAD=∠BAC-90°=30°∴BD=AD=24cm∴BC=BD+DC=72cm故答案为72.【点睛】本题考查了腰三角形的性质、角的和差以及含30°直角三角形的性质,其中灵活运用含30°直角三角形的性质是解答本题的关键.8.如图,在△ABC中,AB=AC,D、E是△ABC内的两点,AE平分∠BAC,∠D=∠DBC=60°,若BD=5cm,DE=3cm,则BC的长是 ______cm.【答案】8.【解析】【分析】作出辅助线后根据等边三角形的判定得出△BDM为等边三角形,△EFD为等边三角形,从而得出BN的长,进而求出答案.【详解】解:延长DE交BC于M,延长AE交BC于N,作EF∥BC于F,∵AB=AC,AE平分∠BAC,∴AN⊥BC,BN=CN,∵∠DBC=∠D=60°,∴△BDM为等边三角形,∴△EFD为等边三角形,∵BD=5,DE=3,∴EM=2,∵△BDM为等边三角形,∴∠DMB=60°,∵AN⊥BC,∴∠ENM=90°,∴∠NEM=30°,∴NM=1,∴BN=4,∴BC=2BN=8(cm),故答案为8.【点睛】本题考查等边三角形的判定与性质;等腰三角形的性质.9.如图,ABC ∆中,AB AC =,点D 是ABC ∆内部一点,DB DC =,点E 是边AB 上一点,若CD 平分ACE ∠,100AEC =∠,则BDC ∠=______°【答案】80【解析】【分析】根据角平分线得到∠ACE=2∠ACD ,再根据角的和差关系得到∠ECB =∠ACB -2∠ACD ,然后利用外角定理得到∠ABC+∠ECB=100°,代换化简得出∠ACB -∠ACD=50°,即∠DCB=50°,从而求出∠BDC 即可.【详解】∵CD 平分∠ACE ,∴∠ACE=2∠ACD=2∠ECD ,∴∠ECB=∠ACB -∠ACE=∠ACB -2∠ACD ,∵∠AEC=100°,∴∠ABC+∠ECB=100°,∴∠ABC+∠ACB -2∠ACD=100°,∵AB=AC ,∴∠ABC=∠ACB,∴2∠ACB -2∠ACD=100°,∴∠ACB-∠ACD=50°,即∠DCB=50°,∵DB=DC,∴∠DBC=∠DCB,∴∠BDC=180°-2∠DCB=180°-2×50°=80°.【点睛】本题考查了角平分线,三角形内角和,外角定理,及等边对等角的性质等知识,熟练掌握基本知识,找出角与角之间的关系是解题的关键.10.如图,∠BOC=60°,点A是BO延长线上的一点,OA=10cm,动点P从点A出发沿AB 以2cm/s的速度移动,动点Q从点O出发沿OC以1cm/s的速度移动,如果点P、Q同时出发,用t(s)表示移动的时间,当t=_____s时,△POQ是等腰三角形.【答案】103或10【解析】【分析】根据△POQ是等腰三角形,分两种情况进行讨论:点P在AO上,点P在BO上,分别计算,即可得解.【详解】当PO=QO时,△POQ是等腰三角形,如图1所示当点P在AO上时,∵PO=AO-AP=10-2t,OQ=t当PO=QO时,102t t-=解得103 t=当PO=QO时,△POQ是等腰三角形,如图2所示当点P在BO上时∵PO=AP-AO=2t-10,OQ=t当PO=QO时,210t t-=解得10t=故答案为:103或10【点睛】本题考查等腰三角形的性质及动点问题,熟练掌握等腰三角形的性质以及分类讨论思想是解题关键.二、八年级数学轴对称三角形选择题(难)11.如图,平面直角坐标系中存在点A(3,2),点B(1,0),以线段AB为边作等腰三角形ABP,使得点P在坐标轴上.则这样的P点有()A.4个B.5个C.6个D.7个【答案】D【解析】【分析】本题是开放性试题,由题意知A、B是定点,P是动点,所以要分情况讨论:以AP、AB为腰、以AP 、BP 为腰或以BP 、AB 为腰.则满足条件的点P 可求.【详解】由题意可知:以AP 、AB 为腰的三角形有3个;以AP 、BP 为腰的三角形有2个;以BP 、AB 为腰的三角形有2个.所以,这样的点P 共有7个.故选D .【点睛】本题考查了等腰三角形的判定及坐标与图形的性质;分类别寻找是正确解答本题的关键.12.如图,AOB α∠=,点P 是AOB ∠内的一定点,点,M N 分别在OA OB 、上移动,当PMN ∆的周长最小时,MPN ∠的值为( )A .90α+B .1902α+C .180α-D .1802α-【答案】D【解析】【分析】 过P 点作角的两边的对称点,在连接两个对称点,此时线段与角两边的交点,构成的三角形周长最小.再根据角的关系求解.【详解】解:过P 点作OB 的对称点1P ,过P 作OA 的对称点2P ,连接12PP ,交点为M,N ,则此时PMN 的周长最小,且△1P NP 和△2PMP 为等腰三角形.此时∠12P PP =180°-α;设∠NPM=x°,则180°-x°=2(∠12P PP -x°)所以 x°=180°-2α【点睛】求出M,N在什么位子△PMN周长最小是解此题的关键.13.如图,在锐角△ABC中,AC=10,S△ABC=25,∠BAC的平分线交BC于点D,点M,N分别是AD和AB上的动点,则BM+MN的最小值是()A.4 B.245C.5 D.6【答案】C【解析】试题解析:如图,∵AD是∠BAC的平分线,∴点B关于AD的对称点B′在AC上,过点B′作B′N⊥AB于N交AD于M,由轴对称确定最短路线问题,点M即为使BM+MN最小的点,B′N=BM+MN,过点B作BE⊥AC于E,∵AC=10,S△ABC=25,∴12×10•BE=25,解得BE=5,∵AD是∠BAC的平分线,B′与B关于AD对称,∴AB=AB′,∴△ABB′是等腰三角形,∴B′N=BE=5,即BM+MN的最小值是5.故选C.14.如图,点D,E是等边三角形ABC的边BC,AC上的点,且CD=AE,AD交BE于点P,BQ⊥AD于点Q,已知PE=2,PQ=6,则AD等于( )A.10 B.12 C.14 D.16【答案】C【解析】【分析】由题中条件可得△ABE≌△CAD,得出AD=BE,∠ABE=∠CAD,进而得出∠BPD=60°.在Rt△BPQ中,根据30度角所对直角边等于斜边的一半,求出BP的长,进而可得结论.【详解】∵△ABC是等边三角形,∴AB=AC,∠BAC=∠C=60°.又∵AE=CD,∴△ABE≌△CAD(SAS),∴∠ABE=∠CAD,AD=BE,∴∠BPD=∠ABE+∠BAP=∠CAD+∠BAP=∠BAC=60°.∵BQ⊥AD,∴∠PBQ=30°,∴BP=2PQ=2×6=12,∴AD=BE=BP+PE=12+2=14.故选C.【点睛】本题考查了含30度角的直角三角形的性质、等边三角形的性质以及全等三角形的判定和性质,证明∠BPD=60°是解答本题的关键.15.如果一个三角形能被一条线段分割成两个等腰三角形,那么称这个三角形为特异三角形.若△ABC是特异三角形,∠A=30°,∠B为钝角,则符合条件的∠B有()个.A.1 B.2 C.3 D.4【答案】B【解析】【分析】【详解】如下图,当30°角为等腰三角形的底角时有两种情况:∠B=135°或90°,当30°角为等腰三角形的顶角时有一种情况:∠B=112.5°,所以符合条件的∠B有三个.又因为∠B为钝角,则符合答案的有两个,故本题应选B.点睛:因为不确定这个等腰三角形的底边,所以应当以点A为一个确定点进行分类讨论:①当以B为顶点时,即以B为圆心,AB长为半径画弧交AC于点D,构成等腰△BAD;②当以点A为顶点时,即以点A为圆心,AB长为半径画弧,交AC于点D,构成等腰△ABD;或作线段AB的垂直平分线交AC于点D构成等腰△DAB.16.如图,在△ABC中,BI,CI分别平分∠ABC,∠ACB,过I点作DE∥BC,交AB于D,交AC于E,给出下列结论:①△DBI是等腰三角形;②△A CI是等腰三角形;③AI平分∠BAC;④△ADE周长等于AB+AC.其中正确的是( )A.①②③B.②③④C.①③④D.①②④【答案】C【解析】【分析】根据角平分线的性质、平行线的性质、等腰三角形的判定与性质分别对各选项分析判断后利用排除法求解.【详解】①∵IB平分∠ABC,∴∠DBI=∠CBI.∵DE∥BC,∴∠DIB=∠CBI,∴∠DBI=∠DIB,∴BD=DI,∴△DBI是等腰三角形.故本选项正确;②∵∠BAC不一定等于∠ACB,∴∠IAC不一定等于∠ICA,∴△ACI不一定是等腰三角形.故本选项错误;③∵三角形角平分线相交于一点,BI,CI分别是∠ABC和∠ACB的平分线,∴AI平分∠BAC.故本选项正确;④∵BD=DI,同理可得EI=EC,∴△ADE的周长=AD+DI+EI+AE=AD+BD+EC+AE=AB+AC.故本选项正确;其中正确的是①③④.故选C.【点睛】本题考查了等腰三角形的判定与性质,熟记三角形的角平分线相交于一点是解题的关键.17.如图,等腰三角形ABC的底边BC长为4,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,若△CDM周长的最小值为8,则△ABC的面积为()A.12 B.16 C.24 D.32【答案】A【解析】【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,再根据三角形的周长求出AD的长,由此即可得出结论.【详解】连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∵△CDM周长的最小值为8,∴AD=8-12BC=8-2=6∴S△ABC=12BC•AD=12×4×6=12,【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.18.如图,已知长方形ABCD,AB=1,BC=2,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME的最小值为( )A.1 B.1+3C.2+3D.3【答案】B【解析】【分析】将△AMD绕点A逆时针旋转60°得到△AM’D’,MD=M’D’,易得到△ADD’和△AMM’均为等边三角形,推出AM=MM’可得MA+MD+ME=D’M+MM’+ME,共线时最短;由于点E 也为动点,可得当D’E⊥BC时最短,此时易求得D’E=DG+GE的值.【详解】将△AMD绕点A逆时针旋转60°得到△AM’D’,MD=M’D’,易得到△ADD’和△AMM’均为等边三角形,∴AM=MM’,∴MA+MD+ME=D’M+MM’+ME,∴D′M、MM′、ME共线时最短,由于点E也为动点,∴当D’E⊥BC时最短,此时易求得D’E=DG+GE=4+33,∴MA+MD+ME的最小值为4+33.故选B.本题考查轴对称、旋转变换、矩形的性质等知识,解题的关键是学会添加常用辅助线,构造等边三角形解决问题,学会用转化的思想思考问题.19.如图,在平面直角坐标系中,O为坐标原点,四边形OABC是长方形,点A、C的坐标分别为A(10,0 ),C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为()A.(3,4),(2,4)B.(3,4),(2,4),(8,4)C.(2,4),(8,4)D.(3,4),(2,4),(8,4),(2.5,4)【答案】B【解析】试题解析:有两种情况:①以O为圆心,以5为半径画弧交BC于P点,此时OP=OD=5,在Rt△OPC中,OC=4,OP=5,由勾股定理得PC=3,则P的坐标是(3,4);②以D为圆心,以5为半径画弧交BC于P′和P″点,此时DP′=DP″=OD=5,过P′作P′N⊥OA于N,在Rt△OP′N中,设CP′=x,则DN=5-x,P′N=4,OP=5,由勾股定理得:42+(5-x)2=52,x=2,则P′的坐标是(2,4);过P″作P″M⊥OA于M,设BP″=a,则DM=5-a,P″M=4,DP″=5,在Rt△DP″M中,由勾股定理得:(5-a)2+42=52,解得:a=2,∴BP″=2,CP″=10-2=8,即P ″的坐标是(8,4);假设0P=PD ,则由P 点向0D 边作垂线,交点为Q 则有PQ 2十QD 2=PD 2,∵0P=PD=5=0D ,∴此时的△0PD 为正三角形,于是PQ=4,QD=120D=2.5,PD=5,代入①式,等式不成立.所以排除此种可能.故选B .20.如图,在平面直角坐标系中,A(1,2),B(3,2),连接AB ,点P 是x 轴上的一个动点,连接AP 、BP ,当△ABP 的周长最小时,对应的点P 的坐标和△ABP 的最小周长分别为( )A .(1,0),224+B .(3,0),224+C .(2,0), 25D .(2,0),252+【答案】D【解析】 作A 关于x 轴的对称点N (1,-2),连接BN 与x 轴的交点即为点P 的位置,此时△ABP 的周长最小.设直线BN 的解析式为y kx b =+,∵N (1,-2),B (3,2),∴232k b k b +=-⎧⎨+=⎩, 解得24k b =⎧⎨=-⎩, ∴24y x =-,当0y =时,240x -=,解得,2x=,∴点P的坐标为(2,0);∵A(1,2),B(3,2),∴AB//x轴,∵AN⊥x轴,∴AB⊥x轴,在Rt△ABC中,AB=2,AN=4,由勾股定理得,BN==∵AP=NP,∴△ABP的周长最小值为:AB+BP+AP=AB+BP+PN=AB+BN故选D.点睛:本题考查最短路径问题.利用轴对称作出点P的位置是解题的关键.。
八年级数学上册第十三章《轴对称》经典测试卷(2)

一、选择题1.如图,AD 是ABC ∆的中线,E 是AD 上一点,BE 交AC 于F ,若,9,6BE AC BF CF ===,则AF 的长度为( )A .1B .1.5C .2D .2.5B解析:B【分析】 延长AD 到G 使得DG AD =,连接BG ,证明()△△ACD GBD SAS ≅,根据全等三角形的性质可得到CAD G ∠=∠,AC=BD ,等量代换得到BE=BG ,再由等腰三角形的性质得到G BEG ∠=∠,推出EF=AF ,即可解决问题;【详解】如图,延长AD 到G 使得DG AD =,连接BG ,∵AD 是△ABC 的中线,∴CD=BD ,在△ACD 与△GBD 中,CD BD ADC BDG AD DG =⎧⎪∠=∠⎨⎪=⎩,∴()△△ACD GBDSAS ≅, ∴CAD G ∠=∠,AC=BD ,∵BE=AC ,∴BE=BG ,∴G BEG ∠=∠, ∵BEG AEF ∠=∠,∴AEF EAF ∠=∠,∴EF=AF ,∴AF CF BF AF +=-,即69AF AF +=-, ∴32AF =; 故选:B .【点睛】 本题主要考查了全等三角形的判定与性质,结合等腰三角形的性质求解是解题的关键. 2.以下尺规作图中,点D 为线段BC 边上一点,一定能得到线段AD BD =的是( ) A . B .C .D . D解析:D【分析】点D 到点A 、点B 的距离相等可知点D 在线段AB 的垂直平分线上,据此可得答案.【详解】解:∵点D 到点A 、点B 的距离AD=BD ,∴点D 在线段AB 的垂直平分线上,故选择:D .【点睛】本题主要考查作图−复杂作图,解题的关键是掌握线段中垂线的性质与尺规作图.3.点1(1,2020)P a -和2(2017,1)P b -关于x 轴对称,则()2021a b +的值为( ) A .1-B .1C .0D .2021- A解析:A【分析】关于x 轴对称的点,横坐标相同,纵坐标互为相反数,可得a ,b 的值,进一步可得答案.【详解】解:∵1(1,2020)P a -和2(2017,1)P b -关于x 轴对称,得a-1=2017,1-b=2020.解得a=2018,b=-2019,∴()()()202120212021=2018201911a b +-=-=- 故选:A .【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.4.如图,在ABC 中,90C ∠=︒,30B ∠=︒,以点A 为圆心,任意长为半径画弧分别交AB ,AC 于点M 和N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D .则下列说法中正确的个数是( ) ①AD 是BAC ∠的平分线;②60ADC ∠=︒;③点D 在AB 的中垂线上;④:2:5DAC ABC S S =△△A .1B .2C .3D .4C解析:C【分析】 根据题意作图可知:AD 是BAC ∠的平分线,由此判断①正确;先求得∠BAC=60︒,由AD 是BAC ∠的平分线,求得∠CAD=∠BAD=30B ∠=︒,即可得到60ADC ∠=︒,判断②正确;过点D 作DE ⊥AB 于E ,根据∠BAD=30B ∠=︒,证得△ABD 是等腰三角形,得到AE=BE ,即可判断③正确;证明Rt △ACD ≌Rt △AED ,得到S △ACD =S △AED ,根据等底同高得到S △AED =S △BED ,即可得到:1:3DAC ABC S S =,判断④错误.【详解】解:由题意得:AD 是BAC ∠的平分线,故①正确;∵90C ∠=︒,30B ∠=︒,∴∠BAC=60︒,∵AD 是BAC ∠的平分线,∴∠CAD=∠BAD=30B ∠=︒,∴60ADC ∠=︒,故②正确;过点D 作DE ⊥AB 于E ,∵∠BAD=30B ∠=︒,∴AD=BD ,∴△ABD 是等腰三角形,∴AE=BE ,∴点D 在AB 的中垂线上,故③正确;∵AD 是BAC ∠的平分线,DC ⊥AC ,DE ⊥AB ,∴CD=DE ,∠C=∠AED=90︒,又∵AD=AD ,∴Rt △ACD ≌Rt △AED ,∴S △ACD =S △AED ,∵AE=BE ,DE ⊥AB ,∴S △AED =S △BED ,∴:1:3DAC ABC S S =,故④错误;故选:C ..【点睛】此题考查角平分线的作图方法及性质应用,全等三角形的判定及性质,线段垂直平分线的判定,等腰三角形的判定及性质,三角形内角和定理,熟练掌握各部分知识并综合应用是解题的关键.5.如图,长方形纸片ABCD (长方形的对边平行且相等,每个角都为直角),将纸片沿EF 折叠,使点C 与点A 重合,下列结论:①AF AE =,②ABE AGF ≌,③AF CE =,④60AEF ∠=︒,其中正确的( )A .①②B .②③C .①②③D .①②③④C解析:C【分析】 根据翻折的性质可得∠AEF =∠CEF ,根据两直线平行,内错角相等可得∠AFE =∠CEF ,然后求出∠AEF =∠AFE ,根据等角对等边可得AE =AF ;根据HL 即可得到△ABE ≌AGF .根据等量代换即可得到AF =CE ;根据△AEF 是等腰三角形,不一定是等边三角形,即可得到∠AEF 不一定为60°.【详解】解:由翻折的性质得,∠AEF =∠CEF ,∵矩形ABCD 的对边AD ∥BC ,∴∠AFE =∠CEF ,∴∠AEF =∠AFE ,∴AE =AF ,故①正确,在Rt △ABE 和Rt △AGF 中,AE AF AB AG =⎧⎨=⎩, ∴Rt △ABE ≌Rt △AGF (HL ),故②正确,∵CE =AE ,AE =AF ,∴CE =AF ,故③正确;∵AE =AF ,∴△AEF 是等腰三角形,不一定是等边三角形,∴∠AEF 不一定为60°,故④错误;故选C .【点睛】本题考查了翻折变换的性质,等腰三角形的判定与性质,解题时注意:折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.6.如图,已知点D 为ABC 内一点,CD 平分ACB ∠,BD CD ⊥,A ABD ∠=∠,若6AC =,4BC =,则BD 的长为( )A .2B .1.5C .1D .2.5C解析:C【分析】延长BD 与AC 交于点E ,由题意可推出BE=AE ,依据等角的余角相等,即可得等腰三角形BCE ,可推出BC=CE ,AE=BE=2BD ,根据AC=6,BC=4,即可推出BD 的长度.【详解】解:延长BD 与AC 交于点E ,∵∠A=∠ABD ,∴BE=AE ,∵BD ⊥CD ,∴BE ⊥CD ,∵CD 平分∠ACB ,∴∠BCD=∠ECD ,∴∠EBC=∠BEC ,∴△BEC 为等腰三角形,∴BC=CE ,∵BE ⊥CD ,∴2BD=BE ,∵AC=6,BC=4,∴CE=4,∴AE=AC-EC=6-4=2,∴BE=2,∴BD=1.故选:C .【点睛】本题主要考查等腰三角形的判定与性质,比较简单,关键在于正确地作出辅助线,构建等腰三角形,通过等量代换,即可推出结论.7.如图,在ABC 中,87,A ABC ∠=︒∠的平分线BD 交AC 于点,D E 是BC 中点,且DE BC ⊥,那么C ∠的度数为( )A .16︒B .28︒C .31︒D .62︒C解析:C【分析】 根据角平分线的定义得到ABD CBD ∠=∠,根据线段垂直平分线的性质得到DB=DC ,进而得到DBC C ∠=∠,根据三角形内角和定理列式计算即可.【详解】∵BD 平分ABC ∠,∴ABD CBD ∠=∠,∵DE BC ⊥,E 是BC 中点,∴DB=DC ,∴DBC C ∠=∠,∴ABD CBD C ∠=∠=∠,∴18087ABD CBD C ∠+∠+∠=︒-︒,解得:31C ∠=︒,故选:C .【点睛】本题考查的是线段的垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.8.北京有许多高校,下面四所高校校徽主体图案是轴对称图形的有( )A .1个B .2个C .3个D .4个B解析:B【分析】 根据轴对称图形的概念对各图案逐一进行判断即可得答案.【详解】第一个图案是轴对称图形,第二个图案不是轴对称图形,第三个图案是轴对称图形,第四个图案不是轴对称图形,综上所述:是轴对称图形的图案有2个,故选:B .【点睛】本题考查轴对称图形,判断轴对称图形的关键是寻找对称轴,图形沿对称轴折叠,对称轴两边的图形能够完全重合;熟练掌握轴对称图形的定义是解题关键.9.如图,在ABC ∆中,5AC =,线段AB 的垂直平分线交AC 于点,D BCD ∆的周长是9,则BC 的长为( )A .3B .4C .5D .6B解析:B【分析】 首先根据DE 是线段AB 的垂直平分线,可得AD =BD ,然后根据△BCD 的周长是9cm ,以及AD +DC =AC ,求出BC 的长即可.【详解】解:∵DE 是线段AB 的垂直平分线,∴AD=BD,∵△BCD的周长是9cm,∴BD+DC+BC=9(cm),∴AD+DC+BC=9(cm),∵AD+DC=AC,∴AC+BC=9(cm),又∵AC=5cm,∴BC=9−5=4(cm).故选:B.【点睛】此题主要考查了线段垂直平分线的性质和应用,要熟练掌握,解答此题的关键是要明确:①垂直平分线垂直且平分其所在线段.②垂直平分线上任意一点,到线段两端点的距离相等.=,则有()10.如图,AC AD=,BC BDA.AB与CD互相垂直平分B.CD垂直平分ABC.CD平分ACB∠D.AB垂直平分CD D解析:D【分析】根据线段垂直平分线的判定定理解答.【详解】=,∵AC AD=,BC BD∴AB垂直平分CD,故D正确,A、B错误,OC不平分∠ACB,故C错误,故选:D.【点睛】此题考查线段垂直平分线的判定:到线段两个端点距离相等的点在这条线段的垂直平分线上.二、填空题-关于y轴的对称点,再将该对称点先向下11.平面直角坐标系xOy中,先作出点P (2,3)平移1个单位,再向左平移2个单位得到点P1,称为完成一次图形变换,再将点P1进行同样的图形变换得到点P2,以此类推,则点P2020的坐标为___________.【分析】按程序先作y轴对称求出点坐标横坐标-2纵坐标-1完成一次图形变换求出P变换后的坐标找出几次变换后规律奇次变换点的横坐标x=0偶次变换点的横坐标x=-2纵坐标变一次下移一个单位【详解】解:完成--解析:(2,2017)【分析】按程序先作y轴对称,求出点坐标,横坐标-2,纵坐标-1,完成一次图形变换求出P变换后的坐标,找出几次变换后规律奇次变换点的横坐标x=0,偶次变换点的横坐标x=-2,纵坐标变一次下移一个单位.【详解】-关于y轴的对称点(2,3),横坐标2-2=0,纵坐标3-解:完成1次图形变换,点P (2,3)1=2,P1(0,2),完成2次图形变换,点P1(0,2)关于y轴的对称点(0,2),横坐标0-2=-2,纵坐标2-1=1,P2(-2,1),完成3次图形变换,点P2(-2,1)关于y轴的对称点(2,1),横坐标3-3=0,纵坐标1-1=0,P3(0,0),完成4次图形变换,点P3(0,0)关于y轴的对称点(0,0),横坐标0-2=-2,纵坐标0-1=-1,P4(-2,-1),……,完成2020次图形变换,点P2019(0,3-2019)关于y轴的对称点(0,-2016),横坐标0-2=-2,纵坐标-2016-1=-2017,P2020(-2,-2017).故答案为:(-2,-2017).【点睛】本题考查图形规律探索问题,掌握图形程序变换的轴对称性质和平移特征,关键是找到变换规律奇次变换点的横坐标x=0,偶次变换点的横坐标x=-2,纵坐标变一次下移一个单位.12.若等腰三角形的顶角为30°,腰长为10,则此等腰三角形的面积为_________.25【分析】依据含30°角的直角三角形的性质即可得到该等腰三角形腰上的高再根据三角形面积计算公式进行计算即可【详解】解:如图所示AB=AC=10∠A=30°过B作BD⊥AC于D∵∠A=30°AB=1解析:25【分析】依据含30°角的直角三角形的性质,即可得到该等腰三角形腰上的高,再根据三角形面积计算公式进行计算即可.【详解】解:如图所示,AB=AC=10,∠A=30°,过B作BD⊥AC于D,∵∠A=30°,AB=10,∴BD=1AB=5,2∴S △ABC =12AC ×BD =12×10×5=25, 故答案为:25.【点睛】本题主要考查了等腰三角形的性质以及含30°角的直角三角形的性质,作出腰上的高并根据30°角求出高是解题关键.13.如图,点C 在DE 上,,,45B E AB AE CAD BAE ∠=∠=∠=∠=︒,则ACB =∠_____________.【分析】由条件可证得△ABC ≌△AED 则可求得∠ACB=∠ADEAD=AC 再利用等腰三角形的性质可求得答案【详解】解:∵∠CAD=∠BAE ∴∠CAD+∠CAE=∠BAE+∠CAE 即∠BAC=∠DAE解析:67.5【分析】由条件可证得△ABC ≌△AED ,则可求得∠ACB=∠ADE ,AD=AC ,再利用等腰三角形的性质可求得答案.【详解】解:∵∠CAD=∠BAE ,∴∠CAD+∠CAE=∠BAE+∠CAE ,即∠BAC=∠DAE ,在△ABC 和△AED 中,B E AB AEBAC EAD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△AED (ASA ),∴AD=AC ,∠ACB=∠ADE ,∴∠ACD=∠ADC ,∵∠CAD=45°,∴∠ADC=67.5°,∴∠ACB=67.5°,故答案为:67.5.【点睛】本题主要考查全等三角形的判定和性质及等腰三角形的性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(全等三角形的对应边相等、对应角相等)是解题的关键.14.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则(m +n )2020的值是_____.1【分析】直接利用关于y 轴对称点的性质得出横坐标互为相反数纵坐标相等进而得出答案【详解】解:∵点A (1+m1-n )与点B (-32)关于y 轴对称∴1+m=31-n=2∴m=2n=-1∴(m +n )202解析:1【分析】直接利用关于y 轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案.【详解】解:∵点A (1+m ,1-n )与点B (-3,2)关于y 轴对称,∴1+m=3,1-n=2,∴m=2,n=-1,∴(m +n )2020=(2-1)2020=1;故答案为:1.【点睛】此题主要考查了关于y 轴对称点的性质,正确掌握点的坐标特点是解题关键. 15.如图,ABC 中,45ABC ∠=︒,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E 交CD 于点F ,H 是BC 边的中点,连接DH 交BE 于点G ,考察下列结论:①AC BF =;②2BF CE =;③ADGE GHCE S S =四四边形边形;④DGF △为等腰三角形.其中正确的有___.①②④【分析】只要证明△BDF ≌△CDA △BAC 是等腰三角形即可判断①②正确作GM ⊥BD 于M 只要证明GH <DG 即可判断③错误证明可判断④正确【详解】解:①又又∴是等腰直角三角形在和中故①正确;②平分解析:①②④【分析】只要证明△BDF ≌△CDA ,△BAC 是等腰三角形,即可判断①②正确,作GM ⊥BD 于M ,只要证明GH <DG 即可判断③错误,证明DGF DFG ∠=∠可判断④正确.【详解】解:①CD AB ⊥,90CDA BDF ∠∴∠==︒,18090DBF DFB BDF ︒∠+∠=-∠=︒,又BE AC ⊥,90BEA ∴∠=︒,18090DBF DAC BEA ∠+∠=-∠=∴︒︒,DAC DFB ∠=∠∴,又45ABC ∠=︒,18045DCB ABC BDF ∴∠=︒-∠-∠=︒,∴BCD △是等腰直角三角形,BD CD ∴=,在ACD △和FBD 中,DAC DFB CDA BDF CD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ACD FBD AAS ∴≅,AC BF ∴=.故①正确;②BE 平分ABC ∠,BE AC ⊥,ABE CBE ∴∠=∠,90BEA BEC ∠=∠=︒,∴在ABE △和CBE △中,ABE CBE BE BEBEA BEC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ASA ABE CBE ∴≅,AE CE ∴=,2AC AE CE CE ∴=+=,又AC BF =,2BF CE ∴=,故②正确;③如图所示,过G 作GM BD ⊥于点M ,H 为等腰直角BCD △斜边BC 的中点,DH BC ∴⊥,即90GHB ∠=︒,又BE 平分ABC ∠,GM BD ⊥,GM GH ∴=,又BD BH >,BDG BGH SS∴>, 又ABE CBE ≅ ABE CBE S S ∴=,ABE BDG ADGE S S S ∴=-四边形,CBE BGH GHCE S S S =-四边形,ADGE GHCE S S ∴<四边形四边形,故③错误;④18090HBG BGH GHB ∠+∠=︒-∠=︒,18090DBF DFG BDF ∠+∠=︒-∠=︒,HBG DBF ∠=∠,BGH DFG ∴∠=∠,又BGH DGF ∠=∠,DGF DFG ∴∠=∠,DGF ∴为等腰三角形.∴综上,答案为①②④.【点睛】此题是三角形综合题,考查了等腰三角形的性质,直角三角形的性质,全等三角形的性质和判定,三角形的面积等知识点的综合运用,第三个问题难度比较大,添加辅助线是解题关键.16.等腰三角形的周长为24,其中一边为6,则另两边的长分别为__________.【分析】题中没有指明长为的边长是腰还是底则分两种情况进行分析还应验证是否满足三角形的三边关系【详解】当腰长是时底边长不能构成三角形;当底长是时三角形的腰能构成三角形其他两边长为故答案为:【点睛】本题解析:9,9【分析】题中没有指明长为6的边长是腰还是底,则分两种情况进行分析,还应验证是否满足三角形的三边关系.【详解】当腰长是6时,底边长246612=--=,6、6、12不能构成三角形;当底长是6时,三角形的腰()24629=-÷=,6、9、9能构成三角形,其他两边长为9、9.故答案为:9,9.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目—定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.17.如图,在ABC 中,AB AC =,36ABC ∠=︒,DE 是线段AC 的垂直平分线,连接AE ,若BE a =,EC b =,则用含有a ,b 的代数式表示ABC 的周长是______.【分析】根据等腰三角形的性质∠BAC =108°由线段垂直平分线的性质可得AE=CE ∠EAD=∠ECD=36°进而根据角的和差可得∠BAE =∠BEA 进而可得BA =BE =AC 然后问题可求解【详解】∵AB解析:3a b +【分析】根据等腰三角形的性质∠BAC =108°,由线段垂直平分线的性质可得AE=CE ,∠EAD=∠ECD=36°,进而根据角的和差可得∠BAE =∠BEA ,进而可得BA =BE =AC 然后问题可求解.【详解】∵AB=AC ,∠ABC=36°,∴∠C=∠ABC=36°,∠BAC =108°,∵DE 是AC 的垂直平分线,∴AE=CE,∴∠EAD=∠ECD=36°,∴∠AEC=108°=∠BAC,∴∠BAE=∠BAC-∠CAE=108°-36°=72°∵∠BEA=180°-∠AEC=180°-108°=72°即∠BAE=∠BEA∴BA=BE∵BE a=,EC b=,∴BA=BE=AC=a∴△ABC的周长=AB+BE+EC+AC=3a+b故答案为:3a+b.【点睛】本题主要考查垂直平分线的性质定理及等腰三角形的性质与判定,熟练掌握垂直平分线的性质定理及等腰三角形的性质与判定是解题的关键.18.如图,已知∠AOB=60°,点P在边OA上,OP=24,点M,N在边OB上,PM=PN,若NM=6,则OM=______________.9【分析】过P作PD⊥OB交OB于点D在直角三角形POD中求出OD的长再由PM=PN利用三线合一得到D为MN中点根据MN 求出MD的长由OD-MD即可求出OM的长【详解】解:过P作PD⊥OB交OB 于点解析:9【分析】过P作PD⊥OB,交OB于点D,在直角三角形POD中,求出OD的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD的长,由OD-MD即可求出OM的长.【详解】解:过P作PD⊥OB,交OB于点D,∵∠AOB=60°,∴∠OPD=30°,∴OD=1OP=12.2∵PM=PN,PD⊥MN,∴MD=ND=1MN=3,2∴OM=OD﹣MD=12﹣3=9.故答案为:9.【点睛】本题考查的是含30度直角三角形的性质,等腰三角形的性质等知识,根据题意添加适当辅助线是解本题的关键.19.如图,一棵大树在一次强台风中于距地面5米处倒下,则这棵树在折断前的高度为________米.15【分析】如图在Rt△ABC中∠ABC=30°由此即可得到AB=2AC而根据题意找到CA=5米由此即可求出AB也就可以求出大树在折断前的高度【详解】如图在Rt△ABC中∵∠ABC=30°∴AB=2 解析:15【分析】如图,在Rt△ABC中,∠ABC=30°,由此即可得到AB=2AC,而根据题意找到CA=5米,由此即可求出AB,也就可以求出大树在折断前的高度.【详解】如图,在Rt△ABC中,∵∠ABC=30°,∴AB=2AC,∵CA=5米,∴AB=10米,∴AB+AC=15米.所以这棵大树在折断前的高度为15米.故答案为:15.【点睛】本题主要利用定理−−在直角三角形中30°的角所对的直角边等于斜边的一半,解题关键是善于观察题目的信息,利用信息解决问题.20.如图,在△ABC中,AB=AC,D为BC的中点,∠BAD=20°,且AE=AD,则∠CDE的度数是______.10°【分析】设∠B=∠C=x∠CDE=y分别表示出∠DAE构建方程解方程即可求解【详解】解:设∠B=∠C=x∠EDC=y∵AD=AE∴∠ADE =∠AED=x+y∵∠DAE=180°−2(x+y)=解析:10°【分析】设∠B=∠C=x,∠CDE=y,分别表示出∠DAE,构建方程解方程即可求解.【详解】解:设∠B=∠C=x,∠EDC=y,∵AD=AE,∴∠ADE=∠AED=x+y,∵∠DAE=180 °−2(x+y)=180 °−20 °−2x,∴2y=20 °,∴y =10 °,∴∠CDE =10 °.故答案为:10°【点睛】本题主要考查等腰三角形的判定与性质,还涉及三角形内角和等知识点,需要熟练掌握等腰三角形的判定与性质.三、解答题21.如图,△ABC 的三个顶点在边长为1的正方形网格中,已知A (−4,5),B (﹣3,1),C (−2,3).(1)画出△ABC 及关于y 轴对称的△A 1B 1C 1,其中点B 1的坐标是________;(2)若点M 是x 轴上的动点,在图中画出使△B 1CM 周长最小时的点M .解析:(1)图形见解析;B 1(3,2);(2)见解析【分析】(1)分别找到A 、B 、C 点关于y 轴的对称点,然后连接即可;(2)找C 关于x 轴的对称点C′,连接1B C '交x 轴于一点M ,根据两点之间线段最短,可知此时的M 即为使1B CM △周长最小时的点M .【详解】解:(1)111A B C △如图所示;根据图形可知B 1(3,2),故答案为:(3,2);(2)如图所示:找C 关于x 轴的对称点C′,则C′(-2,-3),CM C M '=,连接1B C '交x 轴于一点M ,根据两点之间线段最短,可知此时的M 即为使1B CM △周长最小时的点M .【点睛】本题考查作图-轴对称、最短路径问题,解题的关键是熟练掌握基础知识.22.如图,在平面直角坐标系中,每个小方格的边长为1,ABC 的三个顶点分别为()()4,3,3,()3,1,1A B C -.请在坐标系中标出,,A B C 三点,画出ABC ∆,并画出ABC ∆关于y 轴对称的图形111A B C ∆,写出点111,,A B C 的坐标.解析:图见解析;点111,,A B C 的坐标分别为()()–4,3,3,3--,()1,1-【分析】先在平面直角坐标系中画出,,A B C 三点,顺次连接即可;再按照轴对称的性质,画出它们的对称点即可.【详解】解:如图所示,111,ABC A B C ∆∆,即为所求;点111,,A B C 的坐标分别为()()–4,3,3,3--,()1,1-【点睛】本题考查了在平面直角坐标系中描点和画轴对称图形,关于y 轴对称点的坐标变化规律,解题关键是正确描点和画对称点.23.已知:如图,MON ∠为锐角,点A 在射线OM 上.求作:射线AC ,使得//AC ON .小静的作图思路如下:①以点A 为圆心,AO 为半径作弧,交射线ON 于点B ,连接AB ;②作MAB ∠的角平分线AC .射线AC 即为所求的射线.(1)使用直尺和圆规,按照小静的作图思路补全图形(保留作图痕迹);(2)完成下面的证明.证明:OA AB =,O ABO ∴∠=∠(__________).MAB ∠是AOB 的一个外角,MAB ∴∠=∠_________+∠__________.12ABO MAB ∴∠=∠. AC 平分MAB ∠,12BAC MAB ∴∠=∠. ABO BAC ∴∠=∠.//AC ON ∴(__________).解析:(1)见解析;(2)等边对等角;O ;ABO ;内错角相等,两直线平行【分析】(1)按照步骤作图即可;(2)由作法知,OA=AB ,AC 是∠MAB 的平分线,然后根据等腰三角形的性质,三角形外角的性质,以及角平分线的定义说明即可.【详解】 解:(1)作图如下:(2)证明:OA AB =,O ABO ∴∠=∠(等边对等角).MAB ∠是AOB 的一个外角,MAB O ABO ∴∠=∠+∠12ABO MAB ∴∠=∠. AC 平分MAB ∠,12BAC MAB ∴∠=∠. ABO BAC ∴∠=∠.//AC ON ∴(内错角相等,两直线平行).故答案为:等边对等角;O ;ABO ;内错角相等,两直线平行.【点睛】本题考查了作一条线段等于已知线段,作角的角平分线,以及等腰三角形的性质,三角形外角的性质,以及角平分线的定义等知识,熟练掌握各知识点是解答本题的关键. 24.如图,等边三角形ABC 中,AD BC ⊥,垂足为D ,点E 在线段AD 上,45EBC ∠=︒,求ACE ∠的度数.解析:15°【分析】根据等边三角形的性质可得∠ACB 的度数,并证得 AD 是BC 的垂直平分线,利用线段垂直平分线性质定理可得BE=CE ,再由等腰三角形的性质可求得∠ECB 的度数,即可求得结论.【详解】解:∵△ABC 是等边三角形,AD BC ⊥ ,∴60ACB ∠=︒,BD CD =,∴AD 是BC 的重直平分线,点E 在线段AD 上∴BE CE =.∵45EBC ∠=︒,∴45ECB EBC ∠=∠=︒,∴6045=15ACE ACB ECB ∠=∠-∠=︒-︒︒.【点睛】此题考查了等边三角形的性质、线段垂直平分线的性质等知识,掌握相关的性质定理并能灵活应用所学知识是解题的关键.25.如图,点A ,C ,D ,B 四点共线,且AC BD =,A B ∠=∠,ADE BCF ∠=∠.(1)求证:ADE BCF ≌;(2)若9DE =,CG 4=,求线段EG 的长.解析:(1)证明见解析;(2)5EG =.【分析】(1)根据AC=BD 可得AD=BC ,然后利用已知条件根据ASA 即可证明全等;(2)根据(1)中的全等可得∠ADE=∠BCF ,再结合等角对等边可得4DG CG ==,最后利用线段的和差即可求得EG 的长度.【详解】解:(1)证明:∵AC=BD ,∴AC+CD=BD+CD ,∴AD=BC ,在△ADE 和△BCF 中,A B AD BCADE BCF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE ≌△BCF (ASA );(2)∵△ADE ≌△BCF ,∴∠ADE=∠BCF ,∴4DG CG ==,∵9DE =,∴5EG DE DG =-=.【点睛】本题考查全等三角形的性质和判定,等腰三角形等角对等边.熟练掌握全等三角形的几种判定定理,并能结合题中所给条件灵活运用是解题关键.26.如图,在ABC ∆中,点D 是边BC 上一点,点E 在边AC 上,且,,BD CE BAD CDE =∠=∠ADE C ∠=∠.(1)如图1,求证:ADE ∆是等腰三角形,(2)如图2,若DE 平分ADC ∠,在不添加辅助线的情况下,请直接写出图中所有与CDE ∠相等的角(CDE ∠除外).解析:(1)详见解析;(2)与CDE ∠相等的角有:∠B ,∠BAD ,∠ADE ,∠C【分析】(1)证明△ABD ≌△DCE ,推出AD=DE ,即可得到结论;(2)根据DE 平分∠ADC ,推出∠ADE=∠CDE=12∠ADC ,利用BAD CDE ∠=∠,∠ADC=∠B+∠BAD ,得到∠B=∠BAD=∠ADE=∠CDE ,再由ADE C ∠=∠,得到∠C=CDE ∠.【详解】(1)∵∠ADC=∠B+∠BAD ,∠BAD=∠CDE ,∴∠B=∠ADE ,∵∠ADE=∠C ,∴∠B=∠C ,在△ABD 和△DCE 中,BAD CDE B CBD CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABD ≌△DCE ,∴AD=DE ,∴ADE ∆是等腰三角形;(2)∵DE 平分∠ADC ,∴∠ADE=∠CDE=12∠ADC , ∵BAD CDE ∠=∠,∠ADC=∠B+∠BAD ,∴∠B=∠BAD=∠ADE=∠CDE ,∵ADE C ∠=∠,∴∠C=CDE ∠,∴与CDE ∠相等的角有:∠B ,∠BAD ,∠ADE ,∠C .【点睛】此题考查全等三角形的判定及性质,等腰三角形的判定定理,角平分线的性质,三角形外角性质,熟记三角形全等的判定定理是解题的关键.27.在ABC 中,AB AC =,点D 是直线BC 上一点(不与B 、C 重合),以AD 为一边在AD 的右侧作ADE ,使AD AE =,DAE BAC ∠=∠,连接CE .(1)如图,当点D 在线段BC 上,如果90BAC ∠=︒,则BCE ∠=______度.(2)设BAC α∠=,BCE β∠=.①如图,当点D 在线段BC 上移动时,α、β之间有怎样的数量关系?请直接写出你的结论.②如图,当点D 在线段BC 的反向延长线上移动时,α、β之间有怎样的数量关系?请说明理由.解析:(1)90;(2)①180αβ+=︒,理由见解析;②αβ=,理由见解析【分析】(1)由等腰直角三角形的性质可得∠ABC=∠ACB=45°,由“SAS”可证△BAD ≌△CAE ,可得∠ABC=∠ACE=45°,可求∠BCE 的度数;(2)①由“SAS”可证△ABD ≌△ACE 得出∠ABD=∠ACE ,再用三角形的内角和即可得出结论;②由“SAS”可证△ADB ≌△AEC 得出∠ABD=∠ACE ,再用三角形外角的性质即可得出结论.【详解】(1)∵AB=AC ,∠BAC=90°,∴∠ABC=∠ACB=45°,∵∠DAE=∠BAC ,∴∠BAD=∠CAE ,在△BAD 和△CAE 中AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△BAD ≌△CAE (SAS )∴∠ABC=∠ACE=45°,∴∠BCE=∠ACB+∠ACE=90°,故答案为:90;(2)①180αβ+=︒.理由:∵∠BAC=∠DAE ,∴∠BAC-∠DAC=∠DAE-∠DAC .即∠BAD=∠CAE .在△ABD 与△ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS ),∴∠B=∠ACE .∴∠B+∠ACB=∠ACE+∠ACB .∵∠ACE+∠ACB=β,∴∠B+∠ACB=β,∵α+∠B+∠ACB=180°,∴α+β=180°;② 当点D 在射线BC 的反向延长线上时,αβ=.理由如下:∵DAE BAC ∠=∠,∴DAB EAC ∠=∠,在△ABD 与△ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△≌△ADB AEC(SAS), ∴ABD ACE ∠=∠,∵ABD BAC ACB ∠=∠+∠,ACE BCE ACB ∠=∠+∠,∴BAC ABD ACB ∠=∠-∠,BCE ACE ACB ∠=∠-∠,∴BAC BCE ∠=∠,即αβ=.【点睛】此题考查了全等三角形的判定和性质,等腰直角三角形的性质,三角形的内角和定理,以及三角形外交的性质,证明△ABD ≌△ACE 是解本题的关键.28.如图,在△ABC 中,AD 垂直平分BC ,E 是AB 边上一点,连接ED ,F 是ED 延长线上一点,连接CF ,若BC 平分∠ACF ,求证:BE =CF .解析:证明见解析.【分析】根据线段垂直平分线的性质得到AB=AC ,证明△BDE ≌△CDF ,根据全等三角形的性质得到BE=CF .【详解】证明:∵AD 垂直平分BC ,∴AB =AC ,BD =DC ,∴∠ABC =∠ACB ,∵BC 平分∠ACF ,∴∠FCB =∠ACB ,∴∠ABC =∠FCB ,在△BDE 和△CDF 中,EDB FDC BD CDEBD FCD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△BDE ≌△CDF (ASA ),∴BE =CF .【点睛】本题考查全等三角形的判定与性质及线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.。
2018年八年级数学《三角形全等、轴对称》专题复习资料(含解析)

2018年八年级数学《三角形全等、轴对称》专题复习资料【1】一.解答题(共15小题)1.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.求证:∠ABC=∠ACB=∠DEF.2.如图,已知:BE、CF是△ABC的高,在射线BE上截取BP=AC,在射线CF上截取CQ=AB,求证:(1)AP=AQ;(2)AP⊥AQ.3.如图,在Rt△ABC中,∠BAC=90°,∠ABC=60°,AD、CE分别平分∠BAC,∠ACB,(1)求∠AOE的度数;(2)试说明:AC=AE+CD.4.已知在△ABC中,AB=AC,D是BC边上任意一点,过点D分别向AB,AC引垂线,垂足分别为E,F.(1)如图1,当点D在边BC的什么位置时,DE=DF?并给出证明;(2)如图2,过点C作AB边上的高CG,垂足为G,试猜想线段DE,DF,CG的长度之间存在怎样的数量关系?并给出证明.5.△ABC中,∠ABC=110°,AB边的垂直平分线交AB于D、AC于E,BC边的垂直平分线交BC于F、AC于G、AB的垂直平分线于H,求∠EBG和∠DHF的度数.6.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,F是DE的中点,试探索CF与DE的位置关系,并说明理由.7.如图,将一块三角板ABC的直角顶点C放在直尺的一边PQ上,直尺的另一边MN与三角板的两边AC、BC分别交于两点E、D,且AD为∠BAC的平分线,∠B=30°,∠ADE=15°.(1)求∠BDN的度数;(2)求证:CD=CE.8.将含有45°角的直角三角板ABC和直尺如图摆放在桌子上,然后分别过A、B两个顶点向直尺作两条垂线段AD,BE.(1)请写出图中的一对全等三角形并证明;(2)你能发现并证明线段AD,BE,DE之间的关系吗?9.在△ABC中,∠BAC=100°,∠ABC=∠ACB,点D在直线BC上运动(不与点B、C重合),点E 在射线AC上运动,且∠ADE=∠AED,设∠DAC=n.(1)如图①,当点D在边BC上时,且n=36°,则∠BAD=,∠CDE=;(2)如图②,当点D运动到点B的左侧时,其他条件不变,请猜想∠BAD和∠CDE的数量关系,并说明理由;(3)当点D运动到点C的右侧时,其他条件不变,∠BAD和∠CDE还满足(2)中的数量关系吗?请画出图形,并说明理由.10.已知等腰三角形一腰上的中线将三角形的周长分为12cm和21cm两部分,求这个等腰三角形的底边和腰的长度.11.△ABC在直角坐标系中的位置如图所示,其中A(﹣3,5),B(﹣5,2),C(﹣1,3),直线l经过点(0,1),并且与x轴平行,△A′B′C′与△ABC关于线1对称.(1)画出△A′B′C′,并写出△A′B′C′三个顶点的坐标:;(2)观察图中对应点坐标之间的关系,写出点P(a,b)关于直线l的对称点P′的坐标:;(3)若直线l′经过点(0,m),并且与x轴平行,根据上面研究的经验,写出点Q(c,d)关于直线1′的对称点Q′的坐标:.12.如图1,在△ABC中,∠BAC=75°,∠ACB=35°,∠ABC的平分线BD交边AC于点D.(1)求证:△BCD为等腰三角形;(2)若∠BAC的平分线AE交边BC于点E,如图2,求证:BD+AD=AB+BE;(3)若∠BAC外角的平分线AE交CB延长线于点E,请你探究(2)中的结论是否仍然成立?直接写出正确的结论.13.如图,已知△ABC中,∠ABC=45°,点D是BC边上一动点(与点B,C不重合),点E与点D 关于直线AC对称,连结AE,过点B作BF⊥ED的延长线于点F.(1)依题意补全图形;(2)当AE=BD时,用等式表示线段DE与BF之间的数量关系,并证明.14.请按要求完成下面三道小题.(1)如图1,AB=AC.这两条线段一定关于某条直线对称吗?如果是,请画出对称轴a(尺规作图,保留作图痕迹);如果不是,请说明理由.(2)如图2,已知线段AB和点C.求作线段CD(不要求尺规作图),使它与AB成轴对称,且A与C是对称点,标明对称轴b,并简述画图过程.(3)如图3,任意位置的两条线段AB,CD,AB=CD.你能通过对其中一条线段作有限次的轴对称使它们重合吗?如果能,请描述操作方法;如果不能,请说明理由.15.阅读下面材料:小明遇到这样一个问题:如图1,在△ABC和△ADE中,∠ACB=∠AED=90°,AC=AE,BC=DE,连接CE交BD于点F.求证:BF=DF小明经探究发现,过B点作∠CBG=∠EDF,交CF于点G(如图2),从而可证△DEF≌△BCG,使问题得到解决(1)请你按照小明的探究思路,完成他的证明过程:参考小明思考问题的方法,解决下面的问题:(2)如图3,在△ABC与△BDE中,∠ABC=∠BDE,BC=DE,AB=BD,CF、EG分别为AB、BD的中线,连结FG并延长交CE于点H,是否存在与CH相等的线段?若存在,请找出并证明;若不存在,说明理由.2018年八年级数学《三角形全等、轴对称》专题复习资料【1】参考答案与试题解析一.解答题(共15小题)1.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.求证:∠ABC=∠ACB=∠DEF.【解答】证明:∵AB=AC,∴∠ABC=∠ACB,在△DBE和△CEF中,∴△DBE≌△CEF(SAS),∴∠BDE=∠CEF,∵∠ABC+∠BDE+∠BED=∠BED+∠DEGF+∠CEF=180°,∴∠ABC=∠DEF,∴∠ABC=∠ACB=∠DEF.2.如图,已知:BE、CF是△ABC的高,在射线BE上截取BP=AC,在射线CF上截取CQ=AB,求证:(1)AP=AQ;(2)AP⊥AQ.【解答】证明:(1)∵CF⊥AB,BE⊥AC,∴∠AEB=∠AFC=90°,∴∠ABE=∠ACQ=90°﹣∠BAC.∵BP=AC,CQ=AB,在△APB和△QAC中,,∴△APB≌△QAC(SAS).∴AP=AQ;(2)∵△APB≌△QAC,∴∠BAP=∠CQA.∵∠CQA+∠QAF=90°,∴∠BAP+∠QAF=90°.即AP⊥AQ.3.如图,在Rt△ABC中,∠BAC=90°,∠ABC=60°,AD、CE分别平分∠BAC,∠ACB,(1)求∠AOE的度数;(2)试说明:AC=AE+CD.【解答】解:(1)∵在Rt△ABC中,∠BAC=90°,∠ABC=60°,∴∠ACB=30°,∵AD、CE分别平分∠BAC,∠ACB,∴∠CAO=∠BAC=45°,∠ACO=∠ACB=15°,∴∠AOE=∠CAO+∠AOC=45°+15°=60°.(2)如图,在AC上截取AF=AE,连接OF∵AD平分∠BAC,∴∠BAD=∠CAD,在△AOE和△AOF中,∴△AOE≌△AOF(SAS),∴∠AOE=∠AOF=60°,∴∠AOF=∠COD=60°=∠COF,在△COF和△COD中,,∴△COF≌△COD(ASA)∴CF=CD,∴AC=AF+CF=AE+CD.4.已知在△ABC中,AB=AC,D是BC边上任意一点,过点D分别向AB,AC引垂线,垂足分别为E,F.(1)如图1,当点D在边BC的什么位置时,DE=DF?并给出证明;(2)如图2,过点C作AB边上的高CG,垂足为G,试猜想线段DE,DF,CG的长度之间存在怎样的数量关系?并给出证明.【解答】解:(1)当点D在BC的中点上时,DE=DF,证明:∵D为BC中点,∴BD=CD,∵AB=AC,∴∠B=∠C,∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°,在△BED和△CFD中,,∴△BED≌△CFD(AAS),∴DE=DF.(2)CG=DE+DF证明:连接AD,=S三角形ADB+S三角形ADC,∵S三角形ABC∴AB×CG=AB×DE+AC×DF,∵AB=AC,∴CG=DE+DF.5.△ABC中,∠ABC=110°,AB边的垂直平分线交AB于D、AC于E,BC边的垂直平分线交BC于F、AC于G、AB的垂直平分线于H,求∠EBG和∠DHF的度数.【解答】解:∵AB的垂直平分线交AC于点E,BC的垂直平分线交AC于点G,∴EA=EB,GB=GC,∵∠ABC=110°,∴∠A+∠C=70°,∵EA=EB,GB=GC,∴∠ABE=∠A,∠GBC=∠C,∴∠ABE+∠GBC=70°,∴∠EBG=110°﹣70°=40°,在四边形BDHF中,∵∠ABC=110°、∠HDB=∠HFB=90°,∴∠DHF=360°﹣∠ABC﹣∠HDB﹣∠HFB=70°.6.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,F是DE的中点,试探索CF与DE的位置关系,并说明理由.【解答】解:CF⊥DE,理由如下:∵AD∥EB∴∠A=∠EBC在△ADC和△BCE中∴△ADC≌△BCE(SAS)∴DC=CE又∵F是DE的中点∴CF⊥DE.7.如图,将一块三角板ABC的直角顶点C放在直尺的一边PQ上,直尺的另一边MN与三角板的两边AC、BC分别交于两点E、D,且AD为∠BAC的平分线,∠B=30°,∠ADE=15°.(1)求∠BDN的度数;(2)求证:CD=CE.【解答】(1)解:在直角三角形ABC中,∠ACB=90°,∠B=30°,∴∠BAC=60°,又AD平分∠BAC,∴∠CAD=30°,又∠ACD=90°,∴∠CDA=60°又∠ADE=15°,∴∠CDE=∠CDA﹣∠ADE=60°﹣15°=45°∴∠BDN=∠CDE=45°;(2)证明:在△CED中,∠ECD=90°,∠CDE=45°∴∠CED=45°∴CD=CE.8.将含有45°角的直角三角板ABC和直尺如图摆放在桌子上,然后分别过A、B两个顶点向直尺作两条垂线段AD,BE.(1)请写出图中的一对全等三角形并证明;(2)你能发现并证明线段AD,BE,DE之间的关系吗?【解答】解:(1)结论:△ADC≌△CEB.理由:∵AD⊥CE,BE⊥CE,∴∠ACB=∠ADC=∠CEB=90°,∴∠ACD+∠CAD=90°,∠ACD+∠ECB=90°,∴∠CAD=∠ECB,∵AC=CB,'∴△ADC≌△CEB(AAS).(2)结论:AD=BE+DE.理由:∵△ADC≌△CEB,∴AD=CE,CD=BE,∵CE=CD+DE,∴AD=BE+DE.9.在△ABC中,∠BAC=100°,∠ABC=∠ACB,点D在直线BC上运动(不与点B、C重合),点E 在射线AC上运动,且∠ADE=∠AED,设∠DAC=n.(1)如图①,当点D在边BC上时,且n=36°,则∠BAD=64°,∠CDE=32°;(2)如图②,当点D运动到点B的左侧时,其他条件不变,请猜想∠BAD和∠CDE的数量关系,并说明理由;(3)当点D运动到点C的右侧时,其他条件不变,∠BAD和∠CDE还满足(2)中的数量关系吗?请画出图形,并说明理由.【解答】解:(1)∠BAD=∠BAC﹣∠DAC=100°﹣36°=64°.∵在△ABC中,∠BAC=100°,∠ABC=∠ACB,∴∠ABC=∠ACB=40°,∴∠ADC=∠ABC+∠BAD=40°+64°=104°.∵∠DAC=36°,∠ADE=∠AED,∴∠ADE=∠AED=72°,∴∠CDE=∠ADC﹣∠ADE=104°﹣72°=32°.故答案为64°,32°;(2)∠BAD=2∠CDE,理由如下:如图②,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=.∵∠ACB=∠CDE+∠AED,∴∠CDE=∠ACB﹣∠AED=40°﹣=.∵∠BAC=100°,∠DAC=n,∴∠BAD=n﹣100°,∴∠BAD=2∠CDE;(3)∠BAD=2∠CDE,理由如下:如图③,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°,∴∠ACD=140°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=.∵∠ACD=∠CDE+∠AED,∴∠CDE=∠ACD﹣∠AED=140°﹣=.∵∠BAC=100°,∠DAC=n,∴∠BAD=100°+n,∴∠BAD=2∠CDE.10.已知等腰三角形一腰上的中线将三角形的周长分为12cm和21cm两部分,求这个等腰三角形的底边和腰的长度.【解答】解:如图所示,设AD=DC=x,BC=y,由题意得,或,解得或,当,等腰三角形的三边为8,8,17,显然不符合三角形的三边关系;当时,等腰三角形的三边为14,14,5,所以,这个等腰三角形的底边长是5,综上所述,这个等腰三角形的底边长5.腰长是14.11.△ABC在直角坐标系中的位置如图所示,其中A(﹣3,5),B(﹣5,2),C(﹣1,3),直线l经过点(0,1),并且与x轴平行,△A′B′C′与△ABC关于线1对称.(1)画出△A′B′C′,并写出△A′B′C′三个顶点的坐标:A'(﹣3,﹣3),B'(﹣5,0),C'(﹣1,﹣1);(2)观察图中对应点坐标之间的关系,写出点P(a,b)关于直线l的对称点P′的坐标:(a,2﹣b);(3)若直线l′经过点(0,m),并且与x轴平行,根据上面研究的经验,写出点Q(c,d)关于直线1′的对称点Q′的坐标:(c,2m﹣d).【解答】解:(1)如图所示,△A′B′C′即为所求,A'(﹣3,﹣3),B'(﹣5,0),C'(﹣1,﹣1);故答案为:A'(﹣3,﹣3),B'(﹣5,0),C'(﹣1,﹣1);(2)由题可得,点P'的横坐标为a,设点P'的纵坐标为y,则=1,解得y=2﹣b,∴点P(a,b)关于直线l的对称点P′的坐标为(a,2﹣b),故答案为:(a,2﹣b);(3)由题可得,点Q′的横坐标为c,设点Q'的纵坐标为y,则=m,解得y=2m﹣d,∴点Q(c,d)关于直线1′的对称点Q′的坐标为(c,2m﹣d).故答案为:(c,2m﹣d).12.如图1,在△ABC中,∠BAC=75°,∠ACB=35°,∠ABC的平分线BD交边AC于点D.(1)求证:△BCD为等腰三角形;(2)若∠BAC的平分线AE交边BC于点E,如图2,求证:BD+AD=AB+BE;(3)若∠BAC外角的平分线AE交CB延长线于点E,请你探究(2)中的结论是否仍然成立?直接写出正确的结论.【解答】证明:(1)如图1,在△ABC中,∠BAC=75°,∠ACB=35°,∴∠ABC=180°﹣∠BAC﹣∠ACB=70°,(2分)∵BD平分∠ABD,∴∠DBC=∠ABD=35°,(3分)∴∠DBC=∠ACB=35°,∴△BCD为等腰三角形;(4分)(2)证法一:如图2,在AC上截取AH=AB,连接EH,由(1)得:△BCD为等腰三角形,∴BD=CD,∴BD+AD=CD+AD=AC,(6分)∵AE平分∠BAC,∴∠EAB=∠EAH,∴△ABE≌△AHE,∴BE=EH,∠AHE=∠ABE=70°,(8分)∴∠HEC=∠AHE﹣∠ACB=35°,∴EH=HC,∴AB+BE=AH+HC=AC,∴BD+AD=AB+BE;(10分)证法二:如图3,在AB的延长线上取AF=AC,连接EF,由(1)得:△BCD为等腰三角形,且BD=CD,∴BD+AD=CD+AD=AC,∵AE平分∠BAC,∴∠EAF=∠EAC,∴△AEF≌△AEC,∴∠F=∠C=35°,(8分)∴BF=BE,∴AB+BE=AB+BF=AF,∴BD+AD=AB+BE;(10分)(3)正确结论:BD+AD=BE﹣AB,理由是:如图4,在BE上截取BF=AB,连接AF,∵∠ABC=70°,∴∠AFB=∠BAF=35°,∵∠BAC=75°,∴∠HAB=105°,∵AE平分∠HAB,∴∠EAB=∠HAB=52.5°,∴∠EAF=52.5°﹣35°=17.5°=∠AEF=17.5°,∴AF=EF,∵∠AFC=∠C=35°,∴AF=AC=EF,∴BE﹣AB=BE﹣BF=EF=AC=AD+CD=AD+BD.(12分)13.如图,已知△ABC中,∠ABC=45°,点D是BC边上一动点(与点B,C不重合),点E与点D 关于直线AC对称,连结AE,过点B作BF⊥ED的延长线于点F.(1)依题意补全图形;(2)当AE=BD时,用等式表示线段DE与BF之间的数量关系,并证明.【解答】解:(1)依题意补全图形如图所示:(2)结论:DE=2BF.理由:连接AD,设DE交AC于H.∵点E、D关于AC对称,∴AC垂直平分DE.∴AE=AD.∵AE=BD,∴AD=DB.∴∠DAB=∠ABC=45°.∴∠ADC=90°.∴∠ADE+∠BDF=90°.∵BF⊥ED,AC⊥ED,∴∠F=∠AHD=90°.∴∠DBF+∠BDF=90°.∴∠DBF=∠ADH.∴△ADH≌△DBF∴DH=BF又∵DH=EH,∴DE=2BF.14.请按要求完成下面三道小题.(1)如图1,AB=AC.这两条线段一定关于某条直线对称吗?如果是,请画出对称轴a(尺规作图,保留作图痕迹);如果不是,请说明理由.(2)如图2,已知线段AB和点C.求作线段CD(不要求尺规作图),使它与AB成轴对称,且A与C是对称点,标明对称轴b,并简述画图过程.(3)如图3,任意位置的两条线段AB,CD,AB=CD.你能通过对其中一条线段作有限次的轴对称使它们重合吗?如果能,请描述操作方法;如果不能,请说明理由.【解答】解:(1)如图1,作∠ABC的平分线所在直线a.(答案不唯一)(2)如图2所示:①连接AC;②作线段AC的垂直平分线,即为对称轴b;③作点B关于直线b的对称点D;④连接CD即为所求.(3)如图3所示,连接BD;作线段BD的垂直平分线,即为对称轴c;作点C关于直线c的对称点E;连接BE;作∠ABE的角平分线所在直线d即为对称轴,故其中一条线段作2次的轴对称即可使它们重合.15.阅读下面材料:小明遇到这样一个问题:如图1,在△ABC和△ADE中,∠ACB=∠AED=90°,AC=AE,BC=DE,连接CE交BD于点F.求证:BF=DF小明经探究发现,过B点作∠CBG=∠EDF,交CF于点G(如图2),从而可证△DEF≌△BCG,使问题得到解决(1)请你按照小明的探究思路,完成他的证明过程:参考小明思考问题的方法,解决下面的问题:(2)如图3,在△ABC与△BDE中,∠ABC=∠BDE,BC=DE,AB=BD,CF、EG分别为AB、BD的中线,连结FG并延长交CE于点H,是否存在与CH相等的线段?若存在,请找出并证明;若不存在,说明理由.【解答】(1)证明:∵∠ACB=∠AED=90°,∴∠DEF+∠AEC=∠ACE+∠BCG=90°,∵AE=AC,∴∠AEC=∠ACE,∴∠DEF=∠BCG,在△BCG与△DEF中,∴△BCG≌△DEF,(ASA),∴BG=DF,∠BGC=∠DFC,∴∠BGF=∠BFG,∴BF=BG,∴BF=DF;(2)解:CH=EH,理由:如图3,延长FH至L,使HL=FG,连接LE,则HL+HG=FG+HG,即LG=FH,∵∠ACB=∠AED=90°,CF、EG分别为AB、BD的中线,∴CF=EG,∵∠ABC=∠BDE,∠CBF=∠CFB,∠D=∠DGE,∴∠BFC=∠DGE,∵AB=BD,∴BF=BG,∴∠BFG=∠BGF,∵∠BGF=∠DGH,∴∠CFH=∠EGL,在△CFH与△EGL中,,∴△CFH≌△EGL,(SAS),∴CH=EL,∠ELH=∠CHF,∴∠ELH=∠EHL,∴EH=EL,∴EH=CH.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上数学全等三角形、轴对称测试题
一.选择题 (本题共10小题,每小题3分,共30分。
) 1. 下图中的轴对称图形有( ).
A .(1),(2)
B .(1),(4)
C .(2),(3)
D .(3),(4) 2.下列两个三角形中,一定全等的是( ).
(A )有一个角是40°,腰相等的两个等腰三角形(B )两个等边三角形 (C )有一个角是100°,底相等的两个等腰三角形
(D )有一条边相等,有一个内角相等的两个等腰三角形 3.下列条件中不能作出唯一直角三角形的是( )
A. 已知两个锐角
B. 已知一条直角边和一个锐角
C. 已知两条直角边
D. 已知一条直角边和斜边 4.如图4所示,共有等腰三角形( ) A.4个 B.5个 C.3个 D.2个
图7
5.如图5,在直角ABC △中,90C =∠,AB 的垂直平分线交AB 于D ,交AC 于E ,且
2EBC EBA =∠∠,则A ∠等于( )
A.20
B.22.5
C.25
D.27.5
6.如图6所示,已知AB=AC ,PB=PC ,下面的结论:①BE=CE ; ②AP ⊥BC ;③AE 平分∠BEC ;④∠PEC=∠PCE ,其中正确结论 的个数有( )
A .1个
B 2个
C 3个
D 4个
7.如图7,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE,②BC=ED,③∠C=∠D,④ ∠B=∠E,其中能使ΔABC ≌ΔAED 的条件有( )个.
A.4
B.3
C.2
D.1
8.平面内点A (-1,2)和点B (-1,6)的对称轴是( )
A .x 轴
B .y 轴
C .直线y=4
D .直线x=-1
9. △ABC 中,AB =AC ,三条高AD ,BE ,CF 相交于O ,那么图8中全等的三角形有( )
2
1
E
D
C B
A
A .5对
B .6对
C .7对
D .8对
10.一个等腰锐角三角形的腰上的高与底边所形成的α∠与顶角β∠的关系是( ) A.αβ=∠∠ B.5αβ=∠∠ C.2βα=∠∠ D.3βα=∠∠
图10 二.填空题(共10小题,每小题4分,共40分) 11.等腰三角形的一个角是80°,则它的底角是____.
12 如图9在等腰Rt △ABC 中,∠C =90°,AC =BC ,AD 平分∠BAC 交BC 于D ,DE ⊥AB 于D ,若AB =10,则△BDE 的周长等于____.
13.点M (-2,1)关于x 轴对称的点N 的坐标是________,直线MN 与x•轴的位置关系是 14.已知,AD 是△ABC 中BC 边上的中线,若AB=2,AC=4,则AD 的取值范围是___________.
15.如图10,如在平面上将△ABC 绕B 点旋转到△A ’BC ’的位置时,AA ’∥BC ,∠ABC=70°,则∠CBC ’为________度.
16.等腰三角形的周长是10,腰长是x ,则x 的取值范围________ 17.试找出如图所示的每个正多边形的对称轴的条数,并填在下表格中.
正多边形的边数 3 4 5 6 7 8 对称轴的条数
根据上表,请就一个正n 边形对称轴的条数作一猜想.n 边形有_______对称轴。
18.如图11所示,在△ABC 中,∠ABC=︒100,∠ACB=︒20,CE 平分∠ACB ,D 为AC 上一点,若∠CBD=︒20,BD=ED ,则∠CED 等于_______
19.如图12,已知ABC △的周长是21,OB OC ,分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =3,△ABC 的面积是._______
20.如图5在Rt ΔABC 中,∠C=90°,BD 是∠ABC 的平分线,交于点D ,若CD=n ,AB=m ,则ΔABD 的面积是_______
三.解答题(本题共8小题,共80分)
21.(本题8分)画出△ABC 关于x 轴对称的图形△A 1B 1C 1,并指出△A 1B 1C 1的顶点坐标.
图9 E D C B A A
D O
C
B
图12
A D
E C
B 图8 F A D C
E
图11
A
A'B C
C'
22. (本题8分)如图,某地有两所大学和两条交叉的公路.图中点M ,N 表示大学,OA ,OB•表示公路,现计划修建一座物资仓库,希望仓库到两所大学的距离相同,•到两条公路的距离也相同,你能确定出仓库P 应该建在什么位置吗?请在图中画出你的设计.(尺规作图,不写作法,保留作图痕迹)
23.(本题10分)如图,已知: AD 是BC 上的中线 ,且DF=DE .求证:BE ∥CF .
24、(本题10分)如图,在△ABC 中,∠ACB=90,DE 是AB 的垂直平分线,∠CAE :∠EAB= 4:1.求∠B 的度数.
25:(本题10分)如图,已知,EG ∥AF ,请你从下面三个条件中,再选出两个作为已知条件,另一个作为结论,推出一个正确的命题。
并证明这个命题(只写出一种情况)①AB=AC ②DE=DF ③BE=CF
已知: EG ∥AF 求证:
证明:
A B E
C D
26、(本题10分)在∆ABC 中,AB=AC ,DE ∥BC. (1)试问∆ADE 是否是等腰三角形,说明理由.
(2)若M 为DE 上的点,且BM 平分ABC ∠,CM 平分ACB ∠,若ADE ∆的周长为20,BC=8.求ABC ∆的周长.
27. (本题12分)如图, 已知: 等腰Rt △OAB 中,∠AOB=900, 等腰Rt △EOF 中,∠EOF=900, 连结AE 、BF. 求证:
(1) AE=BF; (2) AE ⊥BF.
28. (本题12分)如图(1), 已知△ABC 中, ∠BAC=900, AB=AC, AE 是过A 的一条直线, 且B 、C 在A 、E 的异侧, BD ⊥AE 于D, CE ⊥AE 于E
图1 图2 图3
(1)试说明: BD=DE+CE.
(2) 若直线AE 绕A 点旋转到图(2)位置时(BD<CE), 其余条件不变, 问BD 与DE 、CE 的关系如何? 不需说明.
(3) 若直线AE 绕A 点旋转到图(3)位置时(BD>CE), 其余条件不变, 问BD 与DE 、CE 的关系如何? 请直接写出结果, 不需说明.
E
M
D C B A。