压铸件加强筋设计的基本原则

合集下载

(完整版)2加强筋设计原则

(完整版)2加强筋设计原则

(完整版)2加强筋设计原则加强筋(Ribs ) 基本设计守则加强筋在塑胶部件上是不可或缺的功能部份。

加强筋有效地如『⼯』字铁般增加产品的刚性和强度⽽⽆需⼤幅增加产品切⾯⾯积,但没有如『⼯』字铁般出现倒扣难於成型的形状问题,对⼀些经常受到压⼒、扭⼒、弯曲的塑胶产品尤其适⽤。

此外,加强筋更可充当内部流道,有助模腔充填,对帮助塑料流⼊部件的⽀节部份很⼤的作⽤。

加强筋⼀般被放在塑胶产品的⾮接触⾯,其伸展⽅向应跟随产品最⼤应⼒和最⼤偏移量的⽅向,选择加强筋的位置亦受制於⼀些⽣产上的考虑,如模腔充填、缩⽔及脱模等。

加强筋的长度可与产品的长度⼀致,两端相接产品的外壁,或只占据产品部份的长度,⽤以局部增加产品某部份的刚性。

要是加强筋没有接上产品外壁的话,末端部份亦不应突然终⽌,应该渐次地将⾼度减低,直⾄完结,从⽽减少出现困⽓、填充不满及烧焦痕等问题,这些问题经常发⽣在排⽓不⾜或封闭的位置上。

加强筋最简单的形状是⼀条长⽅形的柱体附在产品的表⾯上,不过为了满⾜⼀些⽣产上或结构上的考虑,加强筋的形状及尺⼨须要改变成如以下的图⼀般。

长⽅形的加强筋必须改变形状使⽣产更容易加强筋的两边必须加上出模⾓以减低脱模顶出时的摩擦⼒,底部相接产品的位置必须加上圆⾓以消除应⼒集过份中的现象,圆⾓的设计亦给与流道渐变的形状使模腔充填更为流畅。

此外,底部的宽度须较相连外壁的厚度为⼩,产品厚度与加强筋尺⼨的关系图a说明这个要求。

图中加强筋尺⼨的设计虽然已按合理的⽐例,但当从加强筋底部与外壁相连的位置作⼀圆圈R1时,图中可见此部份相对外壁的厚度增加⼤约50%因此,此部份出现缩⽔纹的机会相当⼤。

如果将加强筋底部的宽度相对产品厚度减少⼀半(产品厚度与加强筋尺⼨的关系图b),相对位置厚度的增幅即减⾄⼤约20%缩⽔纹出现的机会亦⼤为减少。

由此引伸出使⽤两条或多条矮的加强筋⽐使⽤单⼀条⾼的加强筋较为优胜,但当使⽤多条加强筋时,加强筋之间的距离必须较相接外壁的厚度⼤。

机床铸件加强筋的设计

机床铸件加强筋的设计

机床铸件加强筋的设计
随着机床行业的不断发展,机床铸件的设计也越来越讲究精益求精。

其中一个重要的设计要素就是加强筋,在机床铸件中扮演着至关
重要的角色。

加强筋是指在机床铸件中固定或加固的构造物,其作用是加强机
床铸件的强度和刚度,防止变形和断裂。

加强筋的设计是机床铸件设
计中的一个重要环节,正确的加强筋设计可以有效地提高机床铸件的
使用寿命和性能。

首先,在设计加强筋时应注意加强筋的位置和数量。

加强筋的位
置应该在强度和刚度受力最大的区域,以增强机床铸件的承载能力。

同时,加强筋的数量应该根据机床铸件的结构和受力情况进行合理确定,不可以过多或过少,以免对机床铸件的性能造成不良影响。

其次,在加强筋的断面形状和尺寸设计上要考虑合理性和经济性。

加强筋的断面形状一般采用矩形、圆形、梯形等形式,尺寸应当保证
强度和刚度要求的前提下,尽量控制材料的使用量,节约成本。

最后,在加强筋的加工和安装上要注意质量和精度。

加强筋的加
工应保证工艺精度和表面质量,避免在使用过程中造成不必要的事故。

同时,加强筋的安装也要严格按照设计要求进行,保证加强筋与机床
铸件的紧密连接,避免松动或断裂。

总之,正确的加强筋设计对于机床铸件的强度、刚度和使用寿命都有着至关重要的影响。

机床铸件设计者应当在设计过程中充分考虑加强筋的作用和设计要素,以确保机床铸件的高质量和高可靠性。

压铸件加强筋设计的基本原则

压铸件加强筋设计的基本原则

压铸件加强筋设计的基本原则1. 引言在工程设计中,压铸件加强筋的设计是非常重要的一环。

加强筋能够增加压铸件的刚度和强度,提高其使用性能,降低失效的风险。

本文将探讨压铸件加强筋设计的基本原则,帮助读者更好地理解和应用这一设计方法。

2. 压铸件加强筋的作用加强筋的作用主要体现在以下几个方面:2.1 增加刚度和强度在压铸件中加入适量的加强筋可以有效地提高其刚度和强度。

加强筋的存在可以防止压铸件的变形和挠曲,使其具有较好的承载能力。

2.2 提高表面质量加强筋可以减少压铸件表面的液态金属液流动,避免流痕和气孔的产生,从而提高压铸件的表面质量。

2.3 增加组装便利性通过合理设计加强筋的形状和位置,可以使得压铸件的组装更加方便。

加强筋可以作为定位和支撑的功能,提高压铸件的装配精度。

3. 压铸件加强筋设计的基本原则在进行压铸件加强筋设计时,需要遵循以下几个基本原则:3.1 加强筋应布置在受力集中的部位加强筋的布置应根据压铸件的受力情况进行分析和判断。

通常来说,受力集中的部位会出现应力较大的情况,因此在这些部位布置加强筋可以有效地提高压铸件的强度。

3.2 加强筋的数量和形状应适当加强筋的数量和形状应根据压铸件的尺寸、形状和受力情况进行确定。

数量过多或形状设计不合理可能会导致压铸件的加工困难和成本增加,甚至会影响其正常使用。

3.3 加强筋应尽量均匀分布为了使压铸件具有良好的均匀性和一致性,加强筋应尽量均匀地分布在各个受力部位。

这样可以避免压铸件局部过于脆弱或过于刚硬,从而提高其整体性能。

3.4 加强筋的尺寸应合理不同的压铸件加强筋的尺寸应根据其所处位置和受力情况进行合理的选择。

加强筋的过大或过小都会对压铸件的强度和刚度产生不利影响,因此需要根据实际情况进行调整。

4. 压铸件加强筋设计的具体步骤进行压铸件加强筋设计时,可以按照以下步骤进行:4.1 确定受力集中部位通过对压铸件进行结构分析和载荷计算,确定其受力集中的部位。

压铸件结构设计规范

压铸件结构设计规范

压铸件结构设计压铸件结构设计是压铸工作的第一步。

设计的合理性和工艺适应性将会影响到后续工作的顺利进行,如分型面选择、内浇口开设、推出机构布置、模具结构及制造难易、合金凝固收缩规律、铸件精度保证、缺陷的种类等,都会以压铸件本身工艺性的优劣为前提。

1、压铸件零件设计的注意事项⑴、压铸件的设计涉及四个方面的内容:a、即压力铸造对零件形状结构的要求;b、压铸件的工艺性能;c、压铸件的尺寸精度及表面要求;d、压铸件分型面的确定;压铸件的零件设计是压铸生产技术中的重要部分,设计时必须考虑以下问题:模具分型面的选择、浇口的开设、顶杆位置的选择、铸件的收缩、铸件的尺寸精度保证、铸件内部缺陷的防范、铸孔的有关要求、收缩变形的有关要求以及加工余量的大小等方面;⑵、压铸件的设计原则是:a、正确选择压铸件的材料;b、合理确定压铸件的尺寸精度;c、尽量使壁厚分布均匀;d、各转角处增加工艺园角,避免尖角。

⑶、压铸件分类按使用要求可分为两大类,一类承受较大载荷的零件或有较高相对运动速度的零件,检查的项目有尺寸、表面质量、化学成分、力学性能(抗拉强度、伸长率、硬度);另一类为其它零件,检查的项目有尺寸、表面质量及化学成分。

在设计压铸件时,还应该注意零件应满足压铸的工艺要求。

压铸的工艺性从分型面的位置、顶面推杆的位置、铸孔的有关要求、收缩变形的有关要求以及加工余量的大小等方面考虑。

合理确定压铸面的分型面,不但能简化压铸型的结构,还能保证铸件的质量。

⑷、压铸件结构的工艺性:1)尽量消除铸件内部侧凹,使模具结构简单。

2)尽量使铸件壁厚均匀,可利用筋减少壁厚,减少铸件气孔、缩孔、变形等缺陷。

3)尽量消除铸件上深孔、深腔。

因为细小型芯易弯曲、折断,深腔处充填和排气不良。

4)设计的铸件要便于脱模、抽芯。

5)肉厚的均一性是必要的。

6)避免尖角。

7)注意拔模角度。

8)注意产品之公差标注。

9)太厚太薄皆不宜。

10)避免死角倒角(能少则少)。

11)考虑后加工的难易度。

结构设计原则之加强筋

结构设计原则之加强筋

结构设计原则之加强筋加强肋理想的设计为了克服壁厚大可能引起的问题,使用是一种可减少壁厚并能增加刚性的有效方法。

一般来说,部件的刚性可用以下方法增强▪增加壁厚;▪增大弹性模量(如加大增强纤维的含量);▪设计中考虑。

如果设计用的材料不能满足所需刚性,则应选择具有更大弹性模量的材料。

简单的方法是增加塑料中增强纤维的含量。

但是,在特定壁厚下,这种方法仅能使刚性呈线性增长。

更有效的方法是使用经过优化设计的。

由于惯性力矩增大,部件的刚性便会增大。

在优化的尺寸时,不但要考虑工程设计应当考虑的问题,还应考虑与生产和外观有关的技术问题。

优化的尺寸大的惯性力矩可很容易地通过设置又厚又高的来实现。

但是对热塑性工程塑料,这种方法常会产生制品表面凹痕、内部空洞和翘曲等问题。

而且,如果的高度过高,在负荷下结构将有可能膨胀。

出于这种考虑,必须在合理比例内保持的尺寸(见图1)。

图1为确保带的制品容易顶出,必须设计一个适当的脱模锥度(见图2)。

图2防止材料堆积对于表面要求非常高的组件,如汽车轮盖,的尺寸是非常重要的。

正确的设计可以减少组件形成表面凹痕的可能,以提高组件的质量。

的底部的材料积聚在图1所示的圆中。

这个圆的大小与的尺寸相关,应该越小越好,这样才能减小或避免凹痕。

如果圆太大,可能会形成内部空洞,制品的机械性能将会非常差。

减少底部的应力如果给一个有的组件以负载,则的底部可能会产生应力。

在这一部位如果没有圆弧,可能会产生非常高的应力集中(见图3),通常会导致组件的断裂和报废。

补救措施是建立一个半径足够大的圆弧(图1),使肋底部建立更好的应力分布。

图3但如果圆弧半径太大,也会增大上文提及的圆的直径,而导致上文已经提及的问题。

图4在塑料设计中,十字结构是最好的,因为它能应付许多不同的负荷排列变化(图4)。

正确设计的可承受预期应力的十字结构,可以确保在整个制品上的应力均匀分布。

在的十字交叉处形成的节点(图5)代表材料的积聚,但可以将节点中心挖空,以防止产生问题。

压铸件结构设计规范

压铸件结构设计规范

压铸件结构设计压铸件结构设计是压铸工作的第一步。

设计的合理性和工艺适应性将会影响到后续工作的顺利进行,如分型面选择、内浇口开设、推出机构布置、模具结构及制造难易、合金凝固收缩规律、铸件精度保证、缺陷的种类等,都会以压铸件本身工艺性的优劣为前提。

1、压铸件零件设计的注意事项⑴、压铸件的设计涉及四个方面的内容:a、即压力铸造对零件形状结构的要求;b、压铸件的工艺性能;c、压铸件的尺寸精度及表面要求;d、压铸件分型面的确定;压铸件的零件设计是压铸生产技术中的重要部分,设计时必须考虑以下问题:模具分型面的选择、浇口的开设、顶杆位置的选择、铸件的收缩、铸件的尺寸精度保证、铸件内部缺陷的防范、铸孔的有关要求、收缩变形的有关要求以及加工余量的大小等方面;⑵、压铸件的设计原则是:a、正确选择压铸件的材料;b、合理确定压铸件的尺寸精度;c、尽量使壁厚分布均匀;d、各转角处增加工艺园角,避免尖角。

⑶、压铸件分类按使用要求可分为两大类,一类承受较大载荷的零件或有较高相对运动速度的零件,检查的项目有尺寸、表面质量、化学成分、力学性能(抗拉强度、伸长率、硬度);另一类为其它零件,检查的项目有尺寸、表面质量及化学成分。

在设计压铸件时,还应该注意零件应满足压铸的工艺要求。

压铸的工艺性从分型面的位置、顶面推杆的位置、铸孔的有关要求、收缩变形的有关要求以及加工余量的大小等方面考虑。

合理确定压铸面的分型面,不但能简化压铸型的结构,还能保证铸件的质量。

⑷、压铸件结构的工艺性:1)尽量消除铸件内部侧凹,使模具结构简单。

2)尽量使铸件壁厚均匀,可利用筋减少壁厚,减少铸件气孔、缩孔、变形等缺陷。

3)尽量消除铸件上深孔、深腔。

因为细小型芯易弯曲、折断,深腔处充填和排气不良。

4)设计的铸件要便于脱模、抽芯。

5)肉厚的均一性是必要的。

6)避免尖角。

7)注意拔模角度。

8)注意产品之公差标注。

9)太厚太薄皆不宜。

10)避免死角倒角(能少则少)。

11)考虑后加工的难易度。

结构设计原则之加强筋

结构设计原则之加强筋

结构设计原则之加强筋加强肋理想的设计为了克服壁厚大可能引起的问题,使用是一种可减少壁厚并能增加刚性的有效方法。

一般来说,部件的刚性可用以下方法增强▪增加壁厚;▪增大弹性模量(如加大增强纤维的含量);▪设计中考虑。

如果设计用的材料不能满足所需刚性,则应选择具有更大弹性模量的材料。

简单的方法是增加塑料中增强纤维的含量。

但是,在特定壁厚下,这种方法仅能使刚性呈线性增长。

更有效的方法是使用经过优化设计的。

由于惯性力矩增大,部件的刚性便会增大。

在优化的尺寸时,不但要考虑工程设计应当考虑的问题,还应考虑与生产和外观有关的技术问题。

优化的尺寸大的惯性力矩可很容易地通过设置又厚又高的来实现。

但是对热塑性工程塑料,这种方法常会产生制品表面凹痕、内部空洞和翘曲等问题。

而且,如果的高度过高,在负荷下结构将有可能膨胀。

出于这种考虑,必须在合理比例内保持的尺寸(见图1)。

图1为确保带的制品容易顶出,必须设计一个适当的脱模锥度(见图2)。

图2防止材料堆积对于表面要求非常高的组件,如汽车轮盖,的尺寸是非常重要的。

正确的设计可以减少组件形成表面凹痕的可能,以提高组件的质量。

的底部的材料积聚在图1所示的圆中。

这个圆的大小与的尺寸相关,应该越小越好,这样才能减小或避免凹痕。

如果圆太大,可能会形成内部空洞,制品的机械性能将会非常差。

减少底部的应力如果给一个有的组件以负载,则的底部可能会产生应力。

在这一部位如果没有圆弧,可能会产生非常高的应力集中(见图3),通常会导致组件的断裂和报废。

补救措施是建立一个半径足够大的圆弧(图1),使肋底部建立更好的应力分布。

图3但如果圆弧半径太大,也会增大上文提及的圆的直径,而导致上文已经提及的问题。

图4在塑料设计中,十字结构是最好的,因为它能应付许多不同的负荷排列变化(图4)。

正确设计的可承受预期应力的十字结构,可以确保在整个制品上的应力均匀分布。

在的十字交叉处形成的节点(图5)代表材料的积聚,但可以将节点中心挖空,以防止产生问题。

结构设计中加强筋的设计有何讲究

结构设计中加强筋的设计有何讲究

那么,结构设计中加强筋的设计有没有讲究?其实对于小型产品来说,真没什么讲究,只要你的胶厚符合成型要求即可,对于筋位的排布,模具加工,进胶走向,并没太大要求,都是随部分结构功能要求增加而增加?问:什么是结构功能要求?答:比如,面底壳中间有主板,需要做筋位顶住主板,这个就是功能性结构要求。

而对于大型产品,加强筋的设计是有讲究的,合理分布加强筋,对于产品的强度,外观,都是有所有帮助的。

当然你随便拉几条加强筋,也可以起到一定的效果,并不是说这种设计无效的。

但是,能在设计阶段将产品结构设计优化到最佳状态,将问题在结构设计阶段就规避掉,做出最优的设计方案,这样才能体现出一个结构设计师应有的价值。

【一】塑胶件加强筋结构设计要求1,加强筋的设计用途?加强筋主要用于加强产品的壳体强度,增加刚性,防止产品变形扭曲,而且不会因为增加了刚性而导致产品外观表面缩水等不良问题,是降低产品单价成本,增加产品强度的最佳方式。

2,加强筋的强度如何计算?按照平面状的塑胶产品截面来计算,每增加10%的壁厚,产品的平面刚性就会增加33%左右,对于一个简单的塑胶面,厚度增加25%,就可以使壳体的刚度增加一倍。

依次类推。

3,加强筋如何排布?目前加强筋外形大部分以条形,井形居多,也有部分爻形,扇形,圆形,或者综合性的井形+圆形+爻形等。

问:在什么情况下采用条形?答:壳体上可以设计加强筋的面积小,且无需承受高强度的负重,只需增加单个壳子的强度即可,因为,加强筋做的太密会影响模具强度,而且出模容易粘后模。

那么条形加强筋的间距一般在多少最佳?按照模具钢料强度来定,极限模具钢料最薄壁厚在0.6mm以上,高度不超过2mm,不计算模具尖角。

在规则的结构形态中大部分模具采用线切割做加工的,那么能要想保证很好的强度,就需要将模具壁厚设计在4mm以上,筋位高度不超过8mm,后续每增加1mm,模具壁厚则增加1-1.2倍。

问:在什么情况下采用井形或者爻形?答:壳体上可以设计加强筋的面积大,且需要承受高强度的负重,比如:臂力支撑杆,台灯支架底盘,显示器支架底盘等,需要承受折弯负重的壳体上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

压铸件加强筋设计的基本原则
一、前言
压铸件是一种广泛应用于工业制造领域的零部件,其具有高强度、高
精度、高效率等优点,因此得到了广泛的应用。

在压铸件的设计中,
加强筋是一个非常重要的设计要素,其可以增加零部件的强度和刚度,提高零部件的使用寿命和可靠性。

本文将从压铸件加强筋设计的基本
原则出发,对相关知识进行详细阐述。

二、加强筋的作用
1. 增加零部件的强度和刚度:在压铸件中添加合适数量和位置的加强筋,可以有效地增加零部件的抗拉、抗弯等力学性能。

2. 提高零部件的使用寿命和可靠性:通过合理设置加强筋可以减少零
部件在使用过程中产生变形或破坏现象,从而提高其使用寿命和可靠性。

3. 降低材料成本:通过增加加强筋可以降低材料所需数量,从而达到
节约成本的目的。

三、基本原则
1. 加强筋应该沿着主要受力方向设置:在压铸件的设计中,应该根据
零部件所处的受力状态,确定加强筋的位置和数量。

一般情况下,加
强筋应该沿着主要受力方向设置,以提高零部件在受力情况下的抗拉、抗弯等性能。

2. 加强筋应该设置在受力集中部位:在压铸件的设计中,应该将加强
筋设置在受力集中的部位,以提高零部件在受力情况下的抗拉、抗弯等性能。

同时,在设置加强筋时还需要考虑到其与其他零部件之间的相互作用关系。

3. 加强筋应该尽可能地避免对其他零部件造成影响:在压铸件的设计中,加强筋不仅要考虑到自身的作用效果,还需要考虑到其对其他零部件造成影响。

在设置加强筋时需要尽可能地避免对其他零部件造成影响。

4. 加强筋应该具有合理的截面形状和尺寸:在压铸件的设计中,加强筋不仅要考虑到其位置和数量,还需要考虑到其截面形状和尺寸。

一般情况下,加强筋的截面形状应该选择合理的几何形状,如矩形、圆形等。

同时,在选择加强筋的尺寸时还需要考虑到其所需的材料成本和工艺难度。

5. 加强筋应该具有合理的连接方式:在压铸件的设计中,加强筋不仅要考虑到其位置、数量、截面形状和尺寸,还需要考虑到其与其他零部件之间的连接方式。

一般情况下,加强筋可以通过焊接、螺栓连接等方式与其他零部件相连。

四、结论
通过对压铸件加强筋设计的基本原则进行详细阐述,我们可以发现,在压铸件的设计中,加强筋是一个非常重要的设计要素。

在进行加强筋设计时应该根据零部件所处的受力状态和其他相关因素进行综合考虑,并且设置合适数量和位置的加强筋,以提高零部件在受力情况下的抗拉、抗弯等性能。

同时,在设置加强筋时还需要考虑到其与其他
零部件之间的相互作用关系,并且具有合理的截面形状和尺寸以及连接方式。

相关文档
最新文档