第八章+第一节核外电子运动的特征
原子核外电子的运动特征PPT课件1

n
3 4 第三 第四 3s 3p 3d 4s 4p 4d 4f
1.原子轨道物理意义:表示电子云的形状。
轨道类型不同,轨道的形状也不同。人们用小写的 英文字母s、p、d、f分别表示不同形状的轨道
轨道符号 s p 轨道形状 球形 纺锤形
d 花瓣型
· · f g · · · · · · · · · ·
2.伸展方向
相同形状的原子轨道还可有不同的伸展方向,伸展方 向决定该种类型轨道的个数。 s轨道是球形对称的,只有1个轨道。 p轨道在空间有x、y、z3个伸展方向,所以p轨道含3 个轨道,分别记作:px、py、pz。 d轨道有5个伸展方向,即d轨道含5个轨道。 f轨道有7个伸展方向,即f轨道含7个轨道。
(3)最外层不超过8个(K层2个)
(4)次外层不超过18个,倒数第三层不超过32个。 相互制约,相互联系
原子核外电子在排布时,为什么各电子层最多容纳2n2 个电子? 最外层不超过8个?次外层不超过18个?倒 数第三层不超过32个呢?
量子力学研究表明:处于同一电子层的原子核外 电子,也可以在不同轨道上运动。
(三)电子自旋:
电子不仅在核外空间不停地运动,而且还做自旋 运动。电子的自旋有两种状态,通常采用↑↓ 来表示电子的不同自旋状态。电子自旋并非像地 球绕轴自旋,只是代表电子的两种不同状态。
电子平行自旋: ↑↑
电子反向自旋: ↑↓
电子层
原子轨 道类型
原子轨道 类型数目
可容纳的 电子数目
1 2
3 5
1s 2s,2p
思考: 我们已经知道电子是分层排布的,那么是什么原因导致 电子分层排布——即电子分层排布的依据是什么? 电子层(n): K L M N O P Q 离核远近:近 远 能量高低:低 高 1 K 2 L 3 M 4 N 5 O 6 P 7 Q
第一节原子结构

第一节原子结构二.教学目标:1.A复习原子构成的初步知识,使学生懂得质量数和Z某的含义,掌握构成原子的粒子间的关系。
2.了解关于原子核外电子运动特征和常识。
3.理解电子云的描述和本质。
4.了解核外电子排布的初步知识,能画出1~20号元素的原子结构示意图。
三.教学重点:原子核外电子的排布规律。
四.教学难点:原子核外电子运动的特征,原子核外电子的排布规律。
五.知识分析:复习提问:原子的概念,原子的构成,原子为什么显电中性?(一)原子核1.原子结构:质子原子核中子原子电子(1)原子是由居于原子中心带正电荷的原子核和核外带负电荷的电子构成的。
原子核由质子和中子构成。
所以构成原子的基本粒子是质子、中子和核外电子。
(2)质子带一个单位正电荷,中子呈电中性,因而核电荷数由质子数决定。
核电荷数(Z)=核内质子数=核外电子数(3)原子很小,原子核更小,它的半径约是原子的万分之一,体积只占原子的几千万亿分之一。
2.质量数:1.67261027kg1.0071271.6610kg质子的相对质量=1.67481027kg1.008127中子的相对质量=1.6610kg将原子核内所有的质子和中子的相对质量取近似值整数加起来,所得的数值叫质量数(A)。
质量数(A)=质子数(Z)+中子数(N)练习:用Z某表示原子:1.中性原子的中子数:N=2.阳离子的中子数,某AnA共有某个电子,则N=3.求阴离子的中子数,某An共的某个电子,则N=12164.求中性分子或原子团的中子数,CO2分子中,N=22ngAA5.原子核内有某个中子,其质量数为m,则离子所含电子的物质的量为:6.在RO3的微粒中,共有某个核外电子,R原子的质量数为A,则R核内所含的中子数为(A某n24)7.已知R2n离子的核内有某个中子,R的质量数为M,则agR2离子里含电子的物质的量为([a(M某2)/M]mol)(二)核外电子运动的特征1.核外电子运动的特征:(1)带负电荷,质量很小。
第一节核外电子运动的特殊性

电子层符号 K L M N O P Q
电子层能量: K<L<M < N<O<P<Q
n的取值:1 2 3 4 5……..n
(能层n目前最大取值为7)。
1911年,英国物理学家卢瑟福认为:电子绕 核旋转的原子结构模型。
1913年,丹麦科学家玻尔提出:核外电子分层 排布的原子结构模型。
He、Ne、Ar原子的核外电子分层排布示意图:
+2
电子层
+18
He 原子核
Ar
+10
核电 荷数 Ne
该电子层上的电子
电子云模型:1927-1935年
近
代 原
发 现
个常数n、 、m的条件限制。
✓③在量子力学中把波函数Ψ为原子轨道(是指电子
在核外运动的空间范围)。
✓④常用波函数的角度分布图来描述核外电子的运
动状态(又称原子轨道角度分布图)更直观。见教
材P6
✓⑤波函数Ψ没有直接的物理意义。
z x +y
z
x+ y
z
x
+y
z
+
x- y
S、P原子轨道的角度分布示意图
z +x- + y
z
-+ x+ - y
z
-
+
x-+ y
z
+
x+
-
y
z
+
x+
y
d原子轨道的角度分布示意图
D(r)
第一节核外电子运动的特殊性一、历史回顾(二)道尔顿(J

第一节 核外电子运动的特殊性一、历史回顾(二)道尔顿(J.Dolton)的原子理论---19世纪初汤姆逊发现带负电荷的原子卢瑟福的行星式原子模型近代原子结构理论-----玻尔原子模型二、核外电子运动的特殊性1.微观粒子的波粒二象性微观粒子既具有波的性质又具有粒子的性质称为波粒二象性。
电子就是具有粒子性和波动性这样双重性质的物质。
2.不确定原理微观粒子,不能同时准确测量其位置和动量测不准原理来源于微观粒子运动的波粒二象性,是微观粒子的固有属性。
电子的位置虽然测不准, 但可以知道它在某空间附近出现的几率,因而可以用统计的方法和观点, 考察其运动行为,用电子出现在核外空间各点的几率分布图来描述。
三、波函数1926年薛定谔建立了著名的描述微观粒子运动状态的量子力学波动方程:用波函数的数学形式描述核外电子的运动状态不如用其图像更直观,常用原子轨道的角度分布图来描述核外电子的运动状态,波函数的角度分布图又称为原子轨道的角度分布图四、电子云电子的波函数的意义比较好的解释是统计解释,量子力学引入了电子云的概念。
电子云的物理意义:黑点较密的地方表示电子出现的机会多。
五、四个量子数薛定谔方程式的解为系列解,每个解都有一定的能量E和其相对应,且每个解ψ 都要受到三个常数n,l,m的规定。
称n,l,m 为量子数。
主量子数 n 角量子数 l 磁量子数 m 自旋量子数 m s(一) 主量子数 n取值: n =1,2,3,……;物理意义: n值的大小表示电子的能量高低。
n值越大表示电子所在的层次离核较远,电子具有的能量也越高。
对于n =1,2,3,…分别称为第第一能层,第二能层,第三能层…(二) 角量子数 l取值: l =0,1,2,……n-1;物理意义: l 表示电子云的形状。
(三) 磁量子数 m取值: m =- l,…-2,-1,0,1,2,… l 。
意义: m 表示电子云在空间的伸展方向。
每一个m值代表一个伸展方向、电子轨道或原子轨道。
第一节原子核外电子的运动状态

3.统计性
测不准原理 在经典力学中,宏观物体在任一瞬间的位 置和动量都可以用牛顿定律正确测定。 如太空中的卫星,换言之,它的运动轨 道是可测知的,即可以描绘出物体的运 动轨迹(轨道)。 而对具有 波粒二象性的微粒,它们的运动 并不服从牛顿定律,不能同时准确测定 它们的速度和位置。
4
1927年,海森堡(Heisenberg W)经严格推 导提出了测不准原理:电子在核外空间所处 的位置 ( 以原子核为坐标原点 ) 与电子运动的 动量两者不能同时准确地测定。因此,也就 无法描绘出电子运动的轨迹来。
7
综上所述,微观粒子运动的主
要特征是具有波粒二象性,具体体
现在量子化和统计性上。
8
核外电子运动状态描述
因为微观粒子的运动具有波粒二象性的特 征,所以核外电子的运动状态不能用经 典的牛顿力学来描述,而要用量子力学 来描述,以电子在核外出现的概率密度、 概率分布来描述电子运动的规律。
9
回忆中学怎样描述核外电子排布
12
解薛定谔方程得到的波函数不是一个数值,而
是用来描述波的数学函数式(r, , ),函数式中 含有电子在核外空间位置的坐标r, , 的变量。 处于每一定态(即能量状态一定)的电子就有相 应的波函数式。
13
本身没有明确的物理意义。只能说是描述核 外电子运动状态的数学表达式,电子运动的规 律受它控制。 波函数 绝对值的平方却有明确的物理意义。 它代表核外空间某点电子出现的概率密度。量 子力学原理指出:在核外空间某点p(r, , )附 近微体积d 内电子出现的概率dp为 dp= 2d (3-11) 所以 2表示电子在核外空间某点附近单位微 体积内出现的概率,即概率密度。
18
同一亚层内的原子轨道其能量是相同的,称等价 轨道或简并轨道。但在磁场作用下,能量会有微小 的差异,因而其线状光谱在磁场中会发生分裂。
原子结构1概述

∣ψ∣2代表在单位体积内发现一个电子的几率,称为几率密度。
3.电子云:电子在核外空间出现几率密度分布的形象化描述, 是∣ψ∣2的具体图象。
4.几率密度分布的几种表示法:(以氢原子核外1s电子的几率 密度为例) (1)电子云图: (2)等几率密度面: (3)界面图: (4)径向几率密度图:
三、波函数和原子轨道 对于氢原子或类氢离子(核外只有一个电子)来说,其能量为
E 1n3.26 ev
波函数ψ没有明确的物理意义
∣ψ∣2有着明确的物理意义。它表示空间某处单位体积内电子出现 的几率,即几率密度。
(一)氢原子基态电子云的图形
1.几率:机会的百分数。
2.几率密度:空间某单位体积内电子出现的几率。
E 1n3.26 ev
E2.17n921018 J
2.解释氢光谱 巴尔麦系是电子从n = 3、4、5、6轨道跳回n = 2所放出的辐射能。 Balmer线系
v3.289 1105(212n12)s1
n = 3 红(Hα) n = 4 青(Hβ ) n = 5 蓝紫(Hν) n = 6 紫(Hδ )
3.磁量子数m:
m与电子运动的角动量沿磁场方向的分量有关。
m = 0、±1、±2、···±l共(2l +1)个值
l
m
空间运动状态数
0
0
s轨道
一种
1
-1、0、+1
ቤተ መጻሕፍቲ ባይዱ
p轨道 三种
2 -2、-1、0、+1、+2
d轨道 五种
3 -3、-2、-1、0、+1、+2、+3 f轨道 七种 意义:表示原子轨道或电子云在空间的伸展方向。
核外电子的运动特征

图 1-4 s、p、d亚层的电子云图
首页
上页
下页
返回
3.磁量子数(m)
磁量子数就是描述原子轨道(或电子云)在空间伸展
方向的量子数。
m取值是从+l到-l包括0在内的任何整数值。即
│m│≤l
当l=0时,m=0,即s亚层只有1个伸展方向(见图13);当l=1时,m=+1,0,-1,即p亚层有3个伸展方
向,分别沿直角坐标系的x、y、z轴方向伸展,依次称为
首页
上页
下页
返回
想一想
某原子核外电子的运动状态,用下列一套量子数表
示,是否正确,为什么?
n=3,l=3,m=-1, ms=+1/2
答:错。因为角量子数不满足l≤n-1 的要求。
首页
上页
下页
返回
1. 判断可能存在的状态 n = 3 l = 1 m = -1 ms = ½ n = 2 l = 2 m = 0 ms = ½ n = 4 l = 2 m = 3 ms = -½ n = 1 l = 0 m = 0 ms = 0 n = 3 l = 2 m = 1 ms = ½
主量子数
电子出现几率最大的地方离核的远近
副量子数
磁量子数
电子云的形状,
电子云的伸展方向
自旋量子数
电的自旋
首页 上页 下页 返回
1.主量子数(n)
主量子数(又称为电子层)是表示电子离核平均距离远
近,及电子能量高低的量子数。 n=1、2、3、4、5、6、7等正整数,用K、L、M、N、 O、P、Q等光谱符号表示。 n越大,电子离核平均距离越远,电子的能量越高。
图 1-2 氢原子的可见光谱示意图
这表明氢原子能量变化是不连续的(具有量子化特 征)。所有这些都不能用经典力学来解释,而遵循量子力 学所描述的运动规律。
第一节核外电子运动状态及特性

原子结构的认识积累的一个世纪,1911年,英国物理学家卢瑟福(Rutherford E)通过α粒子(带正电的氦离子流)穿过金箔时,发现部分α粒子发生散射,从而假设Thomson所说带正电的连续体实际上只是一个非常小的核,因此在 1911年提出了“行星系式”原子模型:即原子的中心有一带正电的原子核,电子在它周围旋转,原子核和电子在整个原子中只占很小的空间;原子中绝大部分是空的。
原子的质量几乎全部集中在核上,当α粒子正遇原子核即折回,擦过核边产生偏转,穿过空间不改变行进方向。
原子由原子核和电子组成,在化学反应中,原子核并不发生变化,而只是核外电子的运动状态发生变化,对核外电子运动状况描述最早的是玻尔理论。
Bohr 在牛顿力学的基础上吸收了德国Planck M的量子论,建立了“定态原子模型”。
为了解释受热黑体辐射,Planck M假定辐射能量ε的释放和吸收都不是连续的,ε只能是最小能量单位ε0的的整数倍:ε= nε0 = n hν。
ε0称为量子(quantum),量子的能量极小,它取决于辐射频率,h为普朗克常量(Planck constant),等于6.626×10-34J·s。
微观世界一个重要特征就是能量的量子化(不连续). Bohr NH D认为图8-1能量的量子化示意图玻尔原子模型能量量子化可以用来解决这种极小的原子世界的结构难题。
他在1913年提出:⑴核外电子在一定的轨道上运动,在这些轨道上运动的电子不放出能量也不吸收能量,电子处于某种“定态”(stationary state)。
⑵在一定的轨道上运动的电子具有一定的能量E,E只能取某些由量子化条件决定的数值,而不能处于两个相邻轨道之间。
氢原子核外电子能量公式为(n =1,2,3,4…)(8.1)当n = 1时,电子在离核最近的轨道(半径为52.9pm的球型轨道)上运动,能量最低,称为氢原子的基态(ground state)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
卢瑟福认为原子 质量主要集中在 原子核上,电子 在原子核外空间 高速运动。
卢瑟福——原子之父
4.波尔原子模型
1913年,丹麦物理学家玻尔把普朗克的 相关理论与卢瑟福的原子模型相结合,较好地 解释了氢原子光谱,提出新的原子结构模型。
道尔顿模型(1803) 汤姆生模型(1904) 卢瑟福模型(1911)
第一节 核外电子运动的特征
复习:原子的组成
质子(带正电) 原子核 原 子 (带正电) 中子(不带电)
(不显电性)
核 外 电 (带负电) 子
核电荷数=质子数 =核外电子数
一、量子化特性
与宏观物体运动不同,不能用经典力学来 描述。电子的运动和光一样,它具有量子 化特性和波粒二象性。
量子化理论:物质辐射能的吸收或发射是 不连续的,是以最小能量单位量子整数倍 做跳跃式的增或减,这种过程叫能量的量 子化。
波尔模型(1913)
电子云模型 (1935)
人类认识原子的历史是漫长的,也是无止境的……
1926
许多人 量子力学模型
·
历 1913
史
的
脚 步
1911
铭
记 这
1904
一
刻
1803
玻尔 卢瑟福 汤姆生 道尔顿
轨道模型
空心球模型
葡萄干面包式
实心球模型
2500年前
德谟克利特
哲学臆测
感受精神 · 学习方法 · 分享知识
粒子性:主要是指它具有集中的不可分割的特性。
波动性:它能在空间表现出干涉、衍射等波动现象, 具有一定的波长、频率。
实物粒子的波称为德布罗意波或物质波,物质波 的波长称为德布罗意波长。
质量为m、速率为υ 的自由粒子,一方面可用能 量E和动量P来描述它的粒子性;另一方面可用频率ν 和波长λ 来描述它的波动性。它们之间的关系为:
一、量子化特性
量子:能量子,能量的最小单位。
量子化:一个物理量如果有最小单位而不 可连续的分割,我们就说这个物理量是量 子化的。
量子的能量E和频率ν的关系:
E=h ×ν
h为普朗克常数。
(一) 氢原子光谱
氢原子光谱证明了:原子中电子运动的能量是 不连续的,具有量子化特性。
(二)玻尔原子模型
E=-13.6/n2×ev
电子运动所处的不连续能量状态称为能级。 用量子数n表示、同时也代表电子层。
离 核 距离(近 )
( 远)
能 量 高低(低 )
( 高)
能
级 一 二 三 四 五 六 七 ……
符
号 K L M N O P Q ……
最多电子数 2 8 18 32 50 …… 原子核外电子的每一个能层最多可以容纳的电子数 为2n2 。
第八章 原子结构和元素 周期律
主讲:邹小南 制作:邹小南
宏观、微观运动的不同
宏观物体
微观粒子
质量
很大
很小
速度
较小
很大(接近光速)
位移
可测
能量
可测
轨迹
可描述 (画图或函
数描述)
位置、动量 不可同时测定
不可确定
宏观、微观运动的运动特征
宏观物体的运动特征: 可以准确地测出它们在某一时刻所处的位置及
原子结构的认识历史
1.道尔顿原子模型
19世纪初,英国科学家道尔顿提出近代原子 学说,他认为原子是微小的不可分割的实心球体,
在化学反应中保持本性不变。
2.汤姆生原子模型
1897年,英国科学家汤姆生发现了电子。提出了 “葡萄干面包式”模型。认为原子是可以再分的。
3.卢瑟福原子模型
1911年,英国物理学家卢瑟福通过α粒子散射实验提 出带核的原子结构模型。认为原子是由带正电荷的原子
E h mc2 P m h 德布罗意公式
德布罗意波长为: h h P m
h 1 ( / c)2
若考虑相对论效应,则:
若 υ << c 时,不 考虑相对论效应,则:
光主要表现粒子性。
(一)德布罗意预言
一、德布罗意物质波的假设 光具有粒子性,又具有波动性。
光子能量和动量为:
E h
P h h c
1924年,德布罗意大胆地设想,波粒二象性不是 光所特有的,一切实物粒子也具有波粒二象性。
实物粒子:静止质量不为零的那些微观粒子,如 原子、电子、中子等。
3、电子处于激发态时不稳定,可跃迁到离 核较近能级较低的轨道上,就会放出能量。
基态:原子中的电子尽可能处在离核最近的 稳定轨道上运动,这时原子能量最低,称为 基态,用a0表示。 激发态:当原子从外界获得能量时,电子被 激发到离核较远的高能级轨道上去,此时电 子处于激发态。
高能级激发态电子跃迁至低能级电子释放 出的光子频率与两轨道能量的经验公式是:
玻尔在前人研究的基础上,首先认识 到氢原子光谱与氢原子结构之间联 系.提出著名的玻尔氢原子模型,即 玻尔理论。
波尔原子结构的假设可归结为以下三点:
1、核外电子在固定轨道上运动,具有确定 的半径和能量。
2、固定轨道必须符合量子化条件。 量子化:某一最小能量值的整数倍,这
个整数n称为量子数,n=1,2,3,4…
hν=E2-E1
光子:光量子,它是一种能量,是光线中
携带能量的粒子。它是传递电磁相互作用
的媒介粒子。
无线电波、微波、红外线、可见光、紫外 线、X-射线、γ-射线。波长由长到短。
电子能级间隔越小,跃迁时吸收光子波长 越大。
△E=hν
C =λν
玻尔理论虽然成功地解释了氢原子和 类氢原子的光谱。但不能解释多电子 原子的光谱。其根本原因在于玻尔理 论以牛顿经典力学理论为基础的,而 微观粒子运动规律不符合经典力学理 论规律。
运动的速度; 可以描画它们的运动轨迹。
微观物体的运动特征: 核外电子质量小,运动空间小,运动速率大。 无确定的轨道,无法描画其运动轨迹。 不能同时准确测定电子在某一时刻所处的位置
和运动的速度,只能指出其在核外空间某处出 现的机会的多少。
公元前5世纪,古希腊哲学家德谟克利特等人认 为,原子是构成物质的微粒,万物都是由简短 的、不可分割的原子构成。
二、波粒二象性
微观粒子的运动与宏观物体的运动有 着本质的区别。宏观物体的运动是连 续的、有轨迹的点运动,而微观物质 的运动则是不连续的、无轨迹可循。
波粒二象性:微观粒子具有波动性和 粒子性的双重运动特性。
光的波动性表现在光具有一定的波长 和频率;
光的粒子性则体现在光具有一定的能 量和动量。