晶硅光伏电池工作原理
晶硅太阳能电池工作原理

晶硅太阳能电池工作原理
晶硅太阳能电池是一种光电转换装置,利用太阳光的能量直接转化成电能。
具体的工作原理如下:
1. 光吸收:太阳光中的光子进入到晶硅电池中,经过材料的光吸收层,光子能量被吸收。
2. 光生电荷的产生:光子的能量激发了材料中的电子,使其从价带跃迁到导带,形成电荷对(一个正电子和一个负电子空穴)。
3. 电荷分离:电荷对在电场的作用下被分离,正电子向电池的正极移动,负电子向电池的负极移动。
4. 电流输出:正电子和负电子的运动形成了电流,可以通过导线连接器来输出电能供应给外部电路使用。
5. 光子再生:涉及到材料的光子能量的损失或再生,如透射、散射或再吸收过程。
需要注意的是,晶硅太阳能电池的工作原理基于半导体材料的特性,光吸收层一般由p-n结构的硅片构成。
此外,电池的电流输出和电压的大小与光照强度、温度、阴影等环境因素也有关联。
晶硅太阳能电池基础知识

薄膜光学厚度nd =/ 4 时,由(2)可得
(3) 要使波长为的入射光实现零反射,即令(3)中 R=0,
可推得n=(n0nSi)1/2
计算得n=2.0-2.1 SiNx薄膜对600-650 nm响应最强,此时电池最高 计算得d=75-85 nm
NORTHWEST UNIVERSITY
二.n-Si与p-Si电池的比较
N-ZnO既作为前电极,又作为减反层(ARC)
N-ZnO在Vis-IR区域透明度高,便于光吸收
NORTHWEST UNIVERSITY
N-ZnO as front side
ZnO是一种直接宽带隙半导体 ZnO与其他金属形成合金,带隙宽度可达3-5eV 纤锌矿结构的ZnO具有高稳定性 ZnO激子结合能较高(60meV),保证其高效发光及光 伏特性 ZnO能有效抵制辐射损伤,提高电池寿命
NORTHWEST UNIVERSITY
采用磷扩散形成有效背场,通过类似正面的栅线设
计实现接触方式,使电池具有双面发电能力,提高 发电效率
Texturing B/Si diffusion
Passivation
Co-firing
Metal print
NORTHWEST UNIVERSITY
N-Si (PANDA)电池的几大技术优势
ECN n-WMT technology
NORTHWEST UNIVERSITY
n-MWT vs. n-PasHa: Cell performance
NORTHWEST UNIVERSITY
How to reduce Rseries and incerase of n-WMT cell
NORTHWEST UNIVERSITY
晶体硅太阳能电池和薄膜太阳能电池。

晶体硅太阳能电池和薄膜太阳能电池。
【摘要】晶体硅太阳能电池和薄膜太阳能电池是目前主流的太阳能电池技术。
晶体硅太阳能电池采用单晶硅或多晶硅制成,具有高转换效率和较长寿命的特点,广泛应用于家用光伏发电系统和大型光伏电站。
制造成本高和生产过程能耗大是其主要缺点。
薄膜太阳能电池利用薄膜材料制成,具有灵活性和轻便性,适用于建筑一体化等特殊场景。
但是转换效率较低,使用寿命短。
比较晶体硅太阳能电池和薄膜太阳能电池的效率、成本、适用场景等方面可见各有优劣。
未来,随着技术的进步和成本的下降,晶体硅和薄膜太阳能电池将继续发展,为清洁能源产业注入新动力。
【关键词】晶体硅太阳能电池、薄膜太阳能电池、原理、特点、应用、优缺点、比较、发展前景、总结。
1. 引言1.1 太阳能电池简介太阳能电池,也称为光伏电池,是一种能够将太阳能转化为电能的设备。
它是利用半导体材料的光电效应将太阳辐射直接转换为直流电的装置。
太阳能电池是清洁能源中的重要组成部分,具有环保、可再生和低碳的特点。
太阳能电池的核心部件是光伏电池片,其主要材料包括硅、硒化镉、铜铟镓硒等。
目前市场上主要有晶体硅太阳能电池和薄膜太阳能电池两类。
晶体硅太阳能电池具有较高的转换效率和稳定性,是目前主流的太阳能电池技术;而薄膜太阳能电池则具有柔性、轻便和生产成本低的优势。
太阳能电池的应用领域广泛,包括家用光伏发电系统、工业和商业用途,以及航天航空领域等。
随着太阳能产业的快速发展,太阳能电池的效率和成本不断提升,未来将在能源领域扮演越来越重要的角色。
1.2 晶体硅太阳能电池和薄膜太阳能电池介绍晶体硅太阳能电池是目前应用最广泛的太阳能电池技术之一。
它由大面积的单晶硅或多晶硅材料组成,通过将硅材料加工成光伏电池片并组装成电池组,从而将太阳能转化为电能。
晶体硅太阳能电池具有转换效率高、稳定性好、寿命长等优点,被广泛应用于屋顶光伏发电、太阳能光伏电站等领域。
薄膜太阳能电池是一种新型的太阳能电池技术,采用薄膜材料作为光伏电池片,相比于晶体硅太阳能电池,薄膜太阳能电池具有重量轻、柔软性好、制造成本低等优点。
高效晶体硅太阳能电池介绍

高效晶体硅太阳能电池介绍高效晶体硅太阳能电池是目前市场上最为常见和广泛应用的一种太阳能电池。
它的高效性和可靠性使其成为太阳能发电领域的主要选择。
本文将介绍高效晶体硅太阳能电池的原理、制造过程、优点和应用领域,并探讨其未来的发展趋势。
高效晶体硅太阳能电池是由单晶硅或多晶硅制成的。
其原理基于光伏效应,即将太阳能转化为电能。
当光线照射到太阳能电池板上时,光子与半导体材料中的电子发生相互作用,激发电子跃迁到导带。
通过电子与空穴的复合,电荷被释放出来,形成电流,最终产生电能。
制造高效晶体硅太阳能电池的过程通常由几个关键步骤组成。
首先,需要从硅矿石提取原始硅材料,并通过化学方法将其转化为硅粉。
然后,硅粉与其他材料混合均匀,形成硅溶胶。
接下来,将硅溶胶涂覆在导电玻璃或衬底上,并将其烘干,形成硅膜。
最后,通过加热和连续处理,将硅膜转化为晶体硅太阳能电池。
高效晶体硅太阳能电池具有许多优点。
首先,它们具有较高的转换效率,通常在15%至25%之间。
这意味着电池可以将大部分太阳能转化为电能,提高能源利用效率。
其次,晶体硅太阳能电池寿命长,可持续使用25年以上。
此外,它们对光强的响应较好,即在弱光条件下仍能产生较高的电能输出。
最后,高效晶体硅太阳能电池的制造工艺相对成熟和稳定,成本相对较低。
高效晶体硅太阳能电池在各个领域都有广泛的应用。
在家庭屋顶和建筑物上安装太阳能电池板,可以将太阳能转化为电能,用于供电、照明和暖气等。
此外,高效晶体硅太阳能电池也广泛应用于太阳能电池板、太阳能电池组件、充电设备和太阳能灯等产品。
随着对可再生能源和环境保护的关注度不断增加,高效晶体硅太阳能电池的未来发展前景十分广阔。
为了提高其转换效率,研究人员正在不断改进太阳能电池设计和材料。
例如,人们正在研究如何改进波长选择器,以优化太阳能电池对不同波长的光线的吸收和利用效率。
此外,研究人员还在探索新型材料,如钙钛矿材料,以提高太阳能电池的效率和稳定性。
晶体硅太阳能电池工作原理

晶体硅太阳能电池工作原理引言随着环境保护意识的提高和清洁能源的需求增加,太阳能作为一种可再生能源受到广泛关注。
其中,晶体硅太阳能电池作为最常见的太阳能电池类型,被广泛应用于光伏发电领域。
本文将深入探讨晶体硅太阳能电池的工作原理。
二级标题:晶体硅太阳能电池结构晶体硅太阳能电池的结构主要包括P-N结、P型硅层、N型硅层、金属电极和淋银层等组成部分。
三级标题:P-N结P-N结是晶体硅太阳能电池的核心部分,由P型硅和N型硅构成。
P型硅中掺入三价杂质(如硼),形成空穴,而N型硅中掺入五价杂质(如磷),形成自由电子。
P-N结的形成使得P型硅和N型硅之间形成一种电势差。
三级标题:P型硅层和N型硅层P型硅层和N型硅层分别位于P-N结的两侧。
P型硅层中的空穴在P-N结中受到电势差的作用下向N型硅层扩散,而N型硅层中的自由电子则向P型硅层扩散,形成了电子和空穴的浓度梯度。
三级标题:金属电极和淋银层晶体硅太阳能电池中,金属电极位于晶体硅片的上下表面,用于引出电流。
淋银层则用于提高电流的传导效率,减小电阻损耗。
二级标题:晶体硅太阳能电池工作原理晶体硅太阳能电池的工作原理基于光电效应。
三级标题:光电效应光电效应是指当光照射到物质表面时,光子的能量被电子吸收而导致电子获得足够的能量跃迁到导带,从而产生电流。
这是晶体硅太阳能电池转换太阳能为电能的基本原理。
三级标题:光吸收晶体硅太阳能电池中的光吸收主要发生在P-N结附近的薄层区域。
当光线照射到晶体硅中时,光子能量被硅材料中的电子吸收,激发电子从价带跃迁到导带。
三级标题:电荷分离和漂移当光子激发的电子跃迁到导带后,形成了电子空穴对。
由于P-N结形成的电势差,电子和空穴被分离。
电子被N型硅层吸收,而空穴则被P型硅层吸收。
这导致在晶体硅中形成正负电荷分离的电场。
三级标题:电流产生由于电荷分离和漂移的过程,形成了P-N结两侧的正负电荷分布。
这导致了电子从晶体硅底部的金属电极流向顶部的金属电极,形成了电流。
晶硅单结电池-概述说明以及解释

晶硅单结电池-概述说明以及解释1.引言1.1 概述晶硅单结电池是一种基于晶体硅材料制造的太阳能电池,它利用光的能量转化为电能。
晶硅单结电池具有高效转化太阳能的特点,被广泛应用于太阳能发电系统中。
晶硅单结电池的工作原理基于光电效应。
当光线照射到晶硅单结电池的表面时,光子会激发晶体硅中的电子。
这些被激发的电子会从材料中释放出来,并在电场的作用下形成电流。
通过将两个不同掺杂的硅层连接在一起,形成一个p-n结。
当光子通过p-n结时,会产生电子和空穴对,并形成电流。
这样,晶硅单结电池就能将太阳能转化为电能。
制备晶硅单结电池的方法具有一定的复杂性。
首先,需要选择高质量的硅材料作为基底。
然后,通过在硅基底上加热和涂覆一层掺杂层,形成p-n结。
接下来,使用电子束蒸发或物理气相沉积等技术,在硅基底上镀上金属电极,以提供电流的输出通路。
最后,通过对制备好的晶硅单结电池进行分选和封装,保证其性能和稳定性。
晶硅单结电池在太阳能领域具有广泛的应用前景。
它可以作为光伏组件,广泛应用于屋顶太阳能发电系统、太阳能道路照明系统、太阳能灯饰等领域。
由于其高效能转换和长时间稳定工作的特点,晶硅单结电池也被用于航天器、卫星等领域的能源供应。
对于晶硅单结电池的展望,人们正在不断研究改进其制备工艺和提高其转换效率。
还有一些新型太阳能电池技术的出现,如多晶硅电池、钙钛矿太阳能电池等,对晶硅单结电池提出了一些竞争。
然而,晶硅单结电池作为已经商业化和应用广泛的太阳能电池技术,预计仍将持续发展和完善,为人类的清洁能源需求做出更大贡献。
1.2文章结构文章结构部分的内容可以包括以下内容:2. 文章结构本文共分为三个部分,即引言、正文和结论。
2.1 引言部分介绍了本文要讨论的主题——晶硅单结电池,并包含了概述、文章结构和目的三个小节。
2.2 正文部分着重介绍了晶硅单结电池的原理和制备方法,通过对其原理进行深入剖析和对制备方法进行介绍,使读者对晶硅单结电池有一个全面的了解。
晶体硅太阳能电池制造工艺原理(一)

晶体硅太阳能电池制造工艺原理(一)晶体硅太阳能电池制造工艺引言晶体硅太阳能电池是目前最常见的太阳能电池类型之一,它利用晶体硅的半导体特性将光能转化为电能。
本文将从原理到制造工艺,逐步介绍晶体硅太阳能电池的制造过程。
光伏效应太阳能电池的工作原理基于光伏效应,即在光照的作用下,半导体材料中的能带发生偏移,使得电子从价带跃迁到导带,产生电流。
晶体硅是一种典型的半导体材料,因此被广泛应用于太阳能电池制造。
晶体硅的制备制造晶体硅太阳能电池的第一步是准备合适的晶体硅材料。
常见的制备方法有单晶法和多晶法。
单晶法通过将硅熔体缓慢冷却,使单晶硅逐渐生长;而多晶法则通过快速冷却制得多晶硅,它的晶粒较小,但制备成本较低。
制备电池片1.切割:将制备好的晶体硅材料切割成薄片,常用的切割工具是金刚石线锯。
2.研磨:用化学机械研磨(CMP)工艺对切片进行表面平整化处理,以去除切割时产生的缺陷和污染物。
3.清洗:对研磨后的切片进行清洗处理,去除表面的污染物,提高电池片的质量。
4.获取P型和N型半导体:将切片进行热扩散或离子注入工艺,使得切片的一侧生成P型半导体,另一侧生成N型半导体。
制备电池结构1.沉积透明导电膜:在电池片表面沉积一层透明导电膜,通常使用氧化锡薄膜。
2.沉积抗反射膜:为了提高电池吸收光能的效率,需要在透明导电膜上沉积一层抗反射膜。
常用的抗反射膜材料有二氧化硅等。
3.打开电池片通孔:使用激光或机械刻蚀等方法,在电池片上打开通孔,方便后续电池的连线。
4.沉积金属电极:在电池片的正负电极位置沉积金属电极,常用的金属有铝、银等。
组装与封装1.清洗:清洗电池片和其他组件,确保没有灰尘和污染物。
2.焊接连接:使用焊接技术将电池片与其他元件连接起来,形成电池组。
3.封装:将电池组放入封装材料中,通常使用聚合物材料进行封装,保护电池并提供结构支撑。
总结晶体硅太阳能电池的制造工艺涉及多个步骤,从晶体硅的制备到电池结构的形成,最终完成组装与封装。
晶体硅太阳能电池的工作原理的其他解释

晶体硅太阳能电池的工作原理的其他解释晶体硅太阳能电池是一种常见且广泛使用的光伏设备,其工作原理基于光电效应和半导体物理原理。
通过深入探讨晶体硅太阳能电池的工作原理,我们可以更好地理解它在转换太阳能为电能的过程中的关键步骤和原理。
1. 光电效应:晶体硅太阳能电池的工作原理首先涉及光电效应。
光电效应是指当光子碰撞到某些材料表面时,能量可被传递给材料中的电子,使其脱离原子成为自由电子。
在晶体硅太阳能电池中,硅材料中的原子可以通过光电效应释放出电子。
2. pn结构:为了实现有效的电子抽取和流动,晶体硅太阳能电池采用了pn结构。
pn结构是指半导体材料中有两个区域:n区和p区,它们具有不同的电子导电性质。
在晶体硅太阳能电池中,n区被掺杂有杂质,使其具有过剩的电子,而p区被掺杂有杂质,使其具有过剩的空穴(电荷缺失)。
这种构造使得在pn结的界面上形成电场。
3. 光生电荷的产生:当太阳光照射到晶体硅太阳能电池的表面时,光子会与电池材料相互作用,并传递能量给材料中的电子。
这些能量足以克服能带间隙,使得电子从价带跃迁到导带中。
在导带中,电子和空穴被激发,形成了光生电荷对。
4. 电荷分离和漂移:光生电荷对的形成标志着工作原理中的一个关键步骤。
由于pn结的电场,电子和空穴将被分离到n区和p区。
电子和空穴在各自的区域中受到电场力的作用,向相对高浓度的杂质区域漂移。
这个电荷分离和漂移的过程是为了有效地分离正负电荷并产生电流。
5. 电流输出:经过电荷分离和漂移过程后,电子和空穴将一直向pn结的不同侧面漂移,最终汇集在电池的正负极上。
这样,产生了一个电流,可以通过连接电池的电路来提供电能。
对于晶体硅太阳能电池的工作原理,我认为有几个观点和理解值得关注:光电效应是实现太阳能转化的核心过程,它使得光子的能量可以转化为电子的能量。
深入理解光电效应有助于我们明白为什么只有特定波长的太阳光才能被晶体硅太阳能电池吸收,并促使我们思考如何利用更广泛的光谱范围来提高电池的效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
太阳能电池发电原理:太阳能电池是一对光有响应并能将光能转换成电力的器件。
能产生光伏效应的材料有许多种,如:单晶硅,多晶硅,非晶硅,砷化镓,硒铟铜等。
它们的发电原理基本相同,现以晶体为例描述光发电过程。
P型晶体硅经过掺杂磷可得N型硅,形成P-N结。
当光线照射太阳能电池表面时,一部分光子被硅材料吸收;光子的能量传递给了硅原子,使电子发生了越迁,成为自由电子在P-N结两侧集聚形成了电位差,当外部接通电路时,在该电压的作用下,将会有电流流过外部电路产生一定的输出功率。
这个过程的实质是:光子能量转换成电能的过程。
晶体硅太阳能电池的制作过程:“硅”是我们这个星球上储藏最丰量的材料之一。
自从19世纪科学家们发现了晶体硅的半导体特性后,它几乎改变了一切,甚至人类的思维。
20世纪末,我们的生活中处处可见“硅”的身影和作用,晶体硅太阳能电池是近15年来形成产业化最快的。
生产过程大致可分为五个步骤:a、提纯过程 b、拉棒过程 c、切片过程 d、制电池过程 e、封装过程。
太阳能电池的应用:上世纪60年代,科学家们就已经将太阳电池应用于空间技术——通信卫星供电,上世纪末,在人类不断自我反省的过程中,对于光伏发电这种如此清洁和直接的能源形式已愈加亲切,不仅在空间应用,在众多领域中也大显身手。
如:太阳能庭院灯、太阳能发电户用系统、村寨供电的独立系统、光伏水泵(饮水或灌溉)、通信电源、石油输油管道阴极保护、光缆通信泵站电源、海水淡化系统、城镇中路标、高速公路路标等。
欧美等先进国家将光伏发电并入城市用电系统及边远地区自然界村落供电系统纳入发展方向。
太阳电池与建筑系统的结合已经形成产业化趋势一、太阳电池及光伏发电原理早在1839年,法国科学家贝克雷尔(Becqurel)就发现,光照能使半导体材料的不同部位之间产生电位差。
这种现象后来被称为“光生伏打效应”,简称“光伏效应”。
1954年,美国科学家恰宾和皮尔松在美国贝尔实验室首次制成了实用的单晶硅太阳电池,诞生了将太阳光能转换为电能的实用光伏发电技术。
太阳电池工作原理的基础是半导体PN结的光生伏打效应,就是当物体受到光照时,物体内的电荷分布状态发生变化而产生电动势和电流的一种效应。
即当太阳光或其他光照射半导体的PN结时,就会在PN结的两边出现电压,叫做光生电压,使PN结短路,就会产生电流。
太阳光发电是指无需通过热过程直接将光能转变为电能的发电方式。
它包括光伏发电、光化学发电、光感应发电和光生物发电。
光伏发电是利用太阳能级半导体电子器件有效地吸收太阳光辐射能,并使之转变成电能的直接发电方式,是当今太阳光发电的主流。
时下,人们通常所说太阳光发电就是太阳能光伏发电,亦称太阳能电池发电。
从上世纪70年代中期开始了地面用太阳电池商品化以来,晶体硅就作为基本的电池材料占据着统治地位。
以晶体硅材料制备的太阳能电池主要包括:单晶硅太阳电池,铸造多晶硅太阳能电池,非晶硅太阳能电池和薄膜晶体硅电池。
单晶硅电池具有电池转换效率高,稳定性好,但是成本较高;非晶硅太阳电池则具有生产效率高,成本低廉,但是转换效率较低,而且效率衰减得比较快;铸造多晶硅太阳能电池则具有稳定的转换的效率,而且性能价格比最高;薄膜晶体硅太阳能电池则现在还只能处在研发阶段。
硅系列太阳能电池中,单晶硅和多晶硅电池继续占据光伏市场的主导地位,单晶硅和多晶硅的比例已超过80%,而这一发展趋势还在继续增长。
二、国外太阳能光伏发电现状及预测随着现代工业的发展,全球能源危机和大气污染问题日益突出,太阳能作为理想的可再生能源受到了许多国家的重视。
目前太阳能电池的种类不断增多、应用范围日益广阔、市场规模逐步扩大。
世界光伏组件在过去15年平均增长率约15%。
20世纪90年代后期,发展更加迅速,1999年光伏组件生产达到200兆瓦。
商品化电池效率从10%~13%提高到13%~15%,生产规模从1~5兆瓦/年发展到5~25兆瓦/年,并正在向50兆瓦甚至100兆瓦扩大。
光伏组件的生产成本降到3美元/瓦以下。
近几年,全世界太阳能电池的生产量平均每年增长近40%,2004年全世界生产总量更达1000兆瓦。
发展中国家印度处于领先地位,目前有50多家公司从事与光伏发电技术有关的制造业,其中有6个太阳电池制造厂和12个组件生产厂,年生产组件11兆瓦,累计装机容量约40兆瓦。
本世纪以来,一些发达国家纷纷制定了发展包括太阳能电池在内的可再生能源计划。
太阳能电池的研究和生产在欧洲、美洲、亚洲大规模铺开。
美国和日本为争夺世界光伏市场的霸主地位,争相出台太阳能技术的研究开发计划,如到2010年,美国计划累积安装4600兆瓦(含百万屋顶计划);日本计划累计安装5000兆瓦(NEDO日本新阳光计划)。
根据“光伏报导(Photovotaic NEWS)”杂志2003年3月出版的22卷上发表的世界太阳能电池组件产量汇总表可以清楚地看出:世界太阳能电池材料发展的趋势是非常迅猛的。
世界太阳能电池组件(包括其基础性材料单晶硅)的发展,2002年是1995年的6.6倍(增长5.6倍);其中日本2002年是1995年的15.3倍(增长14.3倍)。
最近的光伏行业调查表明,到2010年,光伏产业的年发展速度将保持在30%以上。
年销售额将从2004年的70亿美金增加到2010年的300亿美金。
许多老牌的光伏制造公司也从原来的亏本转为盈利。
三、我国太阳能光伏发电的现状及展望(一)光伏发电的现状我国太阳电池的研究始于1958年,1959年研制成功第1个有实用价值的太阳电池。
1971年3月首次成功地应用于我国第2颗卫星上,1973年太阳电池开始在地面应用,1979年开始生产单晶硅太阳电池。
中国的光伏产业的发展有2次跳跃,第一次是在上世纪80年代末,我国的改革开放正处于蓬勃发展时期,国内先后引进了多条太阳电池生产线,使我国的太阳电池生产能力由原来的3个小厂的几百千瓦一下子上升到6个厂的4.5兆瓦,引进的太阳电池生产设备和生产线的投资主要来自中央政府、地方政府、国家工业部委和国家大型企业。
第二次光伏产业的大发展在2000年以后,主要是受到国际大环境的影响、国际项目/政府项目的启动和市场的拉动。
2002年由国家法改委负责实施的“光明工程”送电到乡和即将实施的送电到村工程均采用了太阳能光伏发电技术。
由于我国西部人口密度小,居住分散,同时又拥有丰富的太阳能资源。
太阳能光伏发电是即廉价又清洁的能源选择。
近20年来,我国光伏产业的发展已初具规模,但在总体水平上我国同国外相比还有很大差距,表现为:1.生产规模小。
我国太阳电池制造厂的生产能力约为0.5~1兆瓦/年,比国外生产规模低一个多数量级2.技术水平较低。
电池效率、封装水平同国外存在一定差距。
3.专用原材料国产化经过“八五”攻关取得一定成果,但性能有待进一步改进,部分材料仍采用进口品。
4.成本高。
目前我国电池组件成本约30元/瓦,平均售价42元/瓦,成本和售价都高于国外产品。
5.市场培育和发展迟缓,缺乏市场培育和开拓的支持政策、措施。
目前国内的主要太阳电池生产厂家主要有:(1)无锡尚德太阳能电力有限公司,生产电池、组件,年生产量为50兆瓦;(2)云南半导体器件厂,生产单晶硅电池,年生产量为2兆瓦;(3)保定应利太阳能组件厂,生产多晶电池、组件,年生产量为6兆瓦;(4)上海交大国飞太阳能电池厂,生产组件,年生产量为1兆瓦;(5)上海光伏科技有限公司,生产组件,年生产量5兆瓦。
(二)光伏发电的前景展望在可再生能源中,太阳能取之不尽,清洁安全,是理想的可再生能源。
我国的太阳能资源比较丰富,且分布范围较广,太阳能光伏发电的发展潜力巨大。
此外,目前太阳能光伏发电技术已日趋成熟,是最具可持续发展的可再生能源技术之一。
截止2004年,太阳能光伏发电的应用领域遍及我们生活的各个方面,如交通、通讯、公共设施(如照明)、家庭生活用电等。
尤其是在边远地区,太阳能光伏发电更加显示它的优势。
我国目前尚有约30000个村庄,700万户,3000万农村人员还没有用上电,60%的有电县严重缺电,光伏市场潜力巨大。
专家预测2006年我国太阳能电池生产能力将超过300兆瓦。
在今后的十几年中,太阳电池的市场走向将发生很大的改变,到2010年以前中国太阳电池多数是用于独立光伏发电系统,从2011年到2020年,中国光伏发电的市场主流将会由独立发电系统转向并网发电系统,包括沙漠电站和城市屋顶发电系统。
中国作为新的世界经济发动机,光伏业也呈现出前所未有的活力,大量系统集成公司伴随者国家的“光明工程”、“奥运工程”、“世博会工程”等项目的启动应运而生,世界一些大财团也瞄准了中国巨大的光伏市场潜力,开始投资中国光伏行业。
国内市场,从20世纪90年代,国内光伏市场平稳发展,年增长速度在20%左右;进入21世纪,国内光伏市场呈现加速发展趋势,2001~2003年平均增长速度都在30%以上。
中国政府目前正在制订《新能源和可再生能源发展规划》,将出台一系列扶持PV发展的优惠政策。
按照规划,中国2003~2009年在农村电网建设中每年安装70兆瓦光伏系统,2010~2020年普及推广应用,年平均安装100兆瓦。
目前中国已经是国际光伏发电应用产品生产基地。
能源是国民经济发展的重要基础之一,随着国民经济的发展,能源的缺口增大,能源安全及能源在国民经济中的地位越显突出。
但我国是世界上少数几个能源结构以煤为主的国家之一,也是世界上最大的煤炭消费国,燃煤造成的环境污染日益突出。
目前我国二氧化碳排放量已位居世界第二,甲烷、氧化亚氮等温室气体的排放量也居世界前列。
从我国目前能源生产及能源消费的实际状况出发,发展新能源及高效节能的技术及产品是保证我国可持续发展的重要举措。
因此,大力发展新能源和可再生能源是我国未来的能源发展战略要求。
2005年2月28日,第十届全国人代表大会常务委员会第十四次会议通过了《中华人民共和国可再生能源法》,于2006年1月1日起正式实施。
可再生能源法规定国家将可再生能源开发利用的科学技术研究和产业化发展列为科技发展与高技术产业发展的优先领域,纳入国家科技发展规划和高技术产业发展规划,并安排资金支持可再生能源开发利用的科学技术研究、应用示范和产业化发展,促进可再生能源开发利用的技术进步,降低可再生能源产品的生产成本,提高产品质量。
国家鼓励和支持可再生能源并网发电。
为促进我国可再生能源和新能源技术及相关产业的发展,根据国家可再生能源中长期发展规划,国家发展和改革委员会决定在2005~2007年期间,实施可再生能源和新能源高技术产业化专项。
其中太阳能光伏发电、太阳能电池用硅锭/硅片以及高效低成本太阳能电池组件及系统控制部件的产业化成为可再生能源和新能源高技术产业化专项支持的重点领域之一。