数学人教版五年级下册长方体和正方体的体积公式运用

合集下载

五年级数学《长方体和正方体的体积》教案【优秀6篇】

五年级数学《长方体和正方体的体积》教案【优秀6篇】

五年级数学《长方体和正方体的体积》教案【优秀6篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、计划大全、策划方案、报告大全、心得体会、演讲致辞、条据文书、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as work summaries, plan summaries, planning plans, report summaries, insights, speeches, written documents, essay summaries, lesson plan materials, and other sample essays. If you want to learn about different formats and writing methods of sample essays, please stay tuned!五年级数学《长方体和正方体的体积》教案【优秀6篇】在教学工作者开展教学活动前,通常需要用到教学设计来辅助教学,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。

五年级下学期数学 长方体和正方体的体积 考点总结+题型训练 带答案

五年级下学期数学 长方体和正方体的体积 考点总结+题型训练 带答案
② 容积单位及进率:1 升=1000 毫升 1 升=1 立方分米 1 毫升=1 立方厘米
(4)排水法求不规则物体体积:
被浸没物体的体积等于上升那部分水的体积,计算方法: ① 放入物体后的总体积-原来水的体积,即:V物体 = V现在 - V原 来; ② 容器的底面积×上升那部分水的高度,即:V物体 = S底×h升高 。
19、有一块棱长是80厘米的正方体的铁块,现在要把 它熔铸造成一个横截面积是20平方厘米的长方体,这个 长方体的长是多少米?
体积不变 原正方体的体积:80×80×80=512000(立方厘米) 高:512000÷20=25600(厘米)=256米
20、一个长方体的高减少5厘米,就变成了正方体,正方体 的表面积比原长方体的表面积减少了60平方厘米,原长方 体的体积是多少立方厘米?
22、一块长方形铁皮,长26厘米,宽16厘米,在它的 四个角上都剪去边长为3厘米的正方形,然后焊接成一 个无盖的铁盒,求这个铁盒的容积是多少毫升?
铁盒的长:26-3×2=20(厘米) 铁盒的宽:16-3×2=10(厘米) 铁盒的高:3厘米 体积:20×10×3=600(立方厘米)=600毫升
成一个无盖铁盒,这个铁 盒的容积是792立方厘米.原来这块铁皮的面积是多少 平方厘米?
0.84立方分米=840立方厘米 包装盒的高:840÷15÷7=8(厘米) 8<9 装不下
18、一块正方体的方钢,棱长是20厘米,把它锻造成 一个高80厘米的长方体磨具,这个长方体磨具的底面积 是多少平方厘米?
体积不变 原正方体的体积:20×20×20=8000(立方厘米) 底面积:8000÷80=100(平方厘米)
3、填空。 (1)、一个长方体水箱,相交于同一个顶点的三条棱分别是5dm、 4dm、3dm。这个长方体的体积是( 60 )dm³。

人教五年级下册数学:长方体和正方体的体积教学教案

人教五年级下册数学:长方体和正方体的体积教学教案

长方体和正方体的体积教学教案学生姓名年级学科授课老师上课时间教学课题长方体和正方体的体积总课时课时计划教学内容教学内容概括教学重难点1.认识常用的体积单位以及掌握长方体和正方体的体积计算公式。

2.灵活运用长方体和正方体的体积计算公式解决实际问题。

3.体积单位之间的换算方法,以及用体积单位间的互化解决实际问题。

1.理解各体积单位的意义并掌握长方体和正方体的体积计算公式。

2.理解长方体和正方体的体积计算公式的推导过程。

3.运用长方体和正方体的体积计算公式解决实际问题。

4.掌握体积单位之间互化的方法。

【知识点一】体积的意义例1 乌鸦是怎样喝到水的?为什么?归纳总结物体所占空间的大小叫做物体的体积。

物体所占的空间越大,物体的体积就越大;物体所占空间越小,物体的体积就越小。

归纳总结常用的体积单位有立方厘米(cm 3)、立方分米(dm 3)和立方米(m 3)。

【知识点二】体积单位例1 怎样比较下面两个长方体体积的大小呢?【知识点三】长方体和正方体的体积计算公式例1 怎样知道一个长方体的体积是多少呢?归纳总结长方体的体积计算公式:长方体的体积=长×宽×高。

字母公式:V=abh。

正方体的体积计算公式:正方体的体积=棱长×棱长×棱长。

字母公式:V=a3考点题库一1.(重点题)在括号里填上适当的体积单位。

(1)牙膏盒的体积大约是60()。

(2)一节火车车厢的体积大约是80()。

(3)一箱核桃牛奶的体积大约是8()。

( ) ( )( )2.(难点题)连一连。

一个粉笔盒的体积 一粒蚕豆的体积 由8块棱长为0.5m 的正方体石块 所拼摆成的大正方体的体积1m 3 1dm 3 1cm 33.(变式题)用字母标出下列图形的长、宽、高或棱长,再分别写出它们的体积公式。

V= V=4.(潜能开发题)某果汁饮料厂原来用棱长是10cm 的正方体包装盒包装果汁。

改进生产工艺后,把原包装改成了棱长是5cm 的正方体包装盒,请你帮忙算一算,原来200盒果汁饮料,现在要装多少盒?(包装盒厚度忽略不计)5.(综合运用题)一个长方体的长、宽、高分别是10cm ,8cm ,6cm ,如果把这个长方体 切割成棱长是2cm 的小正方体,可以切成多少个?将这些小正方体排成一行,有多长?【知识点五】长方体和正方体体积计算公式的应用 例1 计算下面图形的体积。

最新人教版五年级数学下册《第3单元3.第2课时 长方体和正方体的体积(1)》精品PPT优质课件

最新人教版五年级数学下册《第3单元3.第2课时 长方体和正方体的体积(1)》精品PPT优质课件
第2课时 长方体和正方体的体积(1)
R·五年级下册
回顾
物体所占空间的大小叫做物体的( 体积 )。
计量体积要用体积单位,常用的体积单位 有( 立方厘米 )、( 立方分米 )和 ( 立方米 ),可以分别写成( cm3 )、 ( dm3)和( m3 ) 。
苹果醋饮料箱:长、宽、高分别是70厘米、50厘米、60厘米; 芒果汁饮料箱:长、宽、高分别是80厘米、60厘米、40厘米; 它们的体积分别是多少?
a·a·a也可以写作“a3”, 读作“a的立方”,表 示3个a相乘。
正方体的体积公式一般写成: V=a3
计算下面图形的体积。
V=a b h =7×3×4 =84(cm3)
V=a3 =63 =6×6×6 =216(dm3)
乘飞机的行李规定 ◎生活中的数学◎
50cm 65cm 40cm
机场行李托运一般不超过此规格。
12
12
观察上表,你发现了什么?
1.长方体所含体积单位的数量就是长方体的体积。 2.长方体的体积正好等于长×宽×高的积。
长方体的体积=长×宽×高
如果用字母V表示长方体的体积,用a,
b,h分别表示长方体的长、宽、高,那么
V=a b h
根据长方体和正方体
的关系,你能想出正
方体的体积怎样计算 吗?
正方体的体积=棱长×棱长×棱长 V=a ·a ·a
最小
最大
长方体的体积=长×宽×高
正方体的体积=棱长×棱长×棱长
V=a b h
V=a ·a ·a
课堂作业
1.从书本练习中选择题目, 完成与本课时相关练习;
2.完成练习册本课时内容。
学习体会 1、本节课你学到了哪些基本知识? 2、本节课你学到了哪些解题方法? 3、还有哪些知识和方法上的问题?

人教版五年级数学下册第三单元长方体和正方体——长方体和正方体的体积教案

人教版五年级数学下册第三单元长方体和正方体——长方体和正方体的体积教案

◎教学笔记第2课时长方体和正方体的体积(1)教学内容教科书P29~31的内容,完成教科书P31“做一做”。

教学目标1.经历长方体和正方体体积计算公式的推导过程,理解和掌握长方体和正方体的体积计算方法。

2.通过自主探索和合作交流,培养学生分析、比较、类推、归纳的能力,进一步发展学生的空间观念。

3.能运用长方体和正方体的体积公式解决简单的实际问题,感悟到数学来源于生活,应用于生活。

教学重点理解并掌握长方体和正方体体积的计算方法。

教学难点理解长方体和正方体体积计算公式的推导过程。

教学准备课件,12个棱长为1cm的小正方体。

教学过程一、情境导入,探索新知师:同学们,什么叫体积?常用的体积单位有哪些?你能用手势比画出1cm3、1dm3、1m3的大小吗?【学情预设】学生基本上都能回答出这些问题,教师适当补充。

师:昨天,我到超市买了一箱苹果醋饮料和一块香皂,怎样才能知道它们的体积大小呢?课件出示图片。

师:同学们真聪明,你们有什么好办法测量出它们的体积吗?【学情预设】学生会说到“把香皂切成一个个1cm3的小正方体”“根据苹果醋饮料箱子的长、宽、高估一估大约是多少个1cm3的小正方体”等方法,但还想不到只要知道长方体的长、宽、高,沿长、宽、高摆1cm3的小正方体就可以推算物体的体积。

【设计意图】创设与生活密切相关的问题情境,让学生在观察、猜想、比较的过程中明确了本节课的研究方向和目标。

师:这节课我们一起来研究长方体和正方体的体积。

[板书课题:长方体和正方体的体积(1)]二、动手操作,探究长方体和正方体的体积计算方法1.启发思考。

师:怎样知道长方体的体积呢?【学情预设】有了计算平面图形面积的经验,学生会想到看一个长方体里有多少个1cm3的小正方体,测量长方体的长、宽、高进行计算等方法。

师:我们可以通过实验研究,发现规律。

2.操作实验。

(1)出示课件要求,学生小组合作摆不同形状的长方体。

用12个棱长为1cm的小正方体拼摆不同形状的长方体,它们的长、宽、高各是多少?体积又是多少呢?四人小组一起动手操作并填写表格。

人教版五年级下册数学单元知识点归纳——第三单元 长方体和正方体

人教版五年级下册数学单元知识点归纳——第三单元  长方体和正方体

3 长方体和正方体一、认识长方体和正方体的特征及它们的展开图。

1.长方体是由6.个.长方形(特殊情况有两个相对的面是正方形)围成的立体图形。

在一个长方体中,相对的面完全相.......同.,.相对的棱长度相等........。

长方体有8.个顶点...,.12..条棱..。

2.相交于同一个顶点的三条棱的长度分别叫做长方体的长、宽、高.....。

3.长方体12条棱的长度和叫做长方体的棱长总和。

长方体的棱长总和........=.4.条长..+.4.条宽..+.4.条高..=.(.长.+.宽.+.高.).×.4.。

用字母表示:C=..(.a+b+h .....).×.4.。

4.正方体是由6.个完全相同的正方形.........围成的立体图形,正方体有8.个顶点...,.12..条棱..,.12..条棱的长度都相等........。

5.正方体是长、宽、高都相等的长方体,正方体是特殊的.......长方体...。

6.正方体的棱长总和=棱长×12。

用字母表示:C=..12..a .。

7.认识长方体和正方体的展开图。

特别注意:当长方体相对的两个面是正方形时,其他四个面是大小和形状完全相同的长方形。

温馨提示:长方体的长、宽、高的位置不是固定不变的。

长方体的摆法不同,长、宽、高也就不同。

温馨提示:长方体的上面和下面、前面和后面、左面和右面分别是相对的面。

温馨提示:长方体和正方体的展开图并不是唯一的,左图只是其中的一种。

无底(或无盖)长方体表面积=长×宽+(长×高+宽×高)×2S=2(ab+ah+bh)-abS=2(ah+bh)+ab无底又无盖长方体表面积=(长×高+宽×高)×2S=2(ah+bh)贴墙纸正方体的表面积=棱长×棱长×6 S=a×a×6用字母表示:S= 6a2生活实际:油箱、罐头盒等都是6个面游泳池、鱼缸等都只有5个面水管、烟囱等都只有4个面。

小学五年级下册数学讲义第三章 长方体和正方体 人教新课标版(含解析)

人教版小学五年级数学下册同步复习与测试讲义第三章长方体和正方体【知识点归纳总结】1. 长方体的特征1.长方体有6个面.有三组相对的面完全相同.一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同.2.长方体有12条棱,相对的四条棱长度相等.按长度可分为三组,每一组有4条棱.3.长方体有8个顶点.每个顶点连接三条棱.三条棱分别叫做长方体的长,宽,高.4.长方体相邻的两条棱互相垂直.【经典例题】1.长方体中至少有()条棱的长度相等.A.2B.4C.6D.8【分析】根据长方体的特征,长方体的6个面多少长方形(特殊情况有两个相对的面是正方形),一般情况长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.据此解答.【解答】解:长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.答:长方体中至少有4条棱的长度相等.故选:B.【点评】此题考查的目的是理解掌握长方体的特征及应用.2. 正方体的特征①8个顶点.②12条棱,每条棱长度相等.③相邻的两条棱互相垂直.【经典例题】2.在一个正方体中,最多能找到()组互相垂直的线段.A.12B.18C.24【分析】根据互相垂直的定义:在同一平面内,当两条直线相交成90度时,这两条直线互相垂直;据此进行解答.【解答】解:据分析解答如下:垂直:AB⊥AD AB⊥BC AB⊥AE AB⊥BF;BC⊥CD BC⊥BF BC⊥CG;CD⊥AD CD⊥DH CD⊥CG;AD⊥DH AD⊥AEBF⊥FG BF⊥FEAE⊥FE AE⊥EH;CG⊥FG CG⊥GH;DH⊥GH DH⊥HE;FG⊥GH GH⊥EHHE⊥EF EF⊥FG.故选:C.【点评】本题考查的是垂线的定义,熟知正方体的性质是解答此题的关键.3. 长方体和正方体的表面积长方体表面积:六个面积之和.公式:S=2ab+2ah+2bh.(a表示底面的长,b表示底面的宽,h表示高)正方体表面积:六个正方形面积之和.公式:S=6a2.(a表示棱长)【经典例题】3.如下图,用三个完全相同的正方体拼成一个长方体后,表面积减少了100dm2,原来每个正方体的表面积是150dm2,长方体的表面积是350dm2.【分析】三个正方体一拼成一个长方体减少了4个面,减少的面积就是100dm2,可以求出一个面的面积,即100dm2除以4等于25dm2,再根据正方体的表面积公式S=6a2进行计算,再用一个正方体的表面积乘以3减去100dm2可求长方体的表面积.【解答】解:100÷4=25(dm2)25×6=150(dm2)150×3﹣100=450﹣100=350(dm2)答:原来每个正方体的表面积是150dm2,长方体的表面积350dm2.故答案为:150,350.【点评】本题是一道关于立体图形的拼接问题,考查了学生长方体的表面积公式及正方体的表面积公式的灵活运用.4. 长方体、正方体表面积与体积计算的应用(1)长方体:底面是矩形的直平行六面体,叫做长方体.长方体的性质:六个面都是长方形,(有时有两个面是正方形);相对的面面积相等;12条棱相对的4条棱长相等;8个顶点;相交于一个顶点的三条棱的长度分别叫长、宽、高;两个面相交的边叫做棱;三条棱相交的点叫做顶点.长方体的表面积:等于它的六个面的面积之和.如果长方体的长、宽、高、表面积分别用a、b、h、S表示,那么:S表=2(ab+ah+bh)长方体的体积:等于长乘以宽再乘以高.如果把长方体的长、宽、高、体积分别用a、b、h、V表示,那么:V=abh(2)正方体:长宽高都相等的长方体,叫做正方体.正方体的性质:六个面都是正方形;六个面的面积相等;有12条棱,棱长都相等;有8个顶点;正方体可以看做特殊的长方体.正方体的表面积:六个面积之和.如果正方体的棱长、表面积分别用a、S表示,那么:S表=6a2正方体的体积:棱长乘以棱长再乘以棱长.如果把正方体的棱长、体积分别用a、V表示,那么:V=a3【经典例题】4.礼堂里有一根用作支撑的长方体柱子,底面是一个边长为0.4米的正方形,柱子高4.5米.油漆这根柱子,求总共油漆面积的算式是0.4×4.5×4.√.(判断对错)【分析】要油漆这根柱子,两个底面接触地面和楼层,只求出每根柱子的4个侧面即可,侧面的长就是高4.5米,宽是底面的边长0.4米,代入长方形面积公式“长×宽”,然后乘4个面,即可得解.【解答】解:0.4×4.5×4=1.8×4=7.2(平方米).答:油漆面积是7.2平方米.故答案为:√.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.5. 长方体和正方体的体积长方体体积公式:V=abh.(a表示底面的长,b表示底面的宽,h表示高)正方体体积公式:V=a3.(a表示棱长)【经典例题】5.计算下面图形的体积和表面积.【分析】(1)长方体的长、宽、高均已知,根据长方体的体积计算公式“V=abh”即可求出这个长方体的体积;根据长方体的表面积计算公式“S=2(ah+bh+ab)”即可求出这个长方体的表面积.(2)这个正方体的棱长已知,根据正方体的体积计算公式“V=a3”即可求出这个正方体的体积;根据正方体的表面积计算公式“S=6a2”即可求出这个正方体的表面积.【解答】解:(1)15×8×7=120×7=840(15×7+8×7+15×8)×2=(105+56+120)×2=281×2=562答:这个长方体的体积是840,表面积是562.(2)3×3×3=9×3=2732×6=9×6=54答:这个正方体的体积是27,表面积是54.【点评】解答此题的关键是记住并会运用长方体、正方体的体积、表面积计算公式.【同步测试】单元同步测试题一.选择题(共10小题)1.一个正方体的棱长总和是24cm,每条棱长()A.1cm B.2cm C.3cm2.如图是用边长1cm的小正方体拼成的长方体.下列图形()是这个长方体中的一个面.A.B.C.3.用一根72厘米的铁丝正好可以焊成一个长8厘米、宽()厘米、高4厘米的长方体框架.A.4B.5C.64.正方体有___个面,相对应的两个面______.()A.6个,大小不同,形状一样B.6,大小相同形状一样C.6,大小不同形状不同5.一种长方体盒装牛奶,从包装盒的外面量,长6厘米,宽3厘米,高12厘米.它标注的净含量可能是()毫升.A.200B.220C.2506.一个长方体的集装箱,从里面测量长12m、宽4m、高3m,如果要装一批棱长2m的正方体货箱,最多能装()个.A.12B.18C.367.一团橡皮泥,妙想第一次把它捏成长方体,第二次把它捏成正方体.捏成的两个物体体积()A.长方体大B.正方体大C.一样大D.无法确定8.一张长方形纸板长80厘米,宽10厘米,把它对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面.如果要为这个长方体纸箱配一个底面,这个底面的面积是()A.200平方厘米B.400平方厘米C.800平方厘米9.有两个表面积都是60平方厘米的正方体,把它们拼成一个长方体.这个长方体的表面积是()平方厘米.A.90B.100C.110D.12010.把一根长2m的长方体木材平均截成3段,表面积增加了100dm2,原来木材体积是()dm3.A.50B.100C.500D.1000二.填空题(共8小题)11.小军在一个无盖的长方体玻璃容器内摆了一些棱长1分米的小正方体(如图).做这个玻璃容器至少要用玻璃平方分米,它的容积是立方分米.(玻璃的厚度忽略不计)12.长方体和正方体都有个面,条棱.长方体最多有个面是正方形.13.粉笔盒的形状是,红领巾的形状是.14.在如图的长方体中,和a平行的棱有条,和a垂直的棱有条.15.手工课上,小辉把三块小正方体方木粘在一起,如图:表面积比原来减少16平方厘米,原来1个小正方体的表面积是平方厘米.16.把一根长48厘米的铁丝焊成一个宽2厘米,高1厘米的长方体框架,这个框架的长是厘米.17.一个长方体的上面是面积为25平方厘米的正方形,前面是面积为30平方厘米的长方形,这个长方体的表面积是平方厘米.18.有一个长12厘米,宽8厘米,高4厘米的长方体,把高增加3厘米,则体积增加立方厘米,表面积增加平方厘米.三.判断题(共5小题)19.长方体长和宽可以相等,长、宽、高也可以相等.(判断对错)20.长方体和正方体的表面积就是求它6个面的面积之和,也就是它所占空间的大小.(判断对错)21.加工一个油箱要用多少铁皮,是求这个油箱的体积.(判断对错)22.正方体是长、宽、高都相等的长方体.(判断对错)23.两个长方体体积相等,底面积不一定相等.(判断对错)四.操作题(共1小题)24.一个无盖纸盒的长、宽、高分别是4厘米、3厘米和2厘米.图中画出的是纸盒展开图的后面和右面,请在方格纸上画出另外3个面.这个纸盒的容积是立方厘米.五.应用题(共6小题)25.五(二)班要做一个长1.5米、宽0.6米、高0.8米的长方体书架,现要在书架各边都安上装饰木条,做这个书架要多少米的装饰木条?26.两个棱长和均为18厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?27.在长40厘米、宽30厘米的长方形铁皮的四个角上,分别剪去一个边长5厘米的正方形后,正好折成一个无盖的铁盒.如果每毫升汽油重0.75克,那么这个铁盒最多能装多少克汽油?28.用铁丝悍接一个正方体框架,一共用了180分米长的铁丝,这个正方体的棱长是多少分米?29.一个房间长8米,宽6米,高4米.除去门窗22平方米,房间的墙壁和房顶都贴上墙纸,这个房间至少需要多大面积的墙纸?30.明明家有一个长方体金鱼缸,长6分米,宽5分米,高4.5分米.他不小心把鱼缸的右侧面的玻璃打碎了,需要重配一块.(1)重新配上的这块玻璃的面积是多少平方分米?(2)玻璃配好后,他往鱼缸内倒入54升水,水深多少分米?参考答案与试题解析一.选择题(共10小题)1.【分析】正方体的棱长总和=棱长×12,用24除以12即可.【解答】解:24÷12=2(厘米),答:它的每条棱长是2厘米.故选:B.【点评】此题考查的目的是掌握正方体以及棱长总和公式.2.【分析】如图是用边长1cm的小正方体拼成的长方体,它的长是4cm,宽是3cm,高是2cm;据此解答.【解答】解:因为拼成的长方体的长是4cm,宽是3cm,高是2cm;所以只有选项C是这个长方体中的一个面.故选:C.【点评】此题考查了长方体面的认识,确定出长宽高是关键.3.【分析】用一根72厘米长的铁丝正好可以焊成长方体,这个长方体的棱长总和就是72厘米,长方体的棱长总和=(长+宽+高)×4,用棱长总和除以4减去长和高,即可求出宽.据此解答.【解答】解:72÷4﹣(8+4)=18﹣12=6(厘米)答:宽6厘米.故选:C.【点评】此题主要考查长方体的棱长总和公式的灵活运用.4.【分析】正方体有6个面,6个面都是完全相同的正方形;据此解答.【解答】解:正方体有6个面,相对应的两个面大小相同形状一样.故选:B.【点评】此题考查了对正方体特征的掌握.5.【分析】根据同一个容器的体积一定大于它的容积,首先根据长方体的体积公式:V=abh,把数据代入公式求出这个牛奶盒的体积,进而确定它的容积.【解答】解:6×3×12=18×12=216(立方厘米)216立方厘米=216毫升所以它标注的净含量一定小于216毫升.答:它标注的净含量可能是200毫升.故选:A.【点评】此题主要考查长方体的体积(容积)公式的灵活运用,关键是熟记公式.6.【分析】用长方体集装箱的每条棱的长除以正方体的棱长,然后用去尾法取整数,再相乘就是最多能装的个数.据此解答.【解答】解:12÷2=6,4÷2=2,3÷2≈1,6×2×1=12(个).答:最多能装12个.故选:A.【点评】本题的关键是让学生走出用长方体的体积除以正方体的体积就是能装个数的误区.7.【分析】根据体积的意义,物体所占空间的大小叫做物体的体积.由此可知:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.这两次捏成的物体的体积相比较一样大.【解答】解:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.只是形状变了,但体积不变,所以这两次捏成的物体的体积相比较一样大.故选:C.【点评】此题考查的目的是理解掌握体积的意义.8.【分析】根据题意可知,把这张长80厘米,宽10厘米的纸板对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面,也就是这个长方体纸箱的底面边长是2厘米,根据正方形的面积公式:S=a2,把数据代入公式解答.【解答】解:80÷4=20(厘米)20×20=400(平方厘米)答:这个底面的面积是400平方厘米.故选:B.【点评】此题考查的目的是理解掌握长方体的特征、长方体表面积的意义,以及正方形面积公式的灵活运用.9.【分析】两个表面积都是60平方厘米的正方体拼成一个长方体,长方体的表面积就比原来两个正方体减少了2个面,那么长方体的表面积等于正方体10个面的面积,所以先求出正方体一个面的面积,然后即可求出长方体的表面积.【解答】解:60÷6=10(平方厘米)10×10=100(平方厘米)答:这个长方体的表面积是100平方厘米.故选:B.【点评】此题解答关键是理解两个正方体拼成长方体后,表面积会减少2个面,由此即可解决问题.10.【分析】根据题意可知:把这根长方体木材平均截成3段,表面积增加的是4个截面的面积,由此可以求出长方体的底面积,再根据长方体的体积公式:V=sh,把数据代入公式解答.【解答】解:2米=20分米,100÷4×20=25×20=500(立方分米),答:原来木材的体积是500立方分米.故选:C.【点评】此题主要考查长方体的表面积公式、体积公式的灵活运用,关键是熟记公式,注意长度单位相邻单位之间的进率及换算.二.填空题(共8小题)11.【分析】通过观察图形可知,这个玻璃容器的长是4分米,宽是3分米,高是5分米,根据长方体的表面积公式:S=(ab+ah+bh)×2,由于玻璃容器无盖,所以只求它的5个面的总面积,根据长方体体积(容积)公式:V=abh,把数据代入公式解答.【解答】解:4×3+4×5×2+3×5×2=12+40+30=82(平方分米)4×3×5=60(立方分米)答:做这个玻璃容器至少要用玻璃82平方分米,它的容积是60立方分米.故答案为:82、60.【点评】此题主要考查长方体的表面积公式、体积(容积)公式在实际生活中的应用,关键是熟记公式.12.【分析】根据长方体和正方体的共同特征,长方体和正方体都有6个面、12条棱、8个顶点,长方体的6个面都是长方形(特殊情况下有两个相对的面是正方形),当长方体有两个相对的面是正方形时,其余四个面的面积相等,形状完全相同.【解答】解:根据分析可得:长方体和正方体都有6个面,12条棱.长方体最多有2个面是正方形.故答案为:6,12,2.【点评】此题主要考查了长方体的特征,要正确理解和掌握长方体的特征,平时注意基础知识的积累.13.【分析】长方体的特征:长方体有6个面,相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同,所以粉笔盒的形状是长方体;三角形的含义:由三条边首尾相连围城的图形,所以红领巾的形状是三角形;据此解答即可.【解答】解:粉笔盒的形状是长方体,红领巾的形状是三角形.故答案为:长方体,三角形.【点评】明确长方体和三角形的特征,是解答此题的关键.14.【分析】根据长方体的特征,长方体有12条棱分为三组,每组4条棱的长度相等且互相平行,据此解答.【解答】解:如图:和a平行的棱有3条,和a垂直的棱有4条.故答案为:3、4.【点评】此题考查的目的是理解掌握长方体的特征及应用.15.【分析】通过观察图形可知,把三个小正方体拼成一个长方体,表面积比原来减少了16平方厘米,表面积减少是小正方体4个面的面积,由此可以求出小正方体一个的面的面积,根据正方体的表面积公式:S=6a2,把数据代入公式解答.【解答】解:16÷4=4(平方厘米)4×6=24(平方厘米)答:原来1个小正方体的表面积是24平方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体、正方体表面积的意义,以及正方体表面积公式的灵活运用,关键是熟记公式.16.【分析】长方体所有的棱长之和就等于铁丝的长,再根据长方体的棱长和=(长+宽+高)×4,用棱长和除以4,求出长宽高的和,再减去宽和高,即可求出长方体的长,列式解答即可.【解答】解:48÷4﹣2﹣1=12﹣2﹣1=9(厘米)答:这个框架的长是9厘米.故答案为:9.【点评】此题考查了长方体棱长和公式的灵活运用,知道长方体所有的棱长之和就等于铁丝的长是解题的关键.17.【分析】一个上面是正方形的长方体,它的上面面积是25平方厘米,可求出这个正方形的边长是5厘米,用30除以5,可求出这个长方体的高,再根据长方体表面积公式S=2(ab+ah+bh)计算即可.【解答】解:因这个长方体的上面是正方形,且面积是25平方厘米,可知这个正方形的边长是5厘米.30÷5=6(厘米)5×5×2+5×6×4=50+120=170(平方厘米)答:这个长方体的表面积是170平方厘米.故答案为:170.【点评】本题的关键是求出这个长方体底面的边长和它的高.然后再根据表面积公式进行计算.18.【分析】根据长方体的体积公式:V=abh,表面积公式:S=(ab+ah+bh)×2,高增加3米,体积增加部分是以原来的长、宽为长、宽高是3厘米的长方体的体积,即(12×8×3)立方厘米,表面积增加部分是长12厘米、宽8厘米,高3厘米的长方体的4个侧面的面积,即(12×3×2+8×3×2)平方厘米.【解答】解:12×8×3=288(立方厘米)12×3×2+8×3×2=72+48=120(平方厘米)答:体积增加288立方厘米,表面积增加120平方厘米.故答案为:288、120.【点评】此题主要考查长方体的体积公式、表面积公式的灵活运用,关键是熟记公式.三.判断题(共5小题)19.【分析】长方体有6个面,有三组相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其它四个面都是长方形,并且这四个面完全相同.据此解答.【解答】解:由长方体的特征可知,长方体发的长、宽、高三个量中可以有两个量相等,不能三个量都相等;所以原题说法错误.故答案为:×.【点评】解答此题的关键:根据正方体和长方体的特征进行解答即可.20.【分析】根据长方体的表面积、体积的意义,长方体的6个面总面积叫做长方体的表面积;物体所占空间的大小叫做物体的体积.据此解答即可.【解答】解:长方体的6个面的面积之和叫做长方体的表面积;物体所占空间的大小叫做物体的体积.题干的说法是错误的.故答案为:×.【点评】此题考查的目的是理解掌握立体图形的表面积、体积的意义及应用.21.【分析】根据油箱的特点,加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积,由此判断.【解答】解:加工一个油箱要用多少铁皮,是求这个油箱的表面积,而不是体积;原题说法错误.故答案为:×.【点评】根据物体表面积、体积、容积的含义可知:加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积;油箱所占空间的大小是指油箱的体积,油箱内能容纳油的体积是指油箱的容积.22.【分析】根据长方体和正方体的共同特征:它们都有6个面,12条棱,8个顶点.正方体可以看作长、宽、高都相等的长方体.【解答】解:长方体和正方体都有6个面,12条棱,8个顶点.因此正方体可以看作长、宽、高都相等的长方体.故答案为:√.【点评】此题主要考查长方体和正方体的特征,以及长方体和正方体之间的关系,长方体包括正方体,正方体是特殊的长方体.23.【分析】根据长方体的体积公式:V=sh,长方体的体积是由底面积和高两个条件决定的,由此可知:虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.据此判断.【解答】解:长方体的体积是由底面积和高两个条件决定的,虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.所以,两个长方体体积相等,底面积不一定相等.这种说法是正确的.故答案为:√.【点评】此题考查的目的是理解掌握长方体的体积公式及应用.四.操作题(共1小题)24.【分析】根据长方体的特征,长方体相对面的面积相等,据此画出其他三个面.根据长方体的容积(体积)公式:V=abh,把数据代入公式解答.【解答】解:作图如下:4×3×2=24(立方厘米)答:这个纸盒的容积是24立方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体展开图的特征,以及长方体的容积(体积)公式的灵活运用,关键是熟记公式.五.应用题(共6小题)25.【分析】根据长方体的特征,12条棱分为互相平行的3组,每组4条棱的长度相等.由题意可知,求做这个书架要多少米的装饰木条,也就是求这个长方体的棱长总和.长方体的棱长总和=(长+宽+高)×4,由此列式解答.【解答】解:(1.5+0.6+0.8)×4=2.9×4=11.6(米)答:做这个书架要11.6米的装饰木条.【点评】此题属于长方体的棱长总和的实际应用,根据长方体的棱长总和的计算方法解决问题.26.【分析】根据正方体的棱长总和=棱长×12,已知正方体的棱长总和是18厘米,由此可以求出正方体的棱长,根据正方体的表面积公式:S=6a2,把数据代入公式求出两个正方体的表面积和,拼成的长方体的表面积比两个正方体的表面积和减少了正方体的两个面的面积,据此解答即可.【解答】解:18÷12=1.5(厘米)1.5×1.5×6×2﹣1.5×1.5×2=2.25×6×2﹣2.25×2=13.5×2﹣4.5=27﹣4.5=22.5(平方厘米)答:这个长方体的表面积是22.5平方厘米.【点评】此题主要考查正方体的棱长总和公式、表面积公式的灵活运用,关键是熟记公式.27.【分析】求铁皮盒的容积,需知道长方体的长、宽、高,长方形铁皮的长与宽各减去2个正方形边长即长方体的长与宽,高是5厘米,根据长方体的体积=长×宽×高,代入公式列式解答求得铁皮盒的容积,再乘0.75就是铁盒最多能装多少克汽油.【解答】解:(40﹣5×2)×(30﹣5×2)×5=30×20×5=3000(立方厘米)=3000(毫升)3000×0.75=2250(克)答:这个铁盒最多能装2250克汽油.【点评】此题主要考查长方体的体积公式及其计算,关键要理解铁皮盒的长与宽.28.【分析】根据正方体的特征,正方体的12条棱的长度都相等,由此可知:用焊这个正方体需要铁丝的长度除以12即可求出正方体的棱长,据此列式解答.【解答】解:180÷12=15(分米)答:这个正方体的棱长是15分米.【点评】此题考查的目的是理解掌握正方体的特征,以及正方体棱长总和公式的灵活运用.29.【分析】长方体有6个面,在房间的墙壁和房顶都贴上墙纸,贴墙纸的面是上面,前后面和左右面,就是求这5个面的面积和是多少,然后再减去门窗的面积就是这个房间至少需要多大面积的墙纸.长方体的长、宽、高已知,用长×宽=上面的面积,用长×高×2=前、后面的面积,用宽×高×2=左、右面的面积,然后相加再减去门窗的面积即可解答.【解答】解:8×6+8×4×2+6×4×2﹣22=48+64+48﹣22=138(平方米)答:这个房间至少需要138平方米大面积的墙纸.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.30.【分析】(1)根据题意可知,打碎右侧玻璃的长是5分米,宽是4.5分米,可用长方形的面积公式:S =长×宽进行解答即可;(2)根据长方体体积公式:长方形体积=长×宽×高,因此可用鱼缸内的水的体积除以分别除以长方体的长、宽即可得到水深.【解答】解:(1)5×4.5=22.5(平方分米)答:重新配上的这块玻璃的面积是22.5平方分米;(2)54升=54立方分米54÷6÷5=1.8(分米)答:水深1.8分米.【点评】此题主要考查的是长方形面积公式和长方体体积公式的灵活应用,解答时分清右侧面长方形的长、宽,然后再利用长方形的面积公式解答.。

(讲义)人教版小学数学五年级下册第12讲《长方体、正方体体积公式的推导及应用》练习训练版

五年级数学下册人教版《长方体、正方体体积公式的推导及应用》精准讲练长方体体积=长×宽×高 V=abh正方体体积=棱长×棱长×棱长 V=a³把一个铁球沉没在长1.5分米,宽1.2分米的长方体容器里,水面由4.5分米上升到6分米,这个铁球的体积是( )立方分米。

答案:2.7解析:铁球浸入长方体容器后,水面上升了(6-4.5)分米,由此可知水面升高部分水的体积就是铁球的体积,根据长方体体积公式进行解答。

1.5×1.2×(6-4.5)=1.5×1.2×1.5=2.7(立方分米)正方体的棱长扩大到原来的3倍,体积就扩大到原来的9倍。

( )答案:×解析:正方体的体积=棱长×棱长×棱长,正方体的棱长扩大到原来的3倍,体积就扩大到原来的3×3×3=27倍,据此判断即可。

由分析可知:正方体的棱长扩大到原来的3倍,体积就扩大到原来的27倍,原题说法错误。

故答案为:×将一个正方体坯铸造成一个长方体铁块(没有损耗),()不变。

A.面积B.体积C.高度D.长度答案:B解析:根据体积的意义:物体所占空间的大小叫做物体的体积;由此可知,将一个正方体铸成一个长方体(没有损耗),体积不变,据此解答。

根据分析可知,将一个正方体胚铸造成一个长方体铁块(没有损耗),体积不变。

故答案为:B一个长方体玻璃缸,从里面量长80厘米,宽50厘米,高60厘米,水深35厘米。

把一个棱长是40厘米的正方体铁块放入玻璃缸,这个正方体铁块能不能完全浸没在水中?请你利用学过的计算体积的方法算一算。

答案:80×50×(40-35)=4000×5=20000(立方厘米)40×40×40=1600×40=64000(立方厘米)64000>20000答:这个正方体铁块能完全浸没在水中。

人教版小学五年级数学下册第6课时《长方体和正方体的体积公式》教案

人教版小学五年级数学下册第6课时《长方体和正方体的体积公式》教案一. 教材分析《长方体和正方体的体积公式》是人教版小学五年级数学下册第六课时内容。

本节课主要让学生掌握长方体和正方体的体积计算公式,并通过实际操作和练习,使学生能够灵活运用这些公式解决实际问题。

教材通过生动的图片和直观的立体图形,引导学生探究长方体和正方体的特征,从而发现体积的计算规律。

二. 学情分析五年级的学生已经具备了一定的空间想象能力和逻辑思维能力。

他们在学习本节课之前,已经掌握了长方体和正方体的基本知识,对立体图形的特征有一定的了解。

但部分学生可能对体积公式的推导和应用还不够熟练。

因此,在教学过程中,教师需要关注学生的学习差异,有针对性地进行教学。

三. 教学目标1.知识与技能目标:使学生掌握长方体和正方体的体积计算公式,能够正确计算长方体和正方体的体积。

2.过程与方法目标:通过观察、操作、探究等方法,培养学生空间想象能力和逻辑思维能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的合作意识和创新精神。

四. 教学重难点1.重点:长方体和正方体的体积计算公式的推导和应用。

2.难点:体积公式的灵活运用和解决实际问题。

五. 教学方法1.情境教学法:通过生动的情景,引导学生主动参与学习,提高学生的学习兴趣。

2.操作教学法:让学生亲自动手操作,观察长方体和正方体的特征,发现体积的计算规律。

3.合作学习法:分组讨论,培养学生的团队协作能力和沟通能力。

4.启发式教学法:引导学生主动思考,发现问题,解决问题。

六. 教学准备1.教具:长方体和正方体的模型、卡片、课件等。

2.学具:每位学生准备一个长方体和正方体模型,用于观察和操作。

七. 教学过程1.导入(5分钟)教师通过课件展示长方体和正方体的图片,引导学生回顾长方体和正方体的特征。

然后提出问题:“你们知道长方体和正方体的体积如何计算吗?”激发学生的学习兴趣。

2.呈现(10分钟)教师通过课件呈现长方体和正方体的体积计算公式,并用具体的例子进行解释。

五年级数学下册知识讲义-3 长方体和正方体的体积公式的应用-人教版

小学数学长方体和正方体的体积公式的应用我们知道,正方体是特殊的长方体,那么可以用同一个公式计算它们的体积吗?如果可以,那么这个公式是什么?在长方体和正方体中,无论怎么放置,总会有一个面朝下,通常我们把朝下的这个面叫做底面。

这个底面的面积,叫做底面积。

→长方体的底面积=长×宽→正方体的底面积=棱长×棱长1. 长方体和正方体统一体积计算公式:长方体(或正方体)的体积=底面积×高;用字母表示为。

2. 已知长方体的底面积、高、体积三个量中的任意两个量,可以求出第三个量。

①已知底面积和高,求体积。

直接用长方体体积公式“”计算。

②已知体积和高,求底面积。

用长方体体积公式变形公式“”计算。

③已知体积和底面积,求高。

用长方体体积公式变形公式“”计算。

例题1 一个长方体的钢坯,横截面的面积是8,长是0. 7dm,10个这样的钢坯的体积是多少?解答过程:我们先求出一个钢坯的体积,钢坯的横截面的面积可以看作是底面积,长可以看作钢坯的高,根据长方体和正方体的统一体积公式,即可求出一个钢坯的体积。

答案:V=Sh=8×0.7=5. 6() 5. 6×10=56()答:10个这样的钢坯的体积是56立方分米。

例题2 一块正方体的方钢,棱长是20cm,把它锻造成一个高80cm的长方体模具,这个长方体模具的底面积是多少平方厘米?解答过程:锻造前后体积不变。

先求出正方体的体积,也就是长方体模具的体积,再根据V=Sh可以推导出S=V÷h,即用长方体模具的体积除以它的高,就能求出长方体模具的底面积。

答案:20×20×20÷80=100答:这个长方体模具的底面积是100。

技巧点拨:根据公式V=Sh,可推导出S=V÷h,h=V÷S,已知这三个量中的任意两个量,都可以求出第三个量。

例题3 一个长方体,表面积是368cm²,底面积是40cm²,底面周长是36cm,求这个长方体的体积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《长方体和正方体的体积》的教学说明
布德中小学:谢臣梅
《长方体、正方体体积公式的统一运用》是人教版五年级下册的内容,在数学书30页-31页,是例1的内容。

这节课我运用了“先学后教,当堂练习”’的教学模式。

这个内容我主要分三个板块:1.看书自学,了解体积公式;2.小组讨论,理解体积公式;3.当堂练习,运用体积公式。

本节课是在学习长方体、正方体的特征,掌握了体积的概念和常用的体积单位的基础上教学的,是学生第一次学习立体图形的体积计算。

学会长方体和正方体的计算,是学习体积单位进率的基础,更是学习容积的基础。

同时使学生进一步体会到知识来源于实践,用于实践的道理,学习一些研究问题的方法。

从研究平面图形到研究立体图形,是学生空间观念发展的一次飞跃。

对常见平面图形特征及其周长、面积计算方法的探索,既为进一步探索长方体、正方体这样的立体图形的特征以及表面积、体积的计算方法奠定了知识基础,同时也积累了探索的经验,准备了研究的方法。

通过学习长方体和正方体,可以使学生更好地以数学的眼光观察、了解周围的世界,形成初步的空间观念;同时也能为进一步学习其它立体图形打好基础。

学生分析:五年级的学生已经掌握了一些数学基础知识和学习数学的基本方法,具备了一些基本的解决数学问题的能力和技巧。

大部分学生具有较强的自我发展的意识,对有挑战性的任务很感兴趣。

这使得我们在学习素材的选取与呈现,以及学习活动的安排上除了关注
数学的用处之外,也应当设法给学生经历做数学的机会,使他们能够在这些活动中表现自我、发展自我,从而感受到数学学习是很重要的活动,初步形成并学会数学地思考。

此外,学生已经学过长方形等基本图形,对长方体、正方体有了认识与了解,因此对本节课的内容理解起来并不是难事,关键是如何利用他们对实践及探究活动的热情,让他们在活动中建立数学模型的数学发现的过程。

《长方体和正方体的体积》教学设计
教学内容:教材第30-31页的内容及相关题
学习目标:掌握正方体、长方体统一的体积公式,并灵活运用体积公式解决设计问题。

教具:长方体模型多媒体课件
学习过程:
出示学习目标,让学生齐读
一、复习旧知:
1.物体所占空间的大小叫做物体的( )。

2.计量体积要用体积单位,常用的体积单位有( )、( )和( ),
可以分别写成()、()和()。

3.长方体的体积=V=
正方体的体积= V=
过渡语:同学们,咱们能不能用同一个公式来计算长方体和正方体的体积呢?这节课我们一起来学习《长方体、正方体体积公式的统一运用》。

二、自学指导:
过渡语:下面,请大家打开书翻到第30页,我们请自学指导来引领我们达到目标。

请看自学指导(投影出示:师读)。

认真看课本31页的内容,看图看文字重点红底色部分的内容。

1、思考:长方体和正方体的底面积怎样求呢?
2、正方体、长方体统一的体积公式是什么?
师:自学竞赛开始,比谁看书认真,自学效果好!
三、先学:
1、看一看:
学生看书自学,教师巡视,确保每一名学生都在紧张地自学。

2、小组讨论交流:
过渡语:师问:“看完的请举手?”
小组内交流看书情况:底面积怎样求?
教师巡视,和各小组讨论看书情况,了解学情。

五、后教:探索新知
1、先计算图形的底面积,再算它们的体积。

师:做完的请举手?(全班都做完后),请大家一起观察黑板上同学做的,如有不同答案,可以举手上黑板补充或发现同学做的有错,也可以上来订正。

2、让学生当小老师说一说为什么要这样做?
3、讨论(议一议):
你们发现了底面积和体积之间有什么关系吗?
总结:所以,长方体和正方体的体积也可以这样来计算:
长方体(或正方体)的体积=
如果用字母S表示底面积,上面的公式可以写成:
V=
七、当堂训练:知识应用
过渡:下面,大家就运用新知识来做作业吧,有信心做全对、字写端正的同学请举手。

1、一块长方体肥皂的尺寸如下图,它的体积是多少?
2、一根长方体木料,长5m,横截面的面积是0.06m2。

这根木料的体积是多少?
3、生活中的数学
4、拓展练习(选做题)
(1)、把一根长2米的长方体木料,平均截成3段,表面积增加了12平方米,原来长方体木料的体积是多少立方分米?
(2)、有一块棱长是80厘米的正方体铁块,要把它熔铸成一个横截面积是200平方厘米的长方体,这个长方体的长是多少厘米?
八、板书设计
长方体的体积=
正方体的体积=
长方体(或正方体)的体积=底面积×高字母表达式 v=sh
《长方体和正方体的体积》教学反思
今天我讲人教版五年级下册《长方体、正方体体积公式的统一运用》的内容,这个内容我主要分三个板块:1.看书自学,了解体积公式;2.小组讨论,理解体积公式;3.当堂练习,运用体积公式。

一.看书自学,了解体积公式
让学生自己看书,从书中了一些数学信息,培养学生独立学习的能力,有的学生能看得懂,有的学生看不懂,于是我又让学生在小组内交流看书情况,这样即培养了学生的数学语言表达能力,又帮助看不懂书的学生,一举两得。

让全班学生都了解长方体和正方体的体积公式。

二、小组讨论,理解体积公式
小组合作交流、培养自主学习能力。

当我问到:长方体的底面积怎样求是?很多的学生不知道怎样回答,因为书上没有现成的答案,需要学生自己去找答案,于是我就让学生用长方体模型的盒子,在小组内讨论,通过讨论学生找到了答案,跟好的理解了长方体的体积公式。

我再请小老师上讲台讲底面积是怎样求的,统一的体积公式是什么。

传统的教学观念阻碍了学生主动性的发挥和创造力的培养,要改变传统观念就要实现三个转变:教学目标,由以知识传授为主改为增长经验、发展能力;教学方法,由以教师为中心改为以学生为中心;课堂气氛,由以严格遵守常规改为生动活泼、主动探索。

在新的教育观念的指导下,我在本节课中大胆地实践,采用小组合作交流,给学生最大限度参与学习的机会,通过教师的引导,学生自主参与数学实践活动,经历了数学知识的发生、形成过程,掌握了数学建模方法。

学生在活动中表现出主动参与、积极活动,本节课的教学目标也就达到了,因为它不仅仅让学生学会了一种知识,还让学生培养了主动参与的意识,增进了师生、同伴之间的情感交流,提高了实际操作能力,并从活动中形成了数学意识,学会了创造。

三.当堂练习,运用体积公式。

从学生做题的情况看,大部分的学生已经掌握本节课的内容,能运用公式解决问题,但是,当问题变难时,学生就不会做了,需要老师的提示。

本节课存在的问题:
1.数学语言不标准,不严谨。

2.板书的主题没有写好。

3.当堂练习的内容过于单一。

4.教学时间没有把握好,课堂总结太过仓促。

相关文档
最新文档