电动汽车电池系统参数

合集下载

电动汽车动力电池系统总体方案设计

电动汽车动力电池系统总体方案设计

电动汽车动力电池系统总体方案设计1.1 额定电压及电压应用范围对于高速电动车辆动力电池系统的额定电压等级,参照《GB/T31466-2015 电动车辆高压系统电压等级》可选择144V、288V、320V、346V、400V、576V等。

对于微型低速电动车动力电池系统的电压等级,100V以下主要以48V、60V、72V和96V为主。

动力电池系统的额定电压及电压范围必须与整车所选用的电机和电机控制器工作电压相匹配,因此为保证整车动力系统的可靠运行,需要根据电动整车电机的电压等级及工作电压范围要求,选择合适的单体电池规格(化学体系、额定电压、容量规格等)并确定单体电池的串联数量、系统额定电压及工作电压范围。

通常允许使用的电压范围上限为系统额定电压的115%~120%,下限为系统额定电压的75%~80%。

1.2 动力电池系统容量整车概念设计阶段,从整车车重和设定的典型工况出发,续驶里程、整车性能(最高车速、爬坡度、加速时间等)要求,可以计算出汽车行驶所需搭载的总能量需求。

动力电池系统容量主要基于总能量和额定电压来进行计算。

1.3 功率和工作电流整车在急加速情况下,动力电池系统需要提供短时脉冲放电功率,对应的工作电流为峰值放电电流;在紧急刹车情况下,需要提供短时能量回收功率,对应的回馈电流为峰值充电电流。

整车在平路持续加速或长坡道时,动力电池系统需要提供稳定的持续放电功率,此时要求能够长时间稳定输出一定额度的电流,即持续放电工作电流。

1.4 可用SOC范围在动力电池系统产品设计上,由于SOC可用范围会直接影响总能量的设计,直接体现到单体电池的选型及数量要求,因此,也会对电池箱体的包络尺寸设计、内部布置及安装空间间隙以及对总体成本等方面产生最直接的影响。

动力电池系统SOC应用范围的选择首先考虑整车对充放电功率和可用能量等方面的需求,同时结合单体电池在不同温度条件下的充放电能力(功率和能量)、存储性能(自放电率)、寿命、安全特性,以及电池管理系统的SOC估算精度等影响因素来确定。

电动汽车电池管理系统BMS介绍讲解

电动汽车电池管理系统BMS介绍讲解
● 3)降低对动力电池的要求。
● 准确估算SOC,电池性能可充分使用,降低对动力电池性能的要求
● 4)提高经济性。
● 选择较低容量的动力蓄电池组可以降低整车制造成本 ● 由于提高了系统的可靠性,后期维护成本降低
SOC估计常用的算法
● (1)开路电压法 ● 随着放电电池容量的增加,电池的开路电压降低。可以根据一定的充放电倍率时电池组的开路电
电池管理系统的功能
● 数据采集、电池状态计算、能量管理、安全管理、热管理、均衡控制、通信功能和人机接口
单体电压采集方法
● (1)继电器阵列法
● 组成:端电压传感器、继电器阵列、A/D转换芯片、光耦、多路模拟开关 ● 应用特点:所需要测量的电池单体电压较高而且对精度要求也高的场合使用
单体电压采集方法
练方法的影响很大。
SOC估计常用的算法
● (5)卡尔曼滤波法 ● 核心思想:对动力系统的状态做出最小方差意义上的最优估算。 ● 适用于各种电池,不仅给出了SOC的估计值,还给出了SOC的估计误差。 ● 缺点:要求电池SOC估计精度越高,电池模型越复杂,涉及大量矩阵运算,工程上难以实现 ● 该方法对于温度、自放电率以及放电倍率对容量的影响考虑的不够全面。
能量耗散型均衡管理
● 恒定分流电阻均衡充电电路
● 每个电池单体上都始终并联一个分流电阻。 ● 可靠性高,分流电阻的值大,通过固定分流来减小由于自放电导致的单体电池差异 ● 无论电池充电还是放电过程,分流电阻始终消耗功率,能量损失大 ● 一般在能够及时补充能量的场合适用
能量耗散型均衡管理
● 开关控制分流电阻均衡充电电路
被动加热与散热-外部空气流通 被动加热与散热-内部空气流通
主动加热与散热-外部和内部空气流通

电动汽车动力电池系统国标

电动汽车动力电池系统国标

4
判定标准:计算容量在企业所规定额定 判定标准:(1)计算容量在企业所规 常温放电容量
值的 100%~110%之间
定额定值的 100%~110%之间
(2)所有样品的计算容量极差(最大 和最小容量差)不得超过 5%(一致性 要求)
常温下以 C/3 充满电,在-20℃温度下 存储 20 小时,以 3/C 放电至截止电压,
电动汽车动力电池系统国标
国标针对动力电池系统,建立了常规性能和功能要求——容量、能量、功率、 效率、标准循环寿命、工况循环寿命、存储、荷电保持、容量恢复、倍率性能、 高低温性能等,建立了安全防护要求——操作安全、故障防护、人员触电防护、 滥用防护、环境适应性、事故防护、用户手册和特殊说明等,范围覆盖了电芯、 模组、动力电池包、动力电池系统这 4 个层级,产品类型包括混合动力、插电式 /增程式混合动力、纯电动乘用车和商用车,已基本上了构成了一个完整的体系。
尺寸和质量
用量具检测电池的尺寸和质量,应符合 用量具检测电池的尺寸和质量,应符合
企业提供的产品技术条件
企业提供的产品技术条件
检测方法:C/3 充电至截止电压,C/3 1C 充电至截止电压,1C 放电至截止电
放电至截止电压,计算放电容量
压,计算放电容量
如果计算值低于规定值,可重复 5 次 重复 5 次测试,取平均值数据
默认试验条件
相对湿度:25%~85%
相对湿度:15%~90%
气压:86kPa~106kPa
气压:86kPa~106kPa
1. GB/T 31484-2015 解读
GB/T 31484-2015 主要考核动力电池单体、模组和系统的循环寿命指标,涵 盖了乘用车和商用车两个不同的市场,以及功率型和能量型两种不同应用类型的 动力电池。对于电池单体和模组而言,大多数电池厂家的产品均可达到规定的要 求,对于动力电池系统而言,系统设计和集成能力较弱的 pack 企业,将面临较 大的挑战。相关检测内容如下表所示:

纯电动汽车电池管理系统BMS标定规范

纯电动汽车电池管理系统BMS标定规范

纯电动车电池包项目电池管理系统标定规范目录1、电池管理标定系统的定义、参数及类型 (3)1.1定义 (3)1.2、标定的参数 (3)1.3、电池管理标定系统的类型 (3)2、电池管理标定系统 (3)2.1、电池管理系统组成 (3)2.2、电池管理标定系统的功能 (3)2.3、电池管理标定系统的总体结构设计 (4)2.4、电池管理标定系统的软件设计 (4)3、参数配置与标定方案 (4)3.1、系统参数配置 (4)3.1.1、参数配置内容 (4)3.1.2、参数配置方式 (5)3.1.3、参数配置系统拓扑图 (5)3.2、系统参数标定 (5)3.2.1、参数标定内容 (5)3.2.2、参数标定方式 (5)3.2.3、参数标定系统拓扑图 (6)3.3、系统测试 (6)3.3.1、系统测试内容 (6)3.3.2、系统测试方式 (7)3.3.3、系统测试拓扑图 (8)1、电池管理标定系统的定义、参数及类型1.1定义电池管理系统是一个很复杂的控制系统,为了使电池管理系统在最优条件下工作并且能与汽车上其他系统协调工作,并达到最佳的综合性能,必须对电池控制器的控制参数进行相应的修改和优化,使电池控制系统按照最优的控制参数运行,这个过程称为标定。

1.2、标定的参数电池管理系统最主要的功能是有效控制电池的充电和放电,防止电池过度充电或过度放电,所以需要标定的参数有电压、电流、充放电功率、温度和各种故障阈值等。

1.3、电池管理标定系统的类型(1)离线标定由于编程过程中电池充放电控制模块无法获得实时的参数,必须在充电或者放电停止后才能进行更改数据的操作,该标定方式为离线标定。

(2)在线标定在线标定变量可同时以数值或图形等多种形式显示,实时监测的变量以曲线形式显示,标定平台修改的标定参数可通过CAN协议在标定系统通信模块中实时传递至任一ECU中,通过ECU的控制程序控制执行器,执行结果可通过监测曲线实时反应。

2、电池管理标定系统2.1、电池管理系统组成电池管理标定系统主要包括以下几个部分:(1)动力电池;(2)电池管理系统;(3)电池管理系统标定系统的硬件:其组成结构主要包括标定用的PC机、USBCAN通信;(4)电池管理系统标定系统的软件:包括CCP协议的驱动程序,电池管理系统支持CCP 协议的应用程序及支持CCP协议应用的标定平台软件;2.2、电池管理标定系统的功能标定系统需要具备以下的基本功能:(1)数据的采集,能够完成电池管理系统测试和控制的信号的实时采集,从而完成动力电池的工作状态的监控。

电动汽车电池管理系统电池状态估算及均衡技术

电动汽车电池管理系统电池状态估算及均衡技术

电动汽车电池管理系统电池状态估算及均衡技术作者:百合提努尔阿地里江·阿不力米提来源:《时代汽车》2024年第06期摘要:文章根據纯电动汽车和混合动力汽车的工作情况,归纳提出了电池管理系统(BMS)的核心功能和拓扑结构,对电池状态估算、电池监测系统和电池均衡系统等做了新的解析,简要的解释了电池常见故障原因以及预防措施等。

关键词:电池管理系统电池状态均衡1 电动汽车电池管理系统电池管理系统(Battery Management System,BMS)是电动汽车动力电池系统的重要组成部分,也是关键核心控制元件。

它一方面检测收集并初步计算电池实时状态参数,并根据检测值与允许值的比较关系来控制供电回路的通断;另一方面,将采集的关键数据上报给整车控制器,并接收控制器的指令,与车上的其他系统协同工作。

不同类型动力电池包的电芯(单体电池)对电池管理系统的要求是不尽相同的。

在任何一种电池管理系统(BMS)无论是简单还是复杂,均都有基本功能和实现这些功能的具体元器件。

如果需求越多,需要向系统中添加的元器件就越多。

如图1所示,电池管理系统(BMS)的核心功能。

2 电动汽车电池管理系统(BMS)拓扑结构电池管理系统的部件则是以几种不同的方式布置结构。

这些布置结构称为拓扑结构。

电池管理系统的拓扑结构主要分为集中式、分布式和模块化等类型,如图2所示。

在集中式BMS拓扑结构中有一个带有控制单元的BMS印刷电路板,其通过多个通信电路管理电池包中的所有电芯。

这种类型的结构体积大、不灵活,但成本低。

在分布式BMS拓扑结构中,每一个电芯都有BMS印刷电路板,控制单元通过单个通道连接到整个电池。

常用的环形连接(菊花链式连接)是分布式拓扑结构的一种类型,并用于容错需求较小的系统。

分布式BMS易于配置,但电子部件多、成本高。

在模块化BMS拓扑结构是集中式和分布式两种拓扑的组合。

这种布置也称为分散、星形或主从控拓扑。

有相互连接的几个控制单元(从控板),每个控制单元监测电池中的一组电芯。

电动汽车电源系统电池概述

电动汽车电源系统电池概述

电动汽车动力储能装置包括所有动力蓄电池、超级电容、飞轮电池和燃料电池等储能元件及其以上各类电池的组合。

一、电池的基本组成电池通常由电极(正极和负极)、电解质、隔膜和外壳(容器)四部分组成。

电极是电池的核心部分,通常由活性物质和导电骨架组成。

活性物质是指可以通过化学反应释放出电能的物质,要求其电化学活性高、在电解液中的化学稳定性高以及电子导电性好。

活性物质是决定化学电源基本特性的重要部分。

导电骨架主要起传导电子及支撑活性物质的作用。

当电池通过外部电路(负载)放电时,电池的正极从外电路得到电子,而负极则向外电路输出电子;对于电池内部而言恰好相反。

电解质在电池内部阴、阳极之间担负传递电荷(带电离子)的作用。

电解质一般为液体或固体。

液体电解质常称为电解液,通常是酸、碱、盐的水溶液;固体电解质通常为盐类,由固体电解质组成的电池即称为干电池。

对电解液的要求是电导率高、溶液欧姆电压较小。

对一于固体电解质,要求具有离子导电性,而不具有电子导电性。

电解质的化学性质必须稳定,使其在储存期间与活性物质界面间的电化学反应速率小,这样电池自放电时容量损失减小。

为了避免电池内阴、阳极之间的距离较近而产生内部短路,产生严重的自放电现象,需要在其阴、阳极之间加放绝缘的隔膜,隔膜的形状一般为薄膜、板材或胶状物等。

对隔膜的要求是化学性质稳定,有一定的机械强度,对电解质离子运动的阻力小,是电的良好绝缘体,并可以阻挡从电极上脱落的活性物质微粒和枝晶的生长。

电池的外壳是盛放和保护电池电极、电解质、隔膜的容器。

通常要求外壳具有足够的机械强度和化学稳定性,耐振动、耐冲击、耐腐蚀。

二、电池的基础知识(1)电池的组合蓄电池作为动力源.通常要求有较高的电压和电流,因此需要将若干个单体电池通过串联、并联与复联的方式组合成电池组使用:电池组合中对单体电池性能具有严格的要求,在同一组电池中必须选择同一系列、同一规格、性能尽量一致的单体电池。

(2)电池的放电电池的放电是将电池内储存的化学能以电能方式释放出来的过程,即电池向外电路释放电流。

电动汽车动力电池系统国标最详细讲解读

电动汽车动力电池系统国标最详细讲解读

电动汽车动力电池系统国标最详解读来源:第一电动网发布时间:2015-08-28 09:56 设置字体:大中小关注度:4791 次分享到:摘要:国标针对动力电池系统,建立了常规性能和功能要求——容量、能量、功率、效率、标准循环寿命、工况循环寿命、存储、荷电保持、容量恢复、倍率性能、高低温性能等。

【高工锂电综合报道】国标针对动力电池系统,建立了常规性能和功能要求--容量、能量、功率、效率、标准循环寿命、工况循环寿命、存储、荷电保持、容量恢复、倍率性能、高低温性能等,建立了安全防护要求--操作安全、故障防护、人员触电防护、滥用防护、环境适应性、事故防护、用户手册和特殊说明等,范围覆盖了电芯、模组、动力电池包、动力电池系统这4个层级,产品类型包括混合动力、插电式/增程式混合动力、纯电动乘用车和商用车,已基本上了构成了一个完整的体系。

一、构建标准体系电动汽车早期的发展过程中,GB或GB/T国家标准的缺失在一定程度上造成了行业的良莠不齐和鱼龙混杂。

仅依靠汽车行业的QC/T推荐标准作为一种参考,并不具有权威性和广泛性,整车企业和电池企业要么茫无头绪,要么各行其是、各执一词,缺乏一个统一的衡量标准。

随着2015年新版GB/T国家推荐标准的陆续发布,我国电动汽车产业围绕动力电池系统已基本上构建了完整的标准体系,形成了行业的准入门槛,有利于行业的规范发展和优胜劣汰。

新国标在2015年5月颁布(部分标准将在10月份或年底颁布),与旧标准之间有一年的过渡期,从2016年开始,相关企业都将遵循新的标准进行相关检测。

新国标与工信部2015年3月发布的《汽车动力蓄电池行业规范条件》一起,将加速动力电池行业的洗牌,提高行业集中度水平。

新版国标则完整的围绕电能和化学能的防护做了严格的规定,并明确了测试规范,形成了较为完整的体系,从这方面来讲,产品安全设计与国标的检验要求,殊途同归。

本文将系统的论述各项标准所规定的内容,对比新标准与旧标准的差异等,希望能够为动力电池企业或整车企业的同仁,在标准的理解和运用方面提供一些帮助。

东风日产新阳光电瓶参数

东风日产新阳光电瓶参数

东风日产新阳光电瓶参数东风日产新阳光是一款以环保和节能为主打的电动汽车。

作为电动汽车的重要组成部分,电瓶的参数对于车辆的性能和续航里程有着重要的影响。

下面将详细介绍东风日产新阳光电瓶的参数。

1. 电池类型:东风日产新阳光采用的是锂离子电池作为动力来源。

锂离子电池因其高能量密度、长寿命和快速充电等特点,成为了电动汽车领域最常用的电池类型之一。

2. 电池容量:东风日产新阳光的电池容量为40 kWh。

电池容量决定了电动汽车的续航里程,较大的电池容量可以提供更长的行驶里程。

3. 续航里程:东风日产新阳光的续航里程为400公里。

续航里程是指电动汽车在单次充电后能够行驶的最远距离,它与电池容量和车辆的能量利用效率有关。

4. 充电时间:东风日产新阳光的充电时间取决于充电桩的功率和充电方式。

采用快充方式,充电功率为50 kW时,充电时间约为1小时;采用慢充方式,充电功率为7 kW时,充电时间约为6-7小时。

5. 快充功能:东风日产新阳光支持快充功能,可以在较短的时间内完成充电。

这使得用户在长途旅行时可以更加方便地进行充电,减少等待时间。

6. 电池管理系统:东风日产新阳光搭载了先进的电池管理系统。

电池管理系统可以监测电池的工作状态、保护电池的安全性,还可以对电池进行均衡充放电,提高电池的使用寿命。

7. 能量回收系统:东风日产新阳光还具备能量回收系统,可以通过制动过程中的能量回收将部分能量转化为电能储存到电池中,提高能源利用效率,延长续航里程。

8. 温度控制系统:东风日产新阳光的电池还配备了温度控制系统。

温度对于电池的性能和寿命有着重要影响,温度过高或过低都会对电池的性能产生负面影响。

温度控制系统可以保持电池在适宜的工作温度范围内,提高电池的性能和寿命。

9. 安全性能:东风日产新阳光的电池具备良好的安全性能。

电池采用了多层防护设计,可以防止电池发生短路、过充、过放等安全问题。

此外,电池还具备过流、过压和过温保护功能,确保电池的安全运行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电动汽车电池系统参数
电动汽车电池系统参数包括:电池容量、额定电压、电池组数、
电池类型、电池重量、电池充电时间、续航里程、加速性能、能量回
收效率等。

其中,电池容量是指电池储存能量的大小,通常用千瓦时(kWh)表示;额定电压是指电池的标准输出电压;电池组数是指多少
个电池串联组成一组电池;电池类型包括钴酸锂电池、磷酸铁锂电池、三元材料电池等;电池重量指整个电池组的重量;电池充电时间通常
包括快充和慢充,快充时间较短,慢充时间较长;续航里程是指电动
汽车在一次充电下可以行驶的最远距离;加速性能是指电动汽车的起
步加速表现;能量回收效率是指电动汽车制动时通过能量回收将制动
过程中产生的能量转化为电能存储到电池中,回馈电池。

相关文档
最新文档