高中物理采取图像问题教学法的具体做法

合集下载

例谈高中物理电学实验题“图像法”问题的解决方法

例谈高中物理电学实验题“图像法”问题的解决方法

例谈高中物理电学实验题“图像法”问题的解决方法摘要:本文首先分析了图像法在学习物理概念、揭示物理规律、构建定物理模型以及解决物理问题等方面的作用。

然后从高中物理电学实验“点”、“斜率”以及“面积”等方面的实验案例为切入口,阐述了利用图解法解物理题的关键所在,并通过这些实例具体分析,在解决问题的过程中应该把握哪些关键点,才能更好的找到突破口从而提高解题速度和正确率。

关键词:高中物理;电学实验;图像法引言:图像法顾名思义就是利用图像表现物体的运动规律、过程从而有助于解决物理问题的一种方法。

这也是物理实验课程最常用的方法。

其特点是能够非常直观形象的表达物理规律并且减少由于各种误差所造成的影响。

通过图像法,我们可以从图中找出一些关键的物理量,这些物理量可以也不用测量或者是不能够被测量但通过图像可直接得到。

学生对于图像法的使用效果能够在一定程度上体现学生学习的综合能力,考察学生是否能够将物理问题用图形结合的方式统一起来。

该方法对于高中物理电学实验的学习至关重要,因此本文首先探讨图像法对于高中学生物理学习的作用、再结合“点”、“斜率”以及“面积”等方面的物理电学实验详细阐述图像法解决问题的关键点。

一、图像法的作用(一)学习概念物理课本中的各种概念是经过不断的观察、摸索以及实验所得出的。

整个过程需要以大量直观的形象作为直接的参考对象。

而物理图像本身就具有直观、形象的特性,这在很大程度上满足了高中生思维的发展特点。

因此合理的运用图像法可以增强学生学习物理概念的效果。

(二)揭示物理规律探究物理规律是高中的重点和难点,但同时又是考试的重点所在。

而在对物理规律的探讨中通常是基于理想的实验环境条件,此时就应该借助图像法进行分析和表达,将复杂的物理过程进行简化和形象化才能更好的促进学生对于物理规律的理解[1]。

(三)构建物理模型在学习物理课程时,通常我们要采用文字和符号的形式去表达各种物理量,因此当学生分析物理问题时,也需要从脑中提取文字和符号,通过画示意图以及受理分析等图像进行逻辑的推理和判断,最后构建物理模型进行解题。

高考物理图像法解题技巧总结大全

高考物理图像法解题技巧总结大全

高考物理图像法解题技巧总结大全高考物理图像法解题技巧高考物理必背知识点高考物理考试注意事项高考物理图像法解题技巧一、方法简介图像法将物理量间的代数关系转变为几何关系,运用图像直观、形像、简明的特点,来分析解决物理问题,由此达到化难为易、化繁为简的目的.高中物理学习中涉及大量的图像问题,运用图像解题是一种重要的解题方法.在运用图像解题的过程中,如果能分析有关图像所表达的物理意义,抓住图像的斜率、截距、交点、面积、临界点等几个要点,常常就可以方便、简明、快捷地解题.二、典型应用1.把握图像斜率的物理意义在v-t图像中斜率表示物体运动的加速度,在s-t图像中斜率表示物体运动的速度,在U-I图像中斜率表示电学元件的电阻,不同的物理图像斜率的物理意义不同.2.抓住截距的隐含条件图像中图线与纵、横轴的截距是另一个值得关注的地方,常常是题目中的隐含条件.例1、在测电池的电动势和内电阻的实验中,根据得出的一组数据作出U-I图像,如图所示,由图像得出电池的电动势E=______ V,内电阻r=_______ Ω.【解析】电源的U-I图像是经常碰到的,由图线与纵轴的截距容易得出电动势E=1.5 V,图线与横轴的截距0.6 A是路端电压为0.80伏特时的电流,(学生在这里常犯的错误是把图线与横轴的截距0.6 A当作短路电流,而得出r=E/I短=2.5Ω 的错误结论.)故电源的内阻为:r=△U/△I=1.2Ω3.挖掘交点的潜在含意一般物理图像的交点都有潜在的物理含意,解题中往往又是一个重要的条件,需要我们多加关注.如:两个物体的位移图像的交点表示两个物体“相遇”.例2、A、B两汽车站相距60 km,从A站每隔10 min向B站开出一辆汽车,行驶速度为60 km/h.(1)如果在A站第一辆汽车开出时,B站也有一辆汽车以同样大小的速度开往A站,问B站汽车在行驶途中能遇到几辆从A 站开出的汽车?(2)如果B站汽车与A站另一辆汽车同时开出,要使B站汽车在途中遇到从A站开出的车数最多,那么B站汽车至少应在A 站第一辆车开出多长时间后出发(即应与A站第几辆车同时开出)?最多在途中能遇到几辆车?(3)如果B站汽车与A站汽车不同时开出,那么B站汽车在行驶途中又最多能遇到几辆车?【解析】依题意在同一坐标系中作出分别从A、B站由不同时刻开出的汽车做匀速运动的s一t图像,如图所示.从图中可一目了然地看出:(1)当B站汽车与A站第一辆汽车同时相向开出时,B站汽车的s一t图线CD与A站汽车的s-t图线有6个交点(不包括在t轴上的交点),这表明B站汽车在途中(不包括在站上)能遇到6辆从A站开出的汽车.(2)要使B站汽车在途中遇到的车最多,它至少应在A站第一辆车开出50 min后出发,即应与A站第6辆车同时开出此时对应B站汽车的s—t图线MN与A站汽车的s一t图线共有11个交点(不包括t轴上的交点),所以B站汽车在途中(不包括在站上)最多能遇到1l辆从A站开出的车.(3)如果B站汽车与A站汽车不同时开出,则B站汽车的s-t 图线(如图中的直线PQ)与A站汽车的s-t图线最多可有12个交点,所以B站汽车在途中最多能遇到12辆车.4.明确面积的物理意义利用图像的面积所代表的物理意义解题,往往带有一定的综合性,常和斜率的物理意义结合起来,其中v一t图像中图线下的面积代表质点运动的位移是最基本也是运用得最多的.例4、在光滑的水平面上有一静止的物体,现以水平恒力甲推这一物体,作用一段时间后,换成相反方向的水平恒力乙推这一物体.当恒力乙作用时间与恒力甲作用时间相同时,物体恰好回到原处,此时物体的动能为32 J.则在整个过程中,恒力甲做功等于多少?恒力乙做功等于多少?【解析】这是一道较好的力学综合题,涉及运动、力、功能关系的问题.粗看物理情景并不复杂,但题意直接给的条件不多,只能深挖题中隐含的条件.下图表达出了整个物理过程,可以从牛顿运动定律、运动学、图像等多个角度解出,应用图像方法,简单、直观.作出速度一时间图像(如图a所示),位移为速度图线与时间轴所夹的面积,依题意,总位移为零,即△0AE的面积与△EBC 面积相等,由几何知识可知△ADC的面积与△ADB面积相等,故△0AB的面积与△DCB面积相等(如图b所示).即:(v1×2t0)= v2t0解得:v2=2v1由题意知, mv22=32J,故 mv12=8J,根据动能定理有W1= mv12=8J, W2= m(v22-v12)=24J5.寻找图中的临界条件物理问题常涉及到许多临界状态,其临界条件常反映在图中,寻找图中的临界条件,可以使物理情景变得清晰.例5、从地面上以初速度2v0竖直上抛一物体A,相隔△t时间后又以初速度v0从地面上竖直上抛另一物体B,要使A、B 能在空中相遇,则△t应满足什么条件?【解析】在同一坐标系中作两物体做竖直上抛运动的s-t图像,如图.要A、B在空中相遇,必须使两者相对于抛出点的位移相等,即要求A、B图线必须相交,据此可从图中很快看出:物体B最早抛出时的临界情形是物体B落地时恰好与A相遇;物体B最迟抛出时的临界情形是物体B抛出时恰好与A相遇.故要使A、B能在空中相遇,△t应满足的条件为:2v0/g<△t<4v0/g通过以上讨论可以看到,图像的内涵丰富,综合性比较强,而表达却非常简明,是物理学习中数、形、意的完美统一,体现着对物理问题的深刻理解.运用图像解题不仅仅是一种解题方法,也是一个感悟物理的简洁美的过程.6.把握图像的物理意义例6、如图所示,一宽40 cm的匀强磁场区域,磁场方向垂直纸面向里.一边长为20 cm的正方形导线框位于纸面内,以垂直于磁场边界的恒定速度v=20 cm/s通过磁场区域,在运动过程中,线框有一边始终与磁场区域的边界平行.取它刚进入磁场的时刻t=0,在下列图线中,正确反映感应电流随时问变化规律的是【解析】可将切割磁感应线的导体等效为电源按闭合电路来考虑,也可以直接用法拉第电磁感应定律按闭合电路来考虑.当导线框部分进入磁场时,有恒定的感应电流,当整体全部进入磁场时,无感应电流,当导线框部分离开磁场时,又能产生相反方向的感应电流.所以应选C>>>高考物理必背知识点1、大的物体不一定不能看成质点,小的物体不一定能看成质点。

解决高中物理图像问题教案

解决高中物理图像问题教案

解决高中物理图像问题教案
教学目标:
1.学生能够理解光学成像的基本原理。

2.学生能够运用物理知识解决各种图像问题。

3.学生能够掌握解题方法,熟练解决物理图像问题。

教学重点:
1.光学成像的基本原理。

2.如何解决各种图像问题。

教学难点:
如何运用物理知识结合图像问题进行解答。

教学准备:
1.投影仪和幻灯片。

2.教师准备相关的图像问题练习题。

3.学生准备好笔记本和铅笔。

教学过程:
一、导入(5分钟)
教师通过投影仪展示一张物体的图像,并提出问题:根据图像,物体的实际位置在哪里?让学生思考并发表看法。

二、讲解(15分钟)
1.讲解光学成像的基本原理,包括物体在不同位置时的成像方式。

2.介绍如何根据成像原理解决各种图像问题,如物体的位置、像的大小等。

三、示范(10分钟)
教师通过几个实例,演示如何运用物理知识解决图像问题,引导学生掌握解题方法。

四、练习(15分钟)
教师布置几道图像问题练习题,让学生自行解答,并相互讨论,纠正错误。

五、总结(5分钟)
教师总结本节课的重点内容,并强调解决图像问题的方法和技巧。

六、作业
布置相关的图像问题作业,要求学生独立完成并认真复习本节课内容。

教学反思:
通过本节课的教学,学生能够了解光学成像原理,掌握解决图像问题的方法。

但需要留意学生在应用物理知识解决问题时的思维能力和操作能力,需要在日常教学中加强训练。

高中物理图像解题技术教案

高中物理图像解题技术教案

高中物理图像解题技术教案教学目标:帮助学生掌握高中物理图像解题技术,提高解题能力和思维逻辑性。

教学重点:掌握图像解题的基本方法和步骤。

教学难点:灵活运用图像解题技术解决实际问题。

教学准备:教材、教具、练习题、黑板、彩色笔等。

教学过程:一、引入问题(5分钟)1. 引导学生思考:在物理学习过程中,我们经常会遇到一些图像解题的问题,你们是如何解决这些问题的呢?2. 通过一个简单的例子引入图像解题技术的重要性,激发学生的学习兴趣。

二、学习方法(10分钟)1.简单介绍图像解题的基本方法和步骤:明确问题、分析问题、建立图像、解对应问题、验证答案。

2.通过案例分析和实例演练,让学生了解图像解题的具体操作步骤。

三、实例演练(15分钟)1.教师给出一道图像解题的练习题,要求学生按照步骤解题。

2.让学生通过小组合作讨论,对练习题进行解答。

3.鼓励学生展示解题过程,引导他们分析思路和方法。

四、巩固练习(15分钟)1.让学生在课堂上完成几道图像解题的练习题,检验他们的理解和掌握情况。

2.教师及时对学生的解答进行点评和指导,帮助他们纠正错误,完善解题方法。

五、课堂小结(5分钟)1.总结本节课的学习内容,强调图像解题的重要性和方法。

2.激励学生勤加练习,提高图像解题技术的水平。

六、作业布置(5分钟)1.布置相关的图像解题练习题,要求学生独立完成。

2.要求学生做好笔记,及时复习和巩固所学知识。

教学反思:通过本节课的教学,学生对图像解题技术有了更深入的了解和掌握,解决问题的能力也得到了提高。

同时,学生在实践中更加明白物理学习的重要性和实用性,激励他们积极参与学习,努力提高自身水平。

高中物理利用图像解决问题方法

高中物理利用图像解决问题方法

专题二图像方法在物理学中的应用不论是检验理论正确与否,还是研究事物发展规律,或是探索事物的本质特征,都必须找到一种适当的方式或方法,对所研究问题的结果做出明确的回答.物理学的研究同样如此.在物理学的研究中,除去用数学表达式表达物理规律这个基本方法(解析法)外,我们还常常使用图像描述物理状态、物理过程以及物理量之间的关系,在实验中也常常将得到的数据画成图像以帮助我们去探索未知的物理现象及其规律.用图像表示物理状态和物理规律,往往比用解析法要形象直观;对有些问题的分析和解决,图像方法比用其他数学方法要简便直接;在探索新的物理规律时,借助图像进行分析也是一种重要手段.总之,图像方法在物理学中是一种常用的研究、处理问题的方法.下面通过对具体问题的分析说明图像方法如何用在物理学中.一、通过图像理解物理图景中学物理中的图像一般是在二维直角坐标系中画出的,所以从图像中直接得到的是两个物理量之间的关系的信息.在图像中,一个点表示一个物理状态;从一个状态过渡到另一个状态,在图像中画出的点连成了一条曲线,这条曲线反映的是一个物理过程;从表示物理过程的曲线显示出的函数关系,我们就可以确定物理过程遵循的规律.我们解读物理图像的一般方法是:首先,应该分别看横、纵坐标各代表什么物理量,它们的单位是什么.这样,图线上的每个点的坐标表示的物理状态便可确定了,物理图像描述的是什么过程就明确了.然后看图线属于那种函数曲线.如果是某个物理量与时间关系的函数曲线(如速度-时间图像、磁通量—时间图像等),便可确定该物理量随时间变化的过程所遵循的规律.如果是关于两个物理参量的函数曲线(如导体的伏—安特性曲线、气体的压强—体积图像等),则说明的是这两个参量之间相互依存的规律.整个高中教材中有很多不同类型的图像,按图形可分为以下几类:⑴直线型:如匀速直线运动位移与时间关系s-t图像,匀变速直线运动速度与时间关系v-t图像;恒定电路中标准电阻的电压与电流关系U-I 图像等⑵正弦曲线型:如振动的s-t图像;波动的y-x图像,交变电流的e-t图像等⑶其他线型:机械在额定功率下,牵引力随速度变化的图像;共振曲线A-f图线;电磁感应中的有关图像等.通过图像分析物理规律,还要研究图线的斜率、图线包围的面积、图线和横、纵坐标交点的坐标(截距)、起点、终点、拐点、渐近线等几何要素的物理意义,从而可以对图像反映的物理状态、物理过程和物理图景有更深入的理解.【例1】从同一地点开始,甲乙两物体同时沿同一方向作直线运动的图像如右上图所示,试问:⑴在t=3s时刻,两物体的速度各是多大?⑵在前6s内,两物体的运动情况如何?解析图像的横坐标轴表示时间t,单位为s;纵坐标轴表示速度v,单位为m/s.这是速度—时间图像.⑴由图像可知,在 t=3s时刻甲物体的速度v甲=2m/s,乙物体的速度v乙=2m/s.⑵在前6s内,甲物体一直做速度为的v甲=2m/s的匀速直线运动.乙物体做初速度为零、加速度(用右下图中的直线OD的斜率表示)a =2020v v t t --=2030--m/s 2≈0.67m/s 2的匀加速直线运动. 因为v -t图线和时间轴t之间包围的面积表示位移,在第3s 末,图线甲和图线乙相交、所围面积差值最大(等于△OAB 的面积),表示两物体速度相等时物体乙落后于物体甲的距离最大.在第6s 末,图中△BDE 和△OAB 面积相等,使得代表物体乙位移的△ODF 的面积和代表物体甲位移的矩形OAEF 面积相等,说明甲、乙此刻完成了相同的位移,物体乙追上了物体甲.【例2】家用电热灭蚊器中电热部分的主要元件是 PCT 元件.PCT 元件是由钛酸钡等半导体材料制成的电阻器,其电阻率ρ与温度t 的关系如图所示.由于这种特性,因此PCT 元件具有发热、控温双重功能.请分析元件消耗电功率的变化规律以及何时温度能够达到稳定? 解析 根据图像,开始时,PCT 元件温度较低,通电后,元件产生的热量比散发的热量多,温度t 升高,电阻率ρ下降,电流增大,元件消耗的功率随之增加,产生的热量更多,温度t 继续上升,元件的电阻率ρ继续下降,电流更强,功率再增,等温度升到t 1时,元件的电阻率ρ不再下降,温度t 再升高,其电阻率ρ反而增大,使通过元件的电流减小,消耗的功率也减少,发热量随之减少.此时,温度越高,电阻率ρ增加的越快,电流减小得越多,发热量也减少得越多,直到发热量与散热量相等,电阻率ρ不再变化,元件的温度便稳定了.总之,电热元件消耗的电功率先增加后减少,稳定温度t是介于t1和t2之间某一值.【例3】如图所示,一宽40cm 的匀强磁场区域,磁场方向垂直纸面向里.一边长为l=20cm 的正方形导线框abcd 位于纸面内,以垂直于磁场边界的恒定速度v=20cm/s 通过磁场区域,在运动过程中,线框有一边始终与磁场区域的边界平行.取它刚进入磁场的时刻t =0,试画出穿过导线框的磁通量Φ随时间t变化的曲线、导线框中感应电流i 随时间t变化的曲线以及垂直作用在ab 边的、牵引导线框通过磁场区域的外力F随时间t变化的曲线.解析 设导线框以恒定速度v 进入磁场区域后,经过时间t后,它的ab 边到磁场区域的左边界的距离为x ,则x =vt .那么,穿过导线框的磁通量Φ1=BS =Blx =Blvt ,与时间t 成正比,当导线框完全进入磁场区域,穿过导线框的磁通量达到最大值Φ2=Bl 2,此过程经历时间t 1=2020l v =s=1s.在整个导线框通过磁场区域的t 2=1s 时间里,穿过导线框的磁通量保持为Φ2=Bl 2.然后ab 边离开磁场区域,穿过导线框的磁通量随时间减小:Φ3=Bl2-Blvt ,经历时间t3=1s.根据以上分析画出的穿过导线框的磁通量Φ随时间t变化的s12曲线如图甲所示:当正方形导线框刚进入匀强磁场区域时,其ab 边开始切割磁感线,产生感应电动势E =vBl ,方向由指b 向a .由于导线框边切割磁感线的速度v 不变,所以线框中感应电流大小为vBlR也恒定不变,感应电流沿逆时针方向.经过时间t 1=1s 后,线框的cd 边进入磁场区域,穿过导线框的磁通量保持不变,在cd 边穿过磁场区域t 2=1s 的时间里,线框中没有感应电流,即i =0.接着ab 边穿出磁场,只有cd 边切割磁感线,线框中又产生大小为vBlR的感应电流,但方向相反,为顺时针方向,经历时间t 3=1s.最后cd 边穿出磁场区域.线框中不再产生感应电流.根据以上分析,并规定沿逆时针的电流方向为正方向,则可得出导线框中感应电流i 随时间t 变化的曲线如图乙所示:当正方形导线框刚进入匀强磁场区域时,其ab 边开始切割磁感线,产生感应电流大小为I=vBlR恒定不变,沿逆时针方向,根据左手定则,他受到的安培力大小为F A =BlI 、方向向左,恒定不变,因此,由二力平衡条件,对ab 边所施外力大小也为F =BlI 、方向向右.经过1s 后,导线框完全进入磁场区域,感应电流消失,导线框不受安培力作用,因此不需外力:F=0也能继续做匀速直线运动.再过1s 时间,只有cd 边切割磁感线,产生的感应电流大小仍为I=vBlR恒定不变,沿顺时针方向,根据左手定则,它受到的安培力大小为F A =BlI ,方向仍旧向左,恒定不变,因此,由二力平衡条件,对所施外力大小也为F =BlI ,方向还是向右.规定向左为力F 的正方向,由此画出的垂直作用在ab 边的、牵引导线框通过磁场区域的外力F 随时间t 变化的曲线如图丙所示.二、利用图像解决物理问题探索物理规律利用我们掌握的物理知识和描绘物理图像的方法,在解决某些物理问题时往往比用“解析法”简单、快捷、直观,常常可以达到事半功倍的效果.【例4】一物体放在光滑水平面上,初速度为零.先对物体施加一向东的水平恒力F,历时1s ;随即把此力方向改为向西,大小不变,历时1s ;接着又把此力改为向东,大小不变,历时1s.如此反复,只改变力的方向,不改变力的大小,共历时1min ,在此1min 内物体的运动情况是:A.物体时而向东运动,时而向西运动,在1min 末静止于初始位置以东.B.物体时而向东运动,时而向西运动,在1min 末静止于初始位置.C.物体时而向东运动,时而向西运动,在1min 末继续向东运动.555 甲 丙标准文案C.物体一直向东运动,从不向西运动,在1min 末静止于初始位置以东. 解析 规定向东为正方向.由于物体受力大小不变、方向改变,因此加速度也是大小不变、方向改变,所以能够画出如图所示的v -t图像,据此立即可确定选项D是正确的.探索物理规律,更是图像法的重要功能.物理学中的弗兰克-赫兹实验就是著名的一例.在20世纪初,从一些实验中知道:如果给原子足够的能量,就可以使电子从原子的束缚中脱离出来而使原子电离,这个能量称之为“电离能”.当原子和入射的电子碰撞获得能量而电离时,就可以通过测量使电子加速的电压进而测定原子的电离能.1914年,在德国柏林大学工作的科学家弗兰克(1882-1964)和赫兹(1887-1975)为测量电离能设计了如图所示的实验:在玻璃真空管内充入少量水银蒸气,由灯丝发射出来的热电子被灯丝和栅极之间的电压U加速,然后又被加在集电极和栅极之间的反向电压减速.电压U可以调节和测量.由于有反向电压,电子在任何时候都不会到达集电极.设想在栅极和集电极之间的电子和汞原子碰撞,就会使一些汞原子电离成为汞离子,电场便将汞离子向集电极方向加速,于是在电流表G上可测出电流来.用这个装置做实验,他们可得到如图所示的曲线.图线显示,随着栅极和灯丝之间的加速电压U由零开始增加,集电极的电流逐渐上升.当U=4.9V 时,集电极电流突然下降;继续增大加速电压U ,集电极电流随之回升,当U =9.8V 时,集电极电流第二次突然下降;再继续增大加速电压U ,集电极电流又随之回升,当U =14.7V 时,集电极电流第三次突然下降.图线表现出一个明显的周期性:加速电压在增大的过程中,每隔4.9V 集电极电流就下降一次.也就是说,在加速电压和集电极电流之间,存在着一种因果关系.分析这个因果关系,他们做出的判断是:用电子轰击汞原子并没有使汞原子电离,而是使电子损失一份特定的能量,即电子在和汞原子相碰时,电子只能损失4.9eV 的能量,换句话说,汞原子在改变能量状态时,只能吸收4.9eV 的能量.根据这个分析,弗兰克和赫兹又重新设计了实验,测定汞蒸气受到电子轰击时辐射的谱线波长.其结果是:当加速电压大于4.9V 时,汞蒸气才产生辐射,而且只辐射能量为4.84eV 、波长为2536×10-10m的谱线,相当精确地证实了他们的判断.这个实验结果揭示了在原子尺度的范围内,能量的改变是以某种最小单元一份一份地改变的.也就是说,原子只能处于一系列不连续的能量状态中,它只能从一个状态变到另一个状态,变化的能量一定是某一个确定值.这个实验成功地证实了1913年丹麦科学家玻尔提出的原子理论,并因此获得了1925年诺贝尔物理学奖./s标准文案三、高考对图像法的考查图像在中学物理中有着广泛应用,所以有关以图像及其运用为背景的命题,成为历届高考考查的热点,它要求考生能做到三会:⑴会识图:认识图像,理解图像的物理意义;⑵会做图:依据物理现象、物理过程、物理规律作出图像,且能对图像变形或转换;⑶会用图:能用图像分析实验,用图像描述复杂的物理过程,用图像法来解决物理问题.通常我们遇到的图像问题可以分为几大类: ⑴物理图像的选择⑵物理图像的描绘(可称之为“作图题”) ⑶利用物理图像转换问题机制⑷明确并理解图像的各数学特征的物理意义 ⑸利用图像法求解物理问题(可称之为“用图题”) ⑹运用物理图像处理实验数据,分析实验误差【例5】太原直飞昆明的航班由波音737飞机执行.右面的上、下两图分别给出了某次飞行全过程中飞机的竖直分速度和水平分速度的速度图象.根据图象求:⑴飞机在途中匀速飞行时的巡航高度(离地面的高度)是多高?⑵从太原到昆明的水平航程为多远?解题思路 飞机只有在起飞和降落期间才有竖直方向的分速度.速度曲线和横轴间的面积大小可表示位移大小答案 ⑴8400m ⑵1584km思维诊断 本题易出现的错误有⑴不熟悉速度图像,总以为速度图像就是物体的运动轨迹,把下图当成飞机的运动轨迹,220当成飞行高度,130当成水平航程⑵不注意单位的统一,图中的横轴单位是min ,应转换成s.⑶部分学生不会求曲线下的面积.应该利用梯形面积公式:(上底+下底)×高÷2.【例6】(理综2002—18)质点所受的力F 随时间变化的规律如图所示,力的方向始终在一条直线上, 已知t =0时质点的速度为零.在图示的t 1 、t 2、、t 3和t 4 各时刻中,那一时刻质点的动能最大?A.t 1 B .t 2 C.t 3 D.t 4命题立意 考查学生对图线(函数图线)的认识能力和依据图线进行分析、推理和判断的能力.解题思路 首先可看出,试题给出了力随时间的变化图线,就不难想到它就是加速度随时间的变化图线;已知初速度为零,所以凡是加速度为正时,速度增大,从而动能一定不断增大;当加速度为负时,速度减小从而动能一定不断减小.由图可看出力是周期性的,而且正、负对称,由此可做出正确的判断. 答案是B标准文案【例7】(河南、广东2001-20) 如图所示,一对平行光滑轨道放置的水平面上,两轨道间距l=0.20m,电阻R =1.0Ω.有一导体杆静止地放在轨道上,与两轨道垂直,杆及轨道的电阻均可不计,整个装置处于磁感强度B=0.50T的匀强磁场中,磁场方向垂直轨道面向下.现用一外力沿轨道方向拉杆,使之做匀加速运动,测得外力与时间的关系如图所示.求杆的质量和加速度a .命题立意 要求学生把理论推导与实验结果相结合,找出所要求的有关物理量.对一个具体的物理问题,一方面进行理论上的推导;另一方面又进行实验测量(得出某些数据或曲线),然后把两者结合起来,做出某些判断.这是研究工作中常经历的过程,也一种常用的方法.本题是这种研究方法的体现.解题思路 导体杆从静止起,经时间t 后的速度v=at ,这时导体杆受的安培力为22/B l at R .由牛顿第二定律得22/F B l at R ma -=.从图像中取两个方便的点:10t =s时11F =N 和t 2=20s 时F 2=3N ,代入以上方程即可解得质量m 和加速度a . 答案10a =m/s 2m =0.1kg思维诊断 考生不会利用题目所给的F t -图像,不会充分利用图像所给的信息.本题中不要想推导出F t -间的关系式.【例8】(2003-7)一弹簧振子沿x 轴振动,振幅为4cm.振子的平衡位置位于x 轴上的O 点.图1中的a 、b 、c 、d 为四个不同的振动状态:黑点表示振子的位置,黑点上的箭头表示运动的方向.图2给出的①、②、③、④四条振动图线可用于表示振动图像A.若规定状态a 时t =0B.若规定状态b 时t =0则图像为② C.若规定状态c 时t =0则图像为③ D.若规定状态d 时t =0则图像为④命题立意 考查学生是否理解振动图线的物理意义解题思路 由图1看出每个点离开平衡位置的距离,以及它的运动方向,再根据振动图线表示的物理意义进行判断.答案 AD思维诊断 题干说明,图2中的四条振动图线①、②、③、④都可以表示所考查的弹簧振子的振动图像,但这四条图线并不完全相同,它们的差别仅是t =0时刻的振动状态不同.简谐振动的振动图线表示振子振动的位移(指离开平衡位置的位移)随时间变化的图像(独舞的录像),由于时间的零点即t =0时刻可取在振子的不同状态,对应的振动图线就不完全相同.图1 图2/s F【例9】(江苏2003-19)图1所示为一根竖直悬挂的不可伸长的轻绳,下端栓一小物块A ,上端固定在C 点且与一能测量绳的拉力的测力传感器相连.已知有一质量为m 0的子弹B 沿水平方向以速度v 0射入A 内(未穿透),接着两者一起绕C 点在竖直面内做圆周运动.在各种阻力都可忽略的条件下测力传感器测得绳的拉力F 随时间t 的变化关系如图2所示.已知子弹射入的时间极短,且图2中t =0为A 、B 开始以相同速度运动的时刻.根据力学规律和题中(包括图)提供的信息,对反映悬挂系统本身性质的物理量(例如A 的质量)及A 、B 一起运动过程中的守恒量,你能求得哪些定量的结果?命题立意 利用开放性设问方式,考查学生探索性解决新问题的能力.同时,学生要能够利用试题中文字叙述和图表所提供的信息来分析和解决问题.解题思路 首先要能读懂试题的意思,能够弄清试题所要求的问题是什么.再根据试题图线中的信息,以及小球作圆周运动过程中的最高点和最低点应用牛顿定律和机械能守恒定律建立方程,即可求得最后结果.答案 由图2可直接看出,A 、B 一起做周期性运动,运动周期为T =2t 0.用m 、m 0分别表示A 、B 的质量,l 表示绳长,v 1、v 2分别表示它们在圆周最低、最高点的速度,F 1、F 2分别表示运动到最低、最高点时绳的拉力大小,根据动量守恒有mv 0=(m+m 0)v 1,根据牛顿定律有:F 1-(m+m 0)g =(m+m 0)21v l , F 2+(m+m 0)g =(m+m 0)22v l,由机械能守恒有:2l (m+m 0)g =12(m+m 0)v 12-12(m+m 0)v 22,由图2知,F 2=0,F 1=F m ,由以上各式解得,反映系统性质的物理量是06m g F m m -=,g F v m l m22020536=,系统总机械能是E =12(m+m 0)v 12,得E =3m 02v 02g /F m自测题1.两个物体a 、b 同时开始沿同一条直线运动。

高中物理问题运用图像进行教学实例分析

高中物理问题运用图像进行教学实例分析

高中物理问题运用图像进行教学实例分析为了充分展示知识发生发展的过程,帮助学生建立准确的物理模型,需要充分利用图形图片、电视录像、多媒体课件等手段再现知识发生发展的变化过程,用图文并茂的方式向学生提供信息,降低学生学习的难度,并将物理学研究问题的方法和物理思想寓于情景的建立和分析过程中,促进学生开展分析问题的思维活动,“悟”出其中的道理和规律。

物理问题解决的过程,从根本上讲是一种认识过程,是学生在与物理环境相互作用中认识物理世界,形成、发展和优化自己物理认识结构的过程。

因此,指导学生学习,必须指导学生进行学习准备。

所谓学习准备,是指学生在新的学习时,其原有的知识水平、心理发展水平对新知识的适应性。

学习准备的充分与否直接影响着新的学习。

在教学中潜移默化中使学生掌握分析物理过程、建立正确物理情景和模型的方法,进而准确地解决物理问题。

重视解决实际问题的思维程序训练和学生学习习惯的培养。

学生遇到问题时的困难,表现为思绪的混乱和缺乏思维的程序化。

因此,在教学中要重视思维程序的建立和训练。

中学物理课堂问题解决教学模式(如图1)是从教学目标的制定、物理问题的选择、学习情境创设和教师引导等方面出发,对学生进行物理问题教学。

为学生创设能够充分认识科学的本质、图1摆脱束缚、解放思想、敢于质疑、勇于创新的学习环境,从而使学生的批判性思维能力、逻辑思维能力以及创造性地解决问题的能力得到充分的发展。

从实际问题中要求提取与问题有关的文字信息,并用相应的图形或符号表示,使复杂的变化过程代码化。

提出问题确定物理对象,建立物理情景寻找变化规律,找出各物理量间联系设计解决思路,建立模型顺“藤”摸“瓜”,解决问题验证结果,反思问题运用示意图帮助理解题意,边审题、边画图,并把条件和问题用字母符号注在图上,使问题能在脑中形成完整的表象,不至于因忘记条件或问题而中断解题过程的思维去重新审题,同时,示意图能使解答问题所必须的条件同时呈现在视野内,图像成了思维的载体,视图凝思实际上是视觉思维参与了解题的过程。

图像法在高中物理教学中的应用案例及教学建议

图像法在高中物理教学中的应用案例及教学建议

图像法在高中物理教学中的应用案例及教学建议摘要:物理图像可以直观地显示物理规律与物理量之间的关系,是分析物理问题的常用工具。

相关科目经常出现在高分高考中。

但是,一些学生的基础知识薄弱,他们对图像的理解不够深入,不能用图像方法解决问题,导致问题解决过程复杂,计算繁琐,误差率高。

因此,教师应注意在教学实践中运用图像方法,指导学生分析相关图像,加深学生对物理图像的理解,使他们能够灵活运用这些图像解决问题。

关键词:图像法;高中物理;应用策略引言随着新技术的不断发展,我们生活中出现了越来越多的视觉材料,这也使学生能够借助这些图片直观生动地得出一些科学合理的结果。

图像处理技术的发展是当今时代发展的重要环节。

大部分科学实验都是利用精密仪器进行的,这些数据是由专门的软件以图表的形式表示的,有助于研究人员更容易更快地从他们那里获得科学物理信息。

因此物理图像在物理教学中的应用变得越来越重要.一、高中物理教学中图像法的应用现状当前,大部分高中物理教师都能认识到图像方法的优点和重要性,并将图像方法也纳入课堂教学中。

但是,大多数教师缺乏系统梳理和解释图像方法的应用,大多数人认为学生对数学函数图像有一定的基础,因此缺乏对图像方法具体步骤的详细介绍。

虽然图像法涉及到正常教学,但教师缺乏指导和鼓励学生运用图像法解决问题。

在日常教学过程中,教师注重指导和培训学生使用公式法解决问题,图像法只是一种补充,有时甚至担心学生在使用容易出错的图像法时不会充分考虑。

教师倾向于鼓励学生使用常规方法解决问题。

笔者认为,高中物理教师应加强影像学教学,使学生能够学习和学习这种高效的方法。

当学生学会使用图片来解决问题和可视化抽象问题时,反过来又促进他们的逻辑思维能力。

二、现实教学中应用图像的意义高中物理知识非常丰富。

初中培养影像思维的学生进入高中后,应该将其思维模式转变为抽象思维,最重要的是影像方法的应用。

在枯燥的单词、僵化的公式和直观的图片之间,学生们更愿意接受后者。

高中物理图像问题教案

高中物理图像问题教案

高中物理图像问题教案
一、教学目标
1.了解图像问题的基本概念和原理。

2.掌握图像问题的解题方法和技巧。

3.培养学生观察和思考问题的能力。

二、教学内容
1.图像问题的基本原理和概念。

2.图像问题的解题方法和技巧。

3.实例分析和练习。

三、教学过程
1.导入
通过展示一张凹透镜成像示意图,引入图像问题的概念,让学生猜测物体在凹透镜的成像位置,引起学生的兴趣和好奇心。

2.讲解
介绍图像问题的基本原理和解题方法,包括物体成像规则、成像位置计算方法等内容,并通过实例讲解和分析来帮助学生理解和掌握。

3.练习
让学生通过练习来巩固和加深对图像问题的理解和应用能力,包括计算物体在凹透镜、凸透镜等成像位置的实际情况。

4.总结
对图像问题的基本原理和解题方法进行总结,并强调实际问题的应用和实践,让学生在课堂之外也能够运用所学知识解决实际问题。

四、作业布置
布置相关练习题目和问题,让学生在课后巩固和加深对图像问题的理解和掌握。

五、教学反思
通过对学生学习情况和表现的反馈,及时调整教学内容和方法,不断提高教学效果和学生学习成绩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理采取图像问题教学法的具体做法
物理科学具有鲜明的动态特点,而图像问题能够对物理的动态性进行更直观更明了的阐述,使物理教学不再只是枯燥的理论传授,可以激发学生的学习积极性,并且采取图像教学能够使学生的智力以及潜能得到充分的调动开发. 因此,在高中物理教学中需要采取图像问题教学方法,促使教学质量得到提升.
1 高中物理教学图像问题的相关概念
物理图像是指一种应用于物理教学中,用图像将物理现象及其规律描绘出来,从而使物理问题的相关原理得到展示的教学手段. 物理图像包含受力分析图、物质运动过程图、函数图象、模型图以及矢量合成与分解图等等许多种类. 这些图像主要的共同特点是可以将物理问题生动化、简单化以及形象化等,有利于学生更加直接地了解物理问题想要表达的内容,并且使问题的解决过程简单化.
2 在高中物理教学中架构图像的必要性
对于高中物理教学而言,图像法不仅是解题方法的一种,而且还是一种思维方式. 在教学中架构图像,重点在于"数形结合",这样能够提升学生的学习效果. 而其必要性主要表现在以下几个方面:
2. 1 有利于学生更好吸收课堂内容
在平时的教学过程中对物理概念或者规律等进行图像化处理,能够潜移默化地影响学生并使其树立图像意识. 而教师在架构图像时要注重将其与教学内容相连,并且要结合从易到难与逐步进行的观念,使其与学生的认知能力相符,从而帮助学生应用图像架构法更好地解决物理问题并对物理规律予以总结.
2. 2 能够利用图像特点开展形象化教学
图像法具有简洁、清晰、形象等特点,能够使函数关系更加明确,使物理问题的信息量展现得更加全面. 这样一来有利于教师开展形象化教学,从而帮助学生熟练掌握图像中所蕴含的物理知识点,例如截距、斜率等,同时还能够使学生拥有更加立体、清晰与灵活的思路. 应用图像架构来解决运动、变力做功方面的问题具有很好的效果.
2. 3 有利于激发学生学习兴趣
在高中物理教学中对图像予以架构能够极大程度地提升学生的学习兴趣,不仅能够培养学生的发散思维,还可以促使学生提升主动性,主动去挖掘、探索物理知识. 对于教师而言,架构图像时也要注重技巧,即将物理知识与简单线条充分结合,使物理知识能够清晰明了地体现出来.
2. 4 使教学活动带有启发性
在物理课堂中教师要用图像架构时要避免将与图像有关的知识全部灌输给学生,这种方法会导致学生对于学习产生厌烦感,磨灭积极性,同时学生也难以消化,带来学习上的压力.
因此,教师可以针对图像抛出一个问题,让学生自己去延伸拓展,在发掘探索的过程中学习知识,教师则予以适当引导,这样能够使教学活动带有启发性.
3 高中物理教学图像问题的构架与解决
在高中物理的教学过程中,通常会遇到许多单纯利用相关原理以及物理公式等手段无法有效解决的问题,这时就需要采取图像问题教学方法. 为了更明晰地描述图像问题的构架和解决过程,笔者在此举出一些应用实例来进行分析.
3. 1 高中物理中的运动学问题
(1) 例题:假设某物体在某个高度以静止状态开始,沿光滑路径AB 下滑到B
点或D 点,再由光滑路径ACD 下滑到B 点或者 D 点,假设B、D 两点高度相同,并且AB、ACD 两条路径的路程也相等,以此条件对两种路径下物体到达底端的用时关系进行对比.
(2) 图象问题构架与解决分析:例题中只包括重力做功,因此我们可通过机械能守恒定律得知,物体从例题中的两种路径滑至底部的速度应当是相同的. 所以,我们可以采取根据问题构架时间--- 速度的图象的手段来使问题得到快速解析.
首先根据题目内容绘出对应的图象,在图象中,将物体沿AB 做出的匀变速直线运动用直线表现出来,将物体沿ACD做的加速运动用曲线来表现,并且要将运动中逐渐减小加速的状态表现出来.
另外,在作图过程中要注意,图像需要满足题目中的相关要求. 本题中主要包括: 该物体的最终速度是同等的;AB 和ACD 同时间轴围出的范围面积也是相同的,我们可以通过实践--- 速度的图像特性得知,面积就是指位移的大小,因此两者位移是相等的.
3. 2 高中物理中的变力做功问题
(1) 例题: 如果某个带电粒子在如图 1 所示的匀强电场中做无初速的释放,其中t = 0,并且不计算重力,那么下列哪些答案是真的?
A. 粒子在匀强电场中的位移渐渐变大,但始终是处于无初速释放运动状态,并且一直沿着同个方向.
B. 粒子在匀强电场中反复进行来回运动,并且其运动的速度方向每间隔T/2
时间就会改变一次.
C. 粒子的速度与加速度的大小会随着时间的变化而进行周期性改变;但其速度的方向以及加速度的方向始终不发生变化,不会根据时间变化而更改.
D. 粒子在匀强电场中,其加速的方向会每间隔T /2 时间而改变一次,并且速度大小也会不停变动,而其速度的方向会始终保持不变.
(2) 图象问题构架与解决分析:经过对题目进行分析可以得知,带电粒子在匀强电场力的作用下展开运动. 还可以通过相关公式得出带电粒子的电场运动轨迹,公式主要包括F =Eq、牛顿第二定律 F = ma 以及运动学公式v = v0+ at 等等. 然后绘制相应的速度--- 时间图象,并分析粒子在电场的运动轨迹可以得知,带电粒子的速度大小随着时间变化而不停变动,而其速度方向则始终不变,一直沿着正方向运动;带电粒子的加速度大小不会随着时间变化而变化,一直保持不变,而其方向每隔T/2 时间段就改变一次. 速度---时间物理图象具有能够明显观察出带电粒子不断增大位移的特点,因为图中路线和时间轴所围出的面积也就是带电粒子运动的位移. 所以再通过与四个选项的比较,就能够顺利得出答案,即A、D 是正确的观点.
3. 3 高中物理中力学的复合问题
(1) 例题:假设有一架遥控飞机,飞机的动力系统能够提供的固定升力为 F = 28 N,飞机质量则为m = 2 kg. 飞机在地面上进行试飞时,从静止状态开始垂直上升,假设上升过程中受到的阻力为固定数值,g = 10 m/s.
①飞机进行首次试飞过程中,t1= 8 s 时抵达高度H =64 m,求飞机受到的阻力f 数值;
②飞机再次试飞,其遥控装置在飞机飞到t2= 6 s 时发生状况,导致飞机瞬间没有了升力,求飞机在此情况下所能到达的高度h 最大值;
③为保证飞机不坠至地面,求飞行器从下坠初始至升力恢复的时间t 最大值.
(2) 图象问题构架与解决分析:①按照题目要求如下图绘出v - t图象. 将飞机上升的位移数值用阴影和三角形表现出来,可得知位移大小为64 m,然后可得出加速度a1= 2 m / s²,最终得出阻力 f 为4 N.
②根据题意可知,飞机失去动力前匀加速上升的加速度大小为a1= 2 m / s²,失去动力之后匀减速上升的加速度大小则为a2= 12 m / s²,故可根据要求作出v - t 图象如图3. 在图中将飞行器能达到的最大高度h 用阴影和三角形表现出来,从而可得出高度h = 42 m.
③根据题意可知,飞机下落时先是匀加速下落,且其加速度大小为a3= 8 m / s²;之后飞机为匀减速下落,其加速度大小为a4= 6 m / s²,遂由此作出满足题目要求的v - t 图象如图4,将飞机下降的图象用三角形和阴影表现出来. 根据题目内容可知图中两个三角形的面积是相等的,并根据图中内容做出简化图象如图5,再利用三
角形面积的相关含义进行分析,从而得出
综上所述,在解决物理问题的过程中,如果采取图象手段,就能够通过图象的直观性和明确性等使问题得到更快速更有效的解决. 因此,高中物理教师应当注意在教学过程中培养学生在架构以及解决图象问题方面的能力,具体包括认识图象、建立图象问题的架构以及根据图象解决物理问题等等,从而提高学生的学习能力和理解能力,使得教学质量也随之得到提升.。

相关文档
最新文档