中考数学二次函数复习资料

合集下载

中考复习必备-二次函数总复习

中考复习必备-二次函数总复习
线上位置最____高____的点.
字母符号
a>0 a
a<0 b=0 b b与a同号 b与a异号 c=0
c>0
c c<0 b2 b2-4ac=0 - b2-4ac>0 4a c b2-4ac<0
图象的特征 开口向上 开口向下 对称轴为y轴 对称轴在y轴左侧 对称轴在y轴右侧 经过原点
与y轴正半轴相交 与y轴负半轴相交 与x轴有唯一交点(顶点) 与x轴有两个交点 与x轴没有交点
⑤解析式的求法: 确定二次函数的解析式,一般用待定系数法,由于二次函数解析式有三 个待定系数a,b,c(或a,h,k或a,x1,x2),因而确定二次函数解析式需要 已知三个独立的条件: a.已知抛物线上任意三个点的坐标时,选用一般式比较方便. b.已知抛物线的顶点坐标时,选用顶点式比较方便. c.已知抛物线与x轴两个交点的坐标(或横坐标x1,x2)时,选用交点式比 较方便.
命题点4 二次函数的实际应用
3.(2016·丹东24题10分)某片果园有果树80棵,现准备多种一些果树提高果 园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单 棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们 之间的函数关系如图所示.
(1)求y与x之间的函数关系式; (2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750 千克? (3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?
命题点1 二次函数的图象与性质 1.(2015·锦州5题3分)在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a 的图象可能是( C )
2.(2016·阜新10题3分)二次函数y=ax2+bx+c的图象如图所示,下列选项中正 确的是( B ) A.a>0 B.b>0 C.c<0 D.关于x的一元二次方程ax2+bx+c=0没有实数根

中考数学二次函数基础知识

中考数学二次函数基础知识

中考数学二次函数基础知识
二次函数
正比例函数是:y=kx(k≠0) 两个数的商是常数(x/y=k,k≠0)一次函数是:y=kx+b(k≠0)
反比例函数: 两个数的积是常数(xy=k,k≠0)二次函数:y=ax 2+bx+c
1、二次函数y=ax 2+bx+c 一些基本概念①
二次函数是一条关于 x=- 对称的抛物线。

此抛物线有三大特征:有开口方向,有对称轴,有顶点。

考点一、 二次函数的概念
a
b
2
考点五、二次函数的解析式的几种应用例1
例2例3
解法1用一般式方法,由于顶点D点的横坐标为-1,所以是以 x=- = -1为对称轴的
解法2知道顶点和交点就可利用顶点式方法:再把BC点代入
a
b
2
解法
知道和x轴的两个交点,可直接用交点式方法:
3
解析:由于抛物线是以D为顶点(-1,?)为对称轴的,又和x轴交于两点AB,因为B点坐标是(-3,0),就可推出A的坐标是(1,0)
例4知道最值和对称轴,可直接用顶点法。

考点12 二次函数(精讲)(解析版)

考点12 二次函数(精讲)(解析版)

考点12.二次函数(精讲)【命题趋势】二次函数作为初中三大函数考点最多,出题最多,难度最大的函数,一直都是各地中考数学中最重要的考点,年年都会考查,总分值为15-20分。

而对于二次函数图象和性质的考查,也主要集中在二次函数的图象、图象与系数的关系、与方程及不等式的关系、图象上点的坐标特征等几大方面。

题型变化较多,考生复习时需要熟练掌握相关知识,熟悉相关题型,认真对待该考点的复习。

【知识清单】1:二次函数的相关概念(☆☆)1)二次函数的概念:一般地,形如y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的函数,叫做二次函数.2)二次函数解析式的三种形式(1)一般式:y =ax 2+bx +c (a ,b ,c 为常数,a ≠0).(2)顶点式:y =a (x –h )2+k (a ,h ,k 为常数,a ≠0),顶点坐标是(h ,k ).(3)交点式:y =a (x –x 1)(x –x 2),其中x 1,x 2是二次函数与x 轴的交点的横坐标,a ≠0.2:二次函数的图象与性质(☆☆☆)解析式二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)对称轴x =–2b a顶点(–2b a ,244ac b a-)a 的符号a >0a <0图象开口方向开口向上开口向下最值当x =–2b a 时,y 最小值=244ac b a-。

当x =–2b a 时,y 最大值=244ac b a-。

最点抛物线有最低点抛物线有最高点增减性当x <–2ba时,y 随x 的增大而减小;当x >–2ba时,y 随x 的增大而增大当x <–2ba时,y 随x 的增大而增大;当x >–2ba时,y 随x 的增大而减小(1)二次函数图象的翻折与旋转抛物线y=a (x -h )²+k ,绕顶点旋转180°变为:y =-a (x -h )²+k ;绕原点旋转180°变为:y =-a (x+h )²-k ;沿x 轴翻折变为:y =-a (x-h )²-k ;沿y 轴翻折变为:y =a (x+h )²+k ;(2)二次函数平移遵循“上加下减,左加右减”的原则;二次函数图象的平移可看作顶点间的平移,可根据顶点之间的平移求出变化后的解析式.3:二次函数与各项系数之间的关系(☆☆☆)1)抛物线开口的方向可确定a 的符号:抛物线开口向上,a >0;抛物线开口向下,a <02)对称轴可确定b 的符号(需结合a 的符号):对称轴在x 轴负半轴,则2b x a =-<0,即ab >0;对称轴在x 轴正半轴,则2bx a=->0,即ab <03)与y 轴交点可确定c 的符号:与y 轴交点坐标为(0,c ),交于y 轴负半轴,则c <0;交于y 轴正半轴,则c >04)特殊函数值符号(以x =1的函数值为例):若当x =1时,若对应的函数值y 在x 轴的上方,则a+b+c >0;若对应的函数值y 在x 轴上方,则a+b+c =0;若对应的函数值y 在x 轴的下方,则a+b+c <0;5)其他辅助判定条件:1)顶点坐标24,24b ac b a a ⎛⎫-- ⎪⎝⎭;2)若与x 轴交点()1,0A x ,()2,0B x ,则可确定对称轴为:x =122x x +;3)韦达定理:1212b x x a c x x a ⎧+=-⎪⎪⎨⎪=⎪⎩具体要考虑哪些量,需要视图形告知的条件而定。

中考数学《二次函数》复习资料

中考数学《二次函数》复习资料
(1)写出抛物线的开口方向、对称轴和顶点坐标;
(2)求抛物线与x轴、y轴的交点坐标;
(3)画出草图
(4)观察草图,指出x为何值时,y>0,y=0,y<0.
14、如图,已知二次函数
的图象经过A(2,0)、B(0,-6)两点。
(1)求这个二次函数的解析式
(2)设该二次函数的对称轴与 轴交于点C,求点C的坐标
A. x=-2 B.x=2 C. x=-4 D. x=4
5.已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是()
A. ab>0,c>0 B. ab>0,c<0 C. ab<0,c>0 D. ab<0,c<0
6.二次函数y=ax2+bx+c的图象如图所示,则点在第__象限( )
A.一B.二C.三D.四
(三)、二次函数解析式的表示方法
1.一般式: ( , , 为常数, );
2.顶点式: ( , , 为常数, );
3.两根式: ( , , 是抛物线与 轴两交点的横坐标).
注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与 轴有交点,即 时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.
8.抛物线y=x2+bx+c,经过A(-1,0),B(3,0)两点,则这条抛物线的解析式为_____________.
9、二次函数 的对称轴是.
10二次函数 的图象的顶点是,当x时,y随x的增大而减小.
11抛物线 的顶点横坐标是-2,则 =.
12、抛物线 的顶Байду номын сангаас是 ,则 、c的值是多少?

2024年初中二次函数知识点汇总最全

2024年初中二次函数知识点汇总最全

二次函数知识点一、基本概念:1.二次函数的概念:一般地,形如(是常数,)的函数,叫做二次函数。

2y ax bx c =++a b c ,,0a ≠这里需要强调:和一元二次方程类似,二次项系数,而能够为零.二次函数的定义域是0a ≠b c ,全体实数.2. 二次函数的结构特性:2y ax bx c =++⑴ 等号左边是函数,右边是有关自变量的二次式,的最高次数是2.x x ⑵ 是常数,是二次项系数,是一次项系数,是常数项.a b c ,,a b c 二、基本形式1. 二次函数基本形式:的性质:2y ax =a 的绝对值越大,抛物线的开口越小。

2. 的性质:(上加下减)2y ax c =+的符号a 开口方向顶点坐标对称轴性质0a >向上()00,轴y 时,随的增大而增大;时,0x >y x 0x <y随的增大而减小;时,有最小值.x 0x =y 00a <向下()00,轴y 时,随的增大而减小;时,0x >y x 0x <y随的增大而增大;时,有最大值.x 0x =y 0的符号a 开口方向顶点坐标对称轴性质a >向上()0c ,轴y 时,随的增大而增大;时,0x >y x 0x <y3. 的性质:(左加右减)()2y a x h =-4. 的性质:()2y a x h k =-+三、二次函数图象的平移1. 平移步骤:措施1:⑴ 将抛物线解析式转化成顶点式,确定其顶点坐标;()2y a x h k =-+()h k ,⑵ 保持抛物线的形状不变,将其顶点平移到处,详细平移措施如下:2y ax =()h k ,随的增大而减小;时,有最小值x 0x =y c.a <向下()0c ,轴y 时,随的增大而减小;时,随0x >y x 0x <y 的增大而增大;时,有最大值.x 0x =y c 的符号a 开口方向顶点坐标对称轴性质0a >向上()0h ,X=h时,随的增大而增大;时,x h >y x x h <y随的增大而减小;时,有最小值.x x h =y 00a <向下()0h ,X=h时,随的增大而减小;时,随x h >y x x h <y 的增大而增大;时,有最大值.x x h =y 0的符号a 开口方向顶点坐标对称轴性质0a >向上()h k ,X=h时,随的增大而增大;时,随x h >y x x h <y 的增大而减小;时,有最小值.x x h =y k 0a <向下()h k ,X=h时,随的增大而减小;时,随x h >y x x h <y 的增大而增大;时,有最大值.x x h =y k【【【(h <0)【【【【【(h >0)【【【(h 【【|k|【【【 2. 平移规律在原有函数的基础上“值正右移,负左移;值正上移,负下移”.概括成八个字“左加右减,上加下h k 减”. 措施2:⑴沿轴平移:向上(下)平移个单位,变成c bx ax y ++=2y m c bx ax y ++=2(或)m c bx ax y +++=2m c bx ax y -++=2⑵沿轴平移:向左(右)平移个单位,变成c bx ax y ++=2m c bx ax y ++=2(或)c m x b m x a y ++++=)()(2c m x b m x a y +-+-=)()(2四、二次函数与的比较()2y a x h k=-+2y axbx c =++从解析式上看,与是两种不一样的体现形式,后者通过配方能够得()2y a x h k =-+2y ax bx c =++到前者,即,其中.22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭2424b ac b h k a a -=-=,五、二次函数图象的画法2y ax bx c =++五点绘图法:利用配措施将二次函数化为顶点式,确定其开2y ax bx c =++2()y a x h k =-+口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选用的五点为:顶点、与轴的交点、以及有关对称轴对称的点、与轴的交点y ()0c ,()0c ,()2h c ,x ,(若与轴没有交点,则取两组有关对称轴对称的点).()10x ,()20x ,x 画草图时应抓住如下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.x y 六、二次函数的性质2y ax bx c =++ 1. 当初,抛物线开口向上,对称轴为,顶点坐标为.0a >2bx a =-2424b ac b a a ⎛⎫-- ⎪⎝⎭,当初,随的增大而减小;当初,随的增大而增大;当初,有最2b x a <-y x 2b x a >-y x 2bx a=-y 小值.244ac b a- 2. 当初,抛物线开口向下,对称轴为,顶点坐标为.当初,0a <2b x a =-2424b ac b a a ⎛⎫-- ⎪⎝⎭,2bx a <-随的增大而增大;当初,随的增大而减小;当初,有最大值.y x 2b x a >-y x 2bx a=-y 244ac b a -七、二次函数解析式的表示措施1. 一般式:(,,为常数,);2y ax bx c =++a b c 0a ≠2. 顶点式:(,,为常数,);2()y a x h k =-+a h k 0a ≠3. 两根式:(,,是抛物线与轴两交点的横坐标).12()()y a x x x x =--0a ≠1x 2x x 注意:任何二次函数的解析式都能够化成一般式或顶点式,但并非所有的二次函数都能够写成交点式,只有抛物线与轴有交点,即时,抛物线的解析式才能够用交点式表示.二次x 240b ac -≥函数解析式的这三种形式能够互化.八、二次函数的图象与各项系数之间的关系 1. 二次项系数a二次函数中,作为二次项系数,显然.2y ax bx c =++a 0a ≠ ⑴ 当初,抛物线开口向上,的值越大,开口越小,反之的值越小,开口越大;0a >a a⑵ 当初,抛物线开口向下,的值越小,开口越小,反之的值越大,开口越大.0a <a a 总结起来,决定了抛物线开口的大小和方向,的正负决定开口方向,的大小决定开口的大a a a 小.2. 一次项系数b在二次项系数确定的前提下,决定了抛物线的对称轴.a b ⑴ 在的前提下,0a >当初,,即抛物线的对称轴在轴左侧;0b >02ba-<y 当初,,即抛物线的对称轴就是轴;0b =02ba-=y 当初,,即抛物线对称轴在轴的右侧.0b <02ba->y ⑵ 在的前提下,结论刚好与上述相反,即0a <当初,,即抛物线的对称轴在轴右侧;0b >02ba->y 当初,,即抛物线的对称轴就是轴;0b =02ba-=y 当初,,即抛物线对称轴在轴的左侧.0b <02ba-<y 总结起来,在确定的前提下,决定了抛物线对称轴的位置.a b 的符号的判定:对称轴在轴左边则,在轴的右侧则,概括的说就是ab abx 2-=y 0>ab y 0<ab “左同右异”总结:3. 常数项c ⑴ 当初,抛物线与轴的交点在轴上方,即抛物线与轴交点的纵坐标为正;0c >y x y ⑵ 当初,抛物线与轴的交点为坐标原点,即抛物线与轴交点的纵坐标为;0c =y y 0 ⑶ 当初,抛物线与轴的交点在轴下方,即抛物线与轴交点的纵坐标为负.0c <y x y总结起来,决定了抛物线与轴交点的位置.c y 总之,只要都确定,那么这条抛物线就是唯一确定的.a b c ,,二次函数解析式确实定:依照已知条件确定二次函数解析式,一般利用待定系数法.用待定系数法求二次函数的解析式必须依照题目标特点,选择适当的形式,才能使解题简便.一般来说,有如下几个情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与轴的两个交点的横坐标,一般选用两根式;x 4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称 二次函数图象的对称一般有五种情况,能够用一般式或顶点式体现 1. 有关轴对称x 有关轴对称后,得到的解析式是;2y ax bx c =++x 2y ax bx c =---有关轴对称后,得到的解析式是;()2y a x h k =-+x ()2y a x h k =--- 2. 有关轴对称y 有关轴对称后,得到的解析式是; 2y ax bx c =++y 2y ax bx c =-+有关轴对称后,得到的解析式是;()2y a x h k =-+y ()2y a x h k =++3. 有关原点对称 有关原点对称后,得到的解析式是;2y ax bx c =++2y ax bx c =-+- 有关原点对称后,得到的解析式是;()2y a x h k =-+()2y a x h k =-+- 4. 有关顶点对称(即:抛物线绕顶点旋转180°) 有关顶点对称后,得到的解析式是;2y ax bx c =++222b y ax bx c a=--+-有关顶点对称后,得到的解析式是.()2y a x h k =-+()2y a x h k =--+ 5. 有关点对称 ()m n ,有关点对称后,得到的解析式是()2y a x h k =-+()m n ,()222y a x h m n k=-+-+- 依照对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此永远a 不变.求抛物线的对称抛物线的体现式时,能够依据题意或以便运算的标准,选择适宜的形式,习惯上是先确定原抛物线(或体现式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的体现式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与轴交点情况):x 一元二次方程是二次函数当函数值时的特殊情况.20ax bx c ++=2y ax bx c =++0y =图象与轴的交点个数:x ① 当初,图象与轴交于两点,其中的是一元二240b ac ∆=->x ()()1200A x B x ,,,12()x x ≠12x x ,次方程的两根.这两点间的距离()200ax bx c a ++=≠2AB x =-② 当初,图象与轴只有一个交点; 0∆=x ③ 当初,图象与轴没有交点.0∆<x 当初,图象落在轴的上方,无论为任何实数,都有;1'0a >x x 0y > 当初,图象落在轴的下方,无论为任何实数,都有.2'0a <x x 0y <2. 抛物线的图象与轴一定相交,交点坐标为,;2y ax bx c =++y (0)c 3. 二次函数常用解题措施总结:⑴ 求二次函数的图象与轴的交点坐标,需转化为一元二次方程;x ⑵ 求二次函数的最大(小)值需要利用配措施将二次函数由一般式转化为顶点式;⑶ 依照图象的位置判断二次函数中,,的符号,或由二次函数中,,的符号2y ax bx c =++a b c a b c 判断图象的位置,要数形结合;⑷ 二次函数的图象有关对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与轴的x 一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的尚有二次三项式,二次三项式自身就是所含字母的二次函2(0)ax bx c a ++≠x 数;下面以时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:0a >0∆>抛物线与轴有x 两个交点二次三项式的值可正、可零、可负一元二次方程有两个不相等实根0∆=抛物线与轴只x 有一个交点二次三项式的值为非负一元二次方程有两个相等的实数根0∆<抛物线与轴无x 交点二次三项式的值恒为正一元二次方程无实数根.二次函数考查重点与常见题型1.考查二次函数的定义、性质,有关试题常出目前选择题中,如:已知以为自变量的二次函数的图像通过原点, 则的值是 x 2)2(22--+-=m m x m y m 2.综合考查正百分比、反百分比、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,假如函数的图像在第一、二、三象限内,那么函数的图像大体是b kx y +=12-+=bx kx y ( )y y y y 1 0 x o-1 x 0 x 0 -1 x A B C D3.考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中等解答题和选拔性的综合题,如:已知一条抛物线通过(0,3),(4,6)两点,对称轴为,求这条抛物线的解析式。

九年级数学《二次函数总复习》课件

九年级数学《二次函数总复习》课件

与时间x(min)成正比例.药物燃烧后,y与x成反比例(如所
示),现测得药物8min燃毕,此时室内空气中每立方米的药
量为6mg,请根据题中所提供的信息,解答下列问题:
(1)药物燃烧时,y关于x 的函数关系式为: ________, 自
变量x 的取值范围是:_______,药物燃烧后y关于x的函
数关系式为_______.
四边形OEBF的面积为2,则k的值是____。
y
C
E
O
B
F x
A
x
•(-3,0)
A
•(1,0)
0
E
B
x
• ••
DF
⑩如图,在坐标系内有一点G,G关于X轴对称点G‘,
若四边形AGBG’是正方形,求过A、B、G三点的抛
物线。
•G‘ y
• • • (-3,0)
A
(1,0) H0 B x
• G
当堂检测
1、 二次函数的图象如图所示,则在下列各不等式 中成立的个数是____________
C o
B
A(1,m) x
(4)连接BC,求三角形 ⊿ COB的面积;
例2、已知反比例函数 y =
k x
的图象经过点A(1,4)
(1 )①求此反比例函数 的解析式;
②并判断点B(-4,-1)是否在此函数图像上。
(2)根据图像得, 若y ﹥ 1, 则x的取值范围-----------
y 4 A(1,4)
例5:已知二次函数y=ax2+bx+c如图,
(1)①判断a,b,c正负。 ② a+b+c 0, a-b+c 0,b-2a 0。
(2) 已知二次函数y=ax2+bx+c如图,且过C(0, 3)

中考数学总复习之二次函数专题复习

中考数学总复习之二次函数专题复习一.选择题(共8小题)1.二次函数y=2x2+8x+5的图象的顶点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.把二次函数y=x2+2x﹣6配方成顶点式为()A.y=(x﹣1)2﹣7B.y=(x+1)2﹣7C.y=(x+2)2﹣10D.y=(x﹣3)2+33.已知二次函数y=(a﹣2)x2,当x>0时,y随x的增大而减小,则实数a的取值范围是()A.a>0B.a>2C.a≠2D.a<24.关于抛物线y=(x﹣1)2﹣2,以下说法正确的是()A.抛物线在直线x=﹣1右侧的部分是上升的B.抛物线在直线x=﹣1右侧的部分是下降的C.抛物线在直线x=1右侧的部分是上升的D.抛物线在直线x=1右侧的部分是下降的5.2019年在武汉市举行了军运会,在军运会比赛中,某次羽毛球的运动路线可以看作是抛物线y=x2+x+的一部分(如图),其中出球点B离地面O点的距离是米,球落点的距离是()A.1米B.3米C.5米D.米6.二次函数y=x2﹣3x+1的图象大致是()A.B.C.D.7.无论k为何值,直线y=kx﹣2k+2与抛物线y=ax2﹣2ax﹣3a总有公共点,则a的取值范围是()A.a>0B.C.或a>0D.8.如图,已知开口向上的抛物线y=ax2+bx+c与x轴交于点(﹣1,0),对称轴为直线x=1.下列结论:①abc>0;②2a+b=0;③若关于x的方程ax2+bx+c+1=0一定有两个不相等的实数根;④a>.其中正确的个数有()A.1个B.2个C.3个D.4个二.填空题(共8小题)9.如图,某学校拟建一块矩形花圃,打算一边利用学校现有的墙(墙足够长),其余三边除门外用栅栏围成,栅栏总长度为38m,门宽为2m.这个矩形花圃的最大面积是.10.如图,同学们在操场上玩跳大绳游戏,绳甩到最高处时的形状是抛物线型,摇绳的甲、乙两名同学拿绳的手的间距为6米,到地面的距离AO与BD均为0.9米,绳子甩到最高点C处时,最高点距地面的垂直距离为1.8米.身高为1.4米的小吉站在距点O水平距离为m米处,若他能够正常跳大绳(绳子甩到最高时超过他的头顶),则m的取值范围是.11.二次函数y=2x2的图象如图所示,点O为坐标原点,点A在y轴的正半轴上,点B、C 在函数图象上,四边形OBAC为菱形,且∠AOB=30°,则点C的坐标为.12.二次函数的图象如图所示,点A0位于坐标原点,点A1,A2,A3,…,A2023在y轴的正半轴上,点B1,B2,B3,…,B2023在二次函数位于第一象限的图象上,若△A0B1A1,△A1B2A2,△A2B3A3,…,△A2022B2023A2023都为等边三角形,则△A2022B2023A2023的边长为.13.已知二次函数y=(x﹣3)2+3,当x=时,y取得最小值.14.已知抛物线y=x2+bx+c的部分图象如图所示,当y>0时,x的取值范围是.15.如图,二次函数y=﹣x2+mx的图象与x轴交于坐标原点和(6,0),若关于x的方程x2﹣mx+t=0(t为实数)在1≤x<5的范围内有解,则t的取值范围是.16.二次函数y=ax2+bx﹣3(a≠0)的图象经过点(1,4),则代数式a+b的值为.三.解答题(共4小题)17.如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A(﹣1,0)和点B,点P是直线BC上方的抛物线上一动点.(1)求二次函数的表达式;(2)求BC所在直线的函数解析式;(3)过点P作PM∥y轴交直线BC于点M,求线段PM长度的最大值.18.如图,直线y=x+2与x轴交于点B,与y轴交于点D.抛物线y=ax2+bx﹣4与x轴交于点A(4,0)和点B,与y轴交于点C.(1)求该抛物线的解析式;(2)如图,点P为抛物线在直线AC下方的一动点,作PH∥y轴,PF⊥AC,分别交AC 于点H、F,求PH+PF的最大值和此时点P的坐标;(3)在(2)的条件下,将抛物线y=ax2+bx﹣4沿射线AC平移个单位长度,得到新抛物线,点R在新抛物线的对称轴上,点S在抛物线y=ax2+bx﹣4上.当以点D、P、R、S为顶点的四边形是平行四边形时,写出所有符合条件的点R的坐标,并写出求解点R的坐标的其中一种情况的过程.19.如图,已知抛物线y=﹣x2+mx+3与x轴交于A、B两点,与y轴交于点C,点B的坐标为(3,0).(1)求m的值及抛物线的顶点坐标;(2)求抛物线与坐标轴的交点所围成的三角形面积;(3)点P是抛物线对称轴l上的一个动点,当P A+PC的值最小时,求点P的坐标.。

中考数学复习二次函数知识点总结

中考数学复习二次函数知识点总结二次函数是中学数学中的重要内容,也是考试中常见的题型之一、在复习二次函数时,需要掌握其基本概念、性质、图像和应用等方面的知识。

下面是关于二次函数的知识点总结。

一、基本概念1.二次函数的定义二次函数是形如y=ax²+bx+c(a≠0)的函数,其中a、b、c为常数,且a为二次函数的二次系数。

2.二次函数的导数与二次系数的关系二次函数的导数为一次函数,二次系数a决定了导数的单调性,当a>0时,导数在整个定义域上单调递增;当a<0时,导数在整个定义域上单调递减。

3.二次函数的对称轴二次函数的对称轴是二次函数的图像关于该轴对称的直线。

对称轴的方程为x=-b/2a,其中a、b是二次函数的系数。

4.二次函数的顶点二次函数的顶点是二次函数的图像的最低点或最高点,对称轴上的点。

顶点的横坐标为对称轴的横坐标,纵坐标为代入对称轴横坐标得到的纵坐标。

二、性质1.零点性质二次函数y=ax²+bx+c(a≠0)的零点是方程ax²+bx+c=0的解,当方程有解时,二次函数与x轴交于两点,也可能与x轴重合。

2.二次函数图像的开口方向当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。

3.二次函数的最值当a>0时,二次函数的最小值是顶点的纵坐标;当a<0时,二次函数的最大值是顶点的纵坐标。

4.判别式二次函数方程ax²+bx+c=0的判别式Δ=b²-4ac可以判断二次函数方程的解的情况:当Δ>0时,方程有两个不相等实数解;当Δ=0时,方程有两个相等实数解;当Δ<0时,方程没有实数解。

三、图像1.开口向上的二次函数图像特点开口向上的二次函数图像在顶点处为最小值,两侧递增;对称轴为y 轴且在第四象限,二次系数a为正数。

2.开口向下的二次函数图像特点开口向下的二次函数图像在顶点处为最大值,两侧递减;对称轴为y 轴且在第一象限,二次系数a为负数。

初三数学二次函数知识点总结

初三数学二次函数知识点总结一、二次函数的基本形式1. 二次函数的一般形式二次函数的一般形式为:y=ax^2+bx+c,其中a、b、c是常数,且a≠0。

2. 二次函数的顶点二次函数y=ax^2+bx+c的图象是一个抛物线,抛物线的对称轴与x轴的交点称为顶点。

顶点的横坐标为:-b/2a; 纵坐标为:f(-b/2a)。

3. 二次函数的开口方向当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

4. 二次函数的轴线二次函数y=ax^2+bx+c的图象的对称轴,称为轴线,其方程为:x=-b/2a。

5. 二次函数的零点二次函数y=ax^2+bx+c的图象与x轴的交点,称为零点。

二次函数的零点可以用求根公式或配方法求得。

6. 二次函数的图象二次函数y=ax^2+bx+c的图象是一个抛物线,其形状由a的正负决定,a>0时开口向上,a<0时开口向下;顶点坐标由b,c的值决定。

二、二次函数的性质1. 判断二次函数图象开口方向的方法当二次函数为y=ax^2+bx+c时,通过判断a的正负来判断开口方向。

如果a>0,则抛物线开口向上;如果a<0,则抛物线开口向下。

2. 二次函数的最值二次函数的最大值或最小值为y的极值,可以通过求导数或直接利用顶点的纵坐标得出。

最值的性质有:当a>0时,最值为最小值;当a<0时,最值为最大值。

3. 二次函数的零点二次函数的零点即二次方程ax^2+bx+c=0的实根。

根据求根公式或配方法可以求得二次函数的零点。

4. 二次函数的对称轴和顶点二次函数的对称轴即为x=-b/2a,顶点坐标为:(-b/2a, f(-b/2a))。

5. 二次函数的图象二次函数的图象是一个抛物线,通过对称轴和顶点坐标可以直接绘制出抛物线的图象。

三、二次函数的应用1. 求二次函数的最值通过求导数或者用顶点坐标的纵坐标来求得二次函数的最值。

2. 判断二次函数的零点和对称轴通过求根公式可以求得二次方程的零点,通过a、b的值求得对称轴。

初三数学复习《二次函数》(专题复习)PPT课件


面积问题
面积问题
在二次函数中,可以通过求函数与坐标轴的交点来计算图形的面积。例如,当函数与x轴交于两点时 ,可以计算这两点之间的面积;当函数与y轴交于一点时,可以计算这一点与原点之间的面积。这些 方法在解决实际问题时非常有用,例如在计算利润、产量等方面。
求解方法ቤተ መጻሕፍቲ ባይዱ
求出二次函数与x轴和y轴的交点坐标,然后根据这些坐标计算图形的面积。对于更复杂的问题,可能 需要使用积分或其他数学方法来求解。
05
综合练习与提高
基础练习题
巩固基础 覆盖全面 由浅入深
基础练习题主要针对二次函数的基本概念、性质和公 式进行设计,旨在帮助学生巩固基础知识,提高解题的 准确性和速度。
基础练习题应涵盖二次函数的各个方面,包括开口方 向、顶点坐标、对称轴、与坐标轴的交点等,确保学生 对二次函数有全面的了解。
题目难度应从易到难,逐步引导学生深入理解二次函 数,从简单的计算到复杂的综合题,逐步提高学生的解 题能力。
初三数学复习《二次函数》(专题复习)ppt课 件
目录 Contents
• 二次函数的基本概念 • 二次函数的解析式 • 二次函数的图像与性质 • 二次函数的实际应用 • 综合练习与提高
01
二次函数的基本概念
二次函数的定义
总结词
理解二次函数的定义是掌握其性 质和图像的基础。
详细描述
二次函数是形式为$f(x) = ax^2 + bx + c$的函数,其中$a, b, c$是 常数,且$a neq 0$。这个定义表 明二次函数具有两个变量$x$和 $y$,并且$x$的最高次数为2。
03
二次函数的图像与性质
开口方向
总结词:根据二次项系数a的正负判断开口方向 a>0时,开口向上
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009年数学中考复习十二 ——《二次函数》【考点聚焦】(九下第26章P 4)1.明确二次函数的图象及相关概念,会用描点法画出二次函数的图象.并熟练掌握2.会用配方法、公式法确定开口方向、对称轴、顶点坐标,并能解决简单问题.会利用二次函数的图象求一元二次方程的近似解.3.会结合函数、数形结合、转化、方程等数学思想方法解决二次函数与实际相联系的问题,会判断实际问题中的函数关系及函数解析式与图象之间的关系,能解决较复杂的函数、方程、不等式等综合运.................用.的应用题. 4.考查的热点:待定系数法确定二次函数的解析式,二次函数图象、性质和应用.考查的题型:填空题、选择题,也有解答题,常与几何、方程、不等式等知识相联系作为压轴题.【考点链接】1.二次函数的解析式:(1)二次函数解析式的一般式(通式): ,化为顶点式为: ,其中二次项系数是 ,一次项系数为 ,常数项为 ;它的顶点坐标为( , ),对称轴为 。

(2)二次函数解析式的顶点式(通式): ,顶点坐标为( , )对称轴是 。

化为一般式: ,(一般式与顶点式可以互相转化) (3)二次函数解析式的交点式: 。

此时抛物线的对称轴为 。

其中,(x 1,0)(x 2,0)是抛物线与X 轴的交点坐标。

与一般式的关系:: , 显然,与X 轴没有交点的抛物线不能用此解析式表示的。

22a >03. 二次函数y=ax +bx+c 中a ,b ,c 的符号与图像性质的关系:(1)a 的符号与开口方向:a 0⇔开口方向向 ; a 0⇔开口方向向 ; (2)a 、b 的符号与对称轴x = -ab 2位置:在Y 轴的左侧 ⇔a 、b ; 在Y 轴的右侧 ⇔a 、b ; Y 轴 ⇔b 0(3)c 的符号与抛物线和y 轴的交点位置: 点(0,c )在Y 轴正半轴 ⇔c 0;点(0,c )在原点⇔c 0;点(0,c )在Y 轴负半轴 ⇔c 0;4.抛物线y=ax 2+bx+c 与X 轴的交点个数与一元二次方程的根的判别式△的符号之间的的关系:抛物线y=ax 2 +bx+c (a ≠0)与x 轴交点有三种情况:当二次函数y=ax 2 +bx+c 的图象与x 轴有交点时,即:当y=0时,一元二次方程ax 2 +bx+c=0的解就是抛物线与x 轴交点的横坐标。

(1)b 2-4ac 0 ⇔方程有两个不相等的实数根⇔抛物线与X 轴有两个不同的交点; (2)b 2-4ac 0 ⇔方程没有实数根 ⇔抛物线与X 轴没有交点(3)b 2-4ac 0 ⇔方程有两个相等的实数根 ⇔抛物线与X 轴只有一个交点; 5.点与二次函数图象的关系:(1)点A ()o y x ,0在函数y=ax 2 +bx+c (a ≠0)的图像上.则有 .(2)求一次函数()0≠+=k n kx y 的图像与二次函数()02≠++=a c bx ax y 的图像的交点,解方程组 . 6.与其它函数的关系:【基础练习】1.若222--=m x )m (y 是二次函数,则m = . 2.抛物线()22-=x y 的顶点坐标是 .3.二次函数y =x 2+2x -3的图象的对称轴是直线 。

4.抛物线 y =x 2+x -4与y 轴的交点坐标为 .5.将抛物线23y x =-向上平移一个单位后,得到的抛物线解析式是 .6. 如图1所示的抛物线是二次函数2231y ax x a =-+-的图象,那么a 的值是 .7. 请写出一个开口向上,对称轴为直线x =2,且与y 轴的交点坐标为(0,3)的抛物线的解式 .8.若A (-4,y 1),B (-3,y 2),C (1,y 3)为二次函数y=x 2+4x-5的图象上的三点,则y 1,y 2,y 3的大小关系是9.已知函数的图象不经过第二象限,且图象经过(2,-5),请你写出一个同时满足条件的函数解析式 10.二次函数22(1)3y x =-+的图象的顶点坐标是( )A.(1,3)B.(-1,3)C.(1,-3)D.(-1,-3)11.将二次函数2x y =的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是A.2)1(2+-=x y B.2)1(2++=x y C.2)1(2--=x y D.2)1(2-+=x y12.下列表格是二次函数2y ax bx c =++的自变量x 与函数值y 的对应值,判断方程2ax bx c ++=A . B . C D . 【典例赏析】例1已知二次函数24y x x =+,(1) 用配方法把该函数化为2()y a x h k =++形式,并画出这个函数的图像。

⑵ 根据图像回答:当1﹤ y ≤5时,对应的自变量x 的取值范围。

⑶ 函数的图象与x 轴的交点为A 、B ,此抛物线上一点P,使∆P AB 的面积等于8,求点P 的坐标。

DCBA【中考演练】第一节二次函数及其图像一、选择题(30分)1.对于抛物线y=-2(x+5)2+3,下列说法正确的是()A.开口向下,顶点坐标(5,3)B.开口向上,顶点坐标(5,3)C.开口向下,顶点坐标(-5,3)D.开口向上,顶点坐标(-5,3)2.在平面直角坐标系中,如果抛物线y=2x2不动,而把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是()A.y=2(x-2)2 + 2 B.y=2(x + 2)2-2 C.y=2(x-2)2-2 D.y=2(x + 2)2 + 23.已知抛物线21y x x=--与x轴的一个交点为(0)m,,则代数式m2-m+2009的值为()A.2007 B.2008 C.2009 D.20104.有下列函数:①y = - 3x;②y = x – 1:③y = –x1(x < 0);④y = x2 + 2x + 1.其中当x在各自的自变量取值范围内取值时,y随着x的增大而增大的函数有()A.①②B.①④C.②③D.③④5.已知二次函数cbxaxy++=2的图象过点A(1,2),B(3,2),C(5,7).若点M(-2,y1),N(-1,y2),K(8,y3)也在二次函数cbxaxy++=2的图象上,则下列结论正确的是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y26.若一次函数(1)y m x m=++的图象过第一、三、四象限,则函数2y mx mx=-()A.有最大值4mB.有最大值4m-C.有最小值4mD.有最小值4m-7.二次函数的图象如图所示,则下列结论正确的是()A. B.C. D.8.函数2y ax=与(0,0)y ax b a b=+>>在同一坐标系中的大致图象是()9.二次函数2(0)y ax bx c a=++≠的图象如图所示,则下列说法不正确的是()A.240b ac->B.0a>C.0c>D.02ba-<10.已知:二次函数()220y ax bx a b a=+++≠的图像为下列图像之一,则a的值为()A.-1 B. 1 C. -3 D. -4二、填空题(45分)11.抛物线y=2(x-2)2+3的对称轴为直线________。

12. 二次函数y=x2+10x-5的最小值为.13.抛物线228y x x m=++与x轴只有一个公共点,则m的值为.14.抛物线y=ax2 +bx+c的对称轴是直线1=x,且经过点P(3,0),则cba+-的值为15.已知抛物线y=x2-2x-3上的点P(2-,5)与点Q关于该抛物线的对称轴对称,则点Q的坐标.16.在同一坐标平面内,下列4个函数①22(1)1y x=+-,②223y x=+,③221y x=--,2112y x=-的图象不可能...由函数221y x=+的图象通过平移变换、轴对称变换得到的函数是(填序号).17.抛物线322--=xxy与x轴分别交于A、B两点,则AB的长为________.18.已知二次函数y1=ax2 +bx+c(a≠0)与一次函数y2=kx+m(k≠0)的图象相交于点A(-2,4),B(8,2)(如图所示),则能使y1>y2成立的x的取值是.19.李老师给出了一个函数,甲、乙、丙三位学生分别指出这个函数的一个特征.甲:它的图像经过第一象限;乙:它的图像也经过第二象限;丙:在第一象限内函数值y随x增大而增大.在你学过的函数中,写出一个满足上述特征的函数解析式.2根据表格上的信息回答问题:该二次函数y ax bx c=++在3x=,y=.三、解答题(40分)21.二次函数的图象经过点(03)A-,,(23)B-,,(10)C-,.(1)求此二次函数的关系式;(2)求此二次函数图象的顶点坐标;(3)填空:把二次函数的图象沿坐标轴方向最少..平移个单位,使得该图象的顶点在原点.22.如图,直线mxy+=和抛物线cbxxy++=2都经过点A(1,0),B(3,2).⑴求m的值和抛物线的解析式;⑵求不等式mxcbxx+>++2的解集.(直接写出答案)23.如右图,抛物线nxxy++-=52经过点)0,1(A,与y轴交于点B.(1)求抛物线的解析式;(2)P是y轴正半轴上一点,且△PAB是等腰三角形,试求点P的坐标.第18题。

相关文档
最新文档