核酸基质辅助激光解吸电离飞行时间质谱技术在结核病和非结核分枝杆菌病诊断专家共识要点

合集下载

基质辅助激光解吸电离飞行时间质谱

基质辅助激光解吸电离飞行时间质谱

基质辅助激光解吸电离飞行时间质谱随着科技的不断进步,飞行时间质谱技术已经成为了许多领域中不可或缺的分析方法。

其中,基质辅助激光解吸电离飞行时间质谱技术(MALDI-TOF)更是在生物医学研究、食品安全检测、环境污染监测等领域中得到了广泛的应用。

一、基质辅助激光解吸电离飞行时间质谱技术的基本原理MALDI-TOF技术是一种利用基质辅助激光解吸电离的质谱技术。

其基本原理是:先将待检样品与一种辅助基质混合,然后将混合物均匀地涂在一个金属板上,待基质干燥后,用紫外激光照射样品,使其与基质分子共同激发。

这样,样品分子就会与基质分子形成一个复合物,并在激光的作用下被解吸电离。

接着,离子会被加速器加速并飞行到一个离子探测器中,最后形成质谱图。

二、基质辅助激光解吸电离飞行时间质谱技术的应用1、生物医学研究MALDI-TOF技术在生物医学研究中的应用非常广泛。

它可以用于蛋白质分析、肽类分析、糖类分析等。

例如,在蛋白质分析方面,MALDI-TOF技术可以用于检测蛋白质的分子量、序列、修饰以及配体结合情况等。

这对于研究蛋白质功能及其在疾病中的作用有着非常重要的意义。

2、食品安全检测食品安全一直是人们关注的焦点之一。

MALDI-TOF技术可以用于检测食品中的各种成分,如蛋白质、糖类、脂类等。

这些成分的分析可以帮助人们了解食品的营养价值和质量安全情况,从而保障人们的健康。

3、环境污染监测环境污染是一个全球性问题,而MALDI-TOF技术可以用于检测环境中的各种化合物,如有机物、无机物等。

这些化合物的分析可以帮助人们了解环境的污染状况,从而采取相应的措施进行治理。

三、基质辅助激光解吸电离飞行时间质谱技术的优缺点1、优点(1)灵敏度高:MALDI-TOF技术的灵敏度可以达到非常高的水平,可以检测到非常微量的化合物。

(2)分析速度快:MALDI-TOF技术的分析速度非常快,可以在几分钟内得到样品的分析结果。

(3)适用范围广:MALDI-TOF技术可以用于分析各种化合物,包括有机物、无机物、生物大分子等。

基质辅助激光解吸电离-串联飞行时间质谱仪

基质辅助激光解吸电离-串联飞行时间质谱仪

基质辅助激光解吸电离-串联飞行时间质谱仪
基质辅助激光解吸电离串联飞行时间质谱仪(MALDI-TOF-MS)是一种高分辨率、高灵敏度的质谱仪设备,用于分析生物大分子和有机化合物。

该技术利用基质辅助激光解吸(MALDI)方法,将样品与基质混合施加于样品板上,在激光的作用下分子产生共振激发,然后通过电离和加速器分析,最终实现质谱分析的目的。

这种质谱仪广泛应用于各个领域,如蛋白质组学、药物发现和制造、食品科学、环境检测等。

它具有快速、高灵敏度、高分辨率、低检测限、高通量等优点,可以分析极微量的生物分子,如蛋白质、肽、核酸、糖类等,甚至可以分析非挥发性和热不稳定的分子。

MALDI-TOF-MS质谱仪的主要部件包括激光系统、样品载体、离子源、加速器、飞行时间质量分析器和数据采集系统等。

它可以通过不同的模式实现离子的分析,如正离子模式、负离子模式、反向相模式、碎片模式等。

此外,MALDI-TOF-MS 还可以通过结合其他分析技术,如气相色谱、液相色谱等,来增强其分析能力。

总之,MALDI-TOF-MS技术已经成为一种不可替代的分析手段,为生物、医药、食品、环境等领域的研究和应用带来了很大的便利。

质谱技术在微生物鉴定和检测中的应用

质谱技术在微生物鉴定和检测中的应用

《质谱技术在微生物鉴定和检测中的应用》摘要:质谱技术(Mass Spectrometry, MS)是一种根据离子产生的质量图谱来确定样品中分子组成的分析技术。

质谱法不仅可以对传统的目标分析物进行定性和定量分析,还可以用于细菌的快速准确鉴定。

基质辅助激光解吸电离飞行时间(Matrix-Assisted Laser Desorption/Ionization-Time of Flight, MALDI-TOF)质谱仪由于能快速准确地鉴定革兰氏阴性菌和阳性菌的种类,因此是生物学中最常用的质谱仪之一。

质谱法鉴定微生物是以鉴定每个物种的特征光谱为基础的,然后与仪器内的大型数据库进行匹配。

本综述阐述了细菌鉴定面临的挑战和机遇,特别是在微生物学领域中使用MALDI-TOF MS来鉴定微生物和分析抗菌药敏感性。

关键词:质谱技术;MALDI-TOF;特征光谱;细菌鉴定;抗菌药敏感试验质谱(MS)法通过分析电离分子的质荷比(m/z)来对分子进行定性定量分析。

质谱仪扫描的特征图谱可以确定样品内不同分子的组成,并且能够直接分析任何可电离的生物分子。

FENN[1]和TANAKA[2]在MS的基础上,分别建立了电喷雾电离(Electrospray Ionization,ESI)技术和基质辅助激光解吸电离(Matrix-Assisted Laser Desorption/Ionization,MALDI)技术。

MALDI最大的优势在于不需要复杂的预分析,就可以直接对样品与化学基质混合后产生的离子进行分析。

离子飞行时间(TOF)是指用探测器精确测量离子到达飞行管末端所花费的时间。

基质辅助激光解吸电离飞行时间(MALDI-TOF)质谱技术是将MALDI技术和TOF技术整合在一起的一种技术。

自从关于MALDI-TOF技术的构想诞生以来,因其快速、高通量、低成本和高效的优点,该技术已经彻底改变了微生物实验室中鉴定微生物的方法。

MALDI-TOF MS的主要优点之一是节省时间,因为细菌鉴定不再需要经过24~48 h,只需不到一小时即可完成。

jeol基质辅助激光解吸电离离子源飞行时间质谱

jeol基质辅助激光解吸电离离子源飞行时间质谱

jeol基质辅助激光解吸电离离子源飞行时间质谱是一种先进的质谱技术,它结合了基质辅助激光解吸电离(MALDI)和飞行时间质谱(TOF-MS)两种技术的优势,能够在分析生物大分子和其他复杂样品时提供高灵敏度和高分辨率的数据。

在MALDI-TOF-MS中,样品与基质混合后通过激光辅助电离,产生一系列的离子,这些离子在一个电场中被加速到一定能量后,根据其质荷比分别飞行到检测器,通常基于TOF-MS的仪器会有高质量的检测结果。

针对这一主题,我们将深入探讨jeol基质辅助激光解吸电离离子源飞行时间质谱的原理、应用及优势,并探讨其在生物医学研究、生物技术领域的重要意义。

我们将对该技术的未来发展和趋势进行分析和展望,以帮助您更全面地了解jeol基质辅助激光解吸电离离子源飞行时间质谱。

理解jeol基质辅助激光解吸电离离子源飞行时间质谱的原理对于深入探讨这一主题至关重要。

这种技术利用了MALDI和TOF-MS两种技术的优势,MALDI能够提高大分子的离子化率,TOF-MS能够提供高分辨率和高灵敏度的分析结果。

jeol基质辅助激光解吸电离离子源飞行时间质谱可以在保证数据质量的提高分析的速度和效率。

我们将深入探讨jeol基质辅助激光解吸电离离子源飞行时间质谱在生物医学研究和生物技术领域的应用。

这种技术在生物医学研究中可以用于蛋白质组学和代谢组学的分析,能够帮助科学家更好地理解疾病的发病机制、开发新的药物或者诊断方法。

在生物技术领域,jeol基质辅助激光解吸电离离子源飞行时间质谱也能够用于生物药物的质量控制和分析,可以提高生物药品的质量和安全性。

我们还将重点分析jeol基质辅助激光解吸电离离子源飞行时间质谱的优势,比如高分辨率、高灵敏度、高通量等特点,以及与其他质谱技术的比较。

这可以帮助您更好地了解jeol基质辅助激光解吸电离离子源飞行时间质谱在分析复杂样品时的优势和局限性。

通过对jeol基质辅助激光解吸电离离子源飞行时间质谱的未来发展和趋势进行分析和展望,我们可以帮助您更好地把握这一技术的发展方向和未来的应用前景,为您在相关领域的研究和应用提供更多的启发和帮助。

基质辅助激光解吸电离飞行时间质谱

基质辅助激光解吸电离飞行时间质谱

基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS) 技术的主要特点是,先通过PCR扩增目标序列,然后加入snp序列特异延伸引物,在SNP 位点上,延伸1个碱基。

将制备的样品分析物与芯片基质共结晶,将该晶体放入质谱仪的真空管, 而后用瞬时纳秒(10-9s) 强激光激发,由于基质分子经辐射所吸收的能量,导致能量蓄积并迅速产热,从而使基质晶体升华,核酸分子就会解吸附并转变为亚稳态离子,产生的离子多为单电荷离子,这些单电荷离子在加速电场中获得相同的动能,进而在一非电场漂移区内按照其质荷比率加以分离,在真空小管中飞行到达检测器。

MALDI产生的离子常用飞行时间(Time-of-Flight,TOF)检测器来检测,离子质量越小,就越快到达。

理论上讲,只要飞行管的长度足够,TOF检测器可检测分子的质量数是没有上限的。

MassARRAY SNP 检测的质谱范围为5000 to 8500 Da。

主要用途: 1.对生物大分子物质分子量的测定; 2.对蛋白质进行高通量的鉴定; 3.对有机小分子化合物分子量的测定; 4.对寡核苷酸的分析; 5.对基因的单核苷酸多态性的分析仪器类别:0303071402 /仪器仪表/成份分析仪器/质谱仪指标信息: 1.质量数测定范围最高可达40万Da以上; 2.检测灵敏度范围:10-15~10-18摩尔; 3.质量准确度可达5ppm; 4.分辨率右达2万。

附件信息:配有源后衰变装置,可对多肽、蛋白质的序列进行分析机组简介:基质辅助激光角吸附电离飞行时间质谱(MALDI-TOF-MS Reflex Ⅲ):具有操作简单、快速、谱图直观、能耐受一定浓度的盐和去垢剂等特点,特别适合于混合多肽、蛋白、寡核苷酸的精确质量数测定,其测定质量数范围最高可达40万Da以上,灵敏度可达10-15~10-18摩尔,质量准确度5ppm。

配有源后衰变(post-sourc e decay, PSD)装置,计算机自动联机检索系统。

基质辅助激光解吸电离飞行时间质谱微生物鉴定系统性能验证方案的建立

基质辅助激光解吸电离飞行时间质谱微生物鉴定系统性能验证方案的建立

基质辅助激光解吸电离飞行时间质谱微生物鉴定系统性能验证方案的建立徐蓉;慎慧;黄媛媛;何丽华;倪丽君;郭建;吴文娟【摘要】目的建立基质辅助激光解吸电离飞行时间质谱系统(MALDI-TOF MS)在常规临床微生物鉴定中的性能验证方法,指导临床实验室规范微生物鉴定程序.方法选取标准菌株、质控菌株和临床菌株共115株,包含革兰阳/阴性球菌30株、革兰阳/阴性杆菌31株、真菌30株,厌氧菌、苛养菌各12株,所有菌株均经Vitek Compact鉴定和/或细菌16S rDNA、真菌ITS DNA测序分析验证.任意选择3种MALDI-TOF MS微生物鉴定系统厦门质谱、布鲁克质谱、安图质谱,采用检测系统推荐方法进行菌株鉴定,进行准确度验证试验.精密度验证:选取标准菌株和临床菌株10株,1位操作者使用3个检测系统对10株菌株分别进行质谱鉴定3次,连续鉴定3 d;3位操作者使用3个检测系统对10株菌株每d分别进行质谱鉴定3次,连续鉴定3 d,从而验证鉴定结果的重复性.结果厦门质谱、布鲁克质谱、安图质谱对标准/质控菌株(除外厌氧菌)的鉴定符合率为100%;对临床菌株的属水平鉴定符合率为100%;对革兰阴/阳性杆菌的种水平鉴定符合率分别为100%、100%、96.77%;对革兰阳性球菌的种水平鉴定符合率分别为96.67%、96.67%、100%;对真菌的种水平鉴定符合率均为90%一致;对苛养菌的种水平鉴定符合率均为100%;对厌氧菌鉴定符合率为91.67%种水平一致.精密度验证试验结果重复性100%.结论 3种MALDI-TOF MS系统在革兰阳/阴性球菌、革兰阳/阴性杆菌、真菌、苛养菌鉴定的准确度和精密度符合要求,验证通过.本文建立的微生物鉴定质谱仪性能验证方案可满足综合性医院临床微生物实验室常规鉴定基本要求.【期刊名称】《临床检验杂志》【年(卷),期】2018(036)010【总页数】5页(P783-787)【关键词】基质辅助激光解吸电离飞行时间质谱;性能验证;微生物鉴定【作者】徐蓉;慎慧;黄媛媛;何丽华;倪丽君;郭建;吴文娟【作者单位】上海市临床检验中心临床微生物室,上海200126;同济大学附属东方医院南院检验科,上海 200123;同济大学附属东方医院南院检验科,上海 200123;同济大学附属东方医院南院检验科,上海 200123;同济大学附属东方医院南院检验科,上海 200123;同济大学附属东方医院南院检验科,上海 200123;同济大学附属东方医院南院检验科,上海 200123【正文语种】中文【中图分类】R446.520世纪90年代末,基质辅助激光解吸电离飞行时间质谱(matrix-assisted laser desorption/ionization time-of-flight mass spectrometry,MALDI-TOF MS)成功应用于微生物菌种鉴定并得到迅猛发展。

基质辅助激光解吸附飞行时间质谱

基质辅助激光解吸附飞行时间质谱

基质辅助激光解吸附飞行时间质谱
一、什么是基质辅助激光解吸附飞行时间质谱
嘿,同学们!今天咱们来聊聊这个听起来超级高大上的“基质辅助激光解吸附飞行时间质谱”。

简单来说,它就是一种超级厉害的分析化学技术啦。

它可以把咱们要研究的那些小分子、大分子啥的,通过激光照射,让它们从基质里飞出来,然后根据它们飞行的时间来测定分子量。

是不是有点像让这些分子来一场“飞行比赛”,然后根据它们到达终点的时间来判断它们的大小呢?
二、基质辅助激光解吸附飞行时间质谱的工作原理
这部分可就有点复杂啦,不过别怕,我尽量说得简单点。

首先呢,咱们得有个样品,把它和特殊的基质混合在一起。

然后用激光去照射这个混合物,激光的能量会让样品分子从基质里解脱出来,变成带电的离子。

这些带电离子就会在电场里飞起来,就像飞机在跑道上起飞一样。

因为不同分子量的离子飞行速度不一样,所以通过测量它们飞行到探测器的时间,就能算出它们的分子量啦。

三、基质辅助激光解吸附飞行时间质谱的应用
这玩意儿的用处可多啦!
在生物医药领域,它可以帮助咱们分析蛋白质、多肽的结构和分子量,对于研究疾病的发生机制和开发新药那可是相当重要。

在食品安全检测方面,它能检测出食品中的有害污染物,保障咱们吃得健康。

还有在环境监测中,它可以检测出环境中的微量有害物质,让咱们的地球更干净、更美好。

基质辅助激光解吸附飞行时间质谱是个超级厉害的工具,为咱们的科学研究和生活带来了很多便利和帮助!同学们,是不是觉得很神奇呀?。

基质辅助激光解吸电离质谱成像

基质辅助激光解吸电离质谱成像

基质辅助激光解吸电离质谱成像
基质辅助激光解吸电离质谱成像(MALDI-MSI)是一种高分辨率、高通量的成像技术,可以用于生物分子的定量和空间分布分析。

下面
是对该技术的详细介绍。

一、技术原理
MALDI-MSI技术是基于质谱原理的。

它通过将化合物固定在载体(基质)上,在基质表面上形成分子晶体,并通过激光辐射质量分析仪来
直接探测和成像物质分布。

基质能够增强分子的解离和电离,提高其
探测灵敏度和选择性。

二、技术应用
MALDI-MSI技术在生物学、药物学、神经科学、环境科学等领域广泛
应用。

它可以用于定性和定量分析,分析蛋白质、代谢物、脂质、药
物等分子在不同组织、细胞类型中的分布情况,并可以实现组织学和
化学图像的叠加。

三、技术优势
MALDI-MSI技术具有成像精度高、高通量、无需前处理、样本保留完
整性、可追溯性等优势。

同时,它能够探测到微量、低丰度、小分子
等难以被其他技术检测到的化合物,为疾病诊断和药物研发提供了新
的手段。

四、技术挑战
MALDI-MSI技术在分子图像质量、信号噪声比、质量信号比、基质优化等方面还存在挑战。

此外,技术成本较高、仪器复杂、数据处理困难等也是技术发展的难点。

五、技术前景
随着技术的不断优化和应用范围的扩大,MALDI-MSI技术将成为疾病诊断、药物研发、农业、食品安全等多个领域的重要工具。

同时,基质辅助激光解吸电离质谱成像也将成为质谱技术中必不可少的一项技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

核酸基质辅助激光解吸电离飞行时间质谱技术在结核病和非结核分枝杆菌病诊断专家共识要点
核酸基质辅助激光解吸电离飞行时间质谱技术(MALDI-TOF MS)在结
核病和非结核分枝杆菌病(Nontuberculous Mycobacteria, NTM)的诊断
中起到了重要的作用。

本文将总结核酸基质辅助激光解吸电离飞行时间质
谱技术在结核病和NTM病诊断方面的专家共识要点。

1.技术原理:MALDI-TOFMS技术通过将分离的菌落直接吸附于基质上,并利用激光解吸和电离的原理对蛋白质进行检测和鉴定。

通过将分子的质
荷比与已知数据库中的蛋白质质谱图进行比对,可以快速准确地确定菌株
的物种和亚型。

2.结核病诊断:MALDI-TOFMS技术可以用于结核分枝杆菌的识别和鉴定。

结核分枝杆菌是引起结核病的主要致病菌株,通过MALDI-TOFMS技术
可以快速准确地识别结核分枝杆菌,有助于早期诊断和治疗。

3.NTM病诊断:NTM是引起非结核分枝杆菌病的致病菌株,与结核分
枝杆菌相比,NTM种类繁多,且具有耐药性。

传统的方法对于鉴定NTM菌
株的种类和亚型耗时且复杂,而MALDI-TOFMS技术具有快速、准确的优势,可用于鉴定不同种类和亚型的NTM菌株,为临床诊断和治疗提供参考。

4.技术优势:MALDI-TOFMS技术具有快速、高效、准确、经济的特点,可以在几分钟内完成对菌株的鉴定,有效缩短了传统培养方法所需的时间。

此外,该技术还可以对菌株进行分子分型,有助于了解疫情传播链及菌株
耐药性情况。

5.限制和挑战:MALDI-TOFMS技术在结核病和NTM病的诊断中存在一
定的限制和挑战,例如对于一些高度相似的菌株进行区分可能存在困难,
同时对于未知菌株的鉴定可能不够准确。

此外,建立完善的蛋白质数据库也是技术推广和应用的重要挑战。

综上所述,核酸基质辅助激光解吸电离飞行时间质谱技术在结核病和NTM病的诊断中具有显著的优势和价值,可以快速准确地鉴定不同种类和亚型的致病菌株,为临床诊断和治疗提供重要依据。

然而,该技术仍面临一些限制和挑战,需要进一步加强研究和改进,以提高其应用的可靠性和准确性。

相关文档
最新文档