图解法求线性规划的最优解和最优值

合集下载

运筹学线性规划图解法

运筹学线性规划图解法

引理1.线性规划问题的可行解X为基本可行解的充分 必要条件是X的正分量所对应的系数列向量是线性独立的. 证明:
必要性:已知X为线性规划的基本可行解,要证X的 正分量所对应的系数列向量线性独立。
因为X为基本解,由定义,其非零分量所对应的系数 列向量线性独立;又因为X还是可行解,从而其非零分量 全为正。
•有唯一解
例1: max z=2x1+ 3x2 s.t. x1+2x2≤8 4x1≤16 x1,x2≥0
画图步骤: 1、约束区域的确定 2、目标函数等值线 3、平移目标函数等值线求最优值
x2
可行域
(4,2) z=14
目标函数 等值线
x1
•有无穷多解
例2 max z =2x1+4x2 s.t. x1+2x2≤8 4x2 ≤ 12 3x1 ≤12 x1, x2 ≥0
X(0)=Σ α iX(i) α i0,Σ α i=1 记X(1),X(2), …,X(k)中满足max CX(i)的顶点为X(m)。于是,
k
k
CX (0) Ci X (i) Ci X (m) CX (m)
i 1
i 1
由假设CX(0)为最优解,所以CX(0)=CX(m),即最优解可在顶点
充分性:已知可行解X的正分量所对应的系数列向量 线性独立,欲证X是线性规划的基本可行解。
若向量P1, P2,…, Pk线性独立,则必有k≤m;当k=m时, 它们恰构成一个基,从而X=(x1,x2,…,xk,0…0)为相 应的基可行解。K〈m时,则一定可以从其余的系数列向量 中取出m-k个与P1, P2,…, Pk构成最大的线性独立向量组, 其对应的解恰为X,所以根据定义它是基可行解。
§2 线性规划图解法

线性规划(图解法)

线性规划(图解法)

D
max Z
可行域
(7.6,2) , )
34.2 = 3X1+5.7X2
X1 + 1.9X2 = 3.8(≥) X1 - 1.9X2 = 3.8 (≤) L0: 0=3X1+5.7X2
oபைடு நூலகம்
x1
图解法
min Z=5X1+4X2 x2
X1 + 1.9X2 = 10.2 (≤)
Page 18
43=5X1+4X2 8=5X1+4X2 此点是唯一最优解 (0,2) , )
图解法
线性规划问题的求解方法 一般有 两种方法 图解法 单纯形法 两个变量、 两个变量、直角坐标 三个变量、 三个变量、立体坐标
Page 1
适用于任意变量、 适用于任意变量、但必需将 一般形式变成标准形式
下面我们分析一下简单的情况—— 下面我们分析一下简单的情况—— 只有两个决策 变量的线性规划问题, 变量的线性规划问题,这时可以通过图解的方法来 求解。图解法具有简单、直观、 求解。图解法具有简单、直观、便于初学者窥探线 性规划基本原理和几何意义等优点。 性规划基本原理和几何意义等优点。
• 有效与无效 紧与松)约束:与最优解相关的约束为有效 有效与无效(紧与松 约束 紧与松 约束: (紧)约束。 紧 约束 约束。 • 最优解:总是在可行域的边界上,一般由可行域的顶 最优解:总是在可行域的边界上, 点表示。 点表示。 • 可行域:由约束平面围起来的凸多边形区域,可行域 可行域:由约束平面围起来的凸多边形区域, 个可行解。 内的每一个点代表一 个可行解。
20
无可行解(即无最优解 无可行解 即无最优解) 即无最优解
10
O
10

2.2 线性规划的图解法

2.2 线性规划的图解法

2.2线性规划的图解法我们先用图解法来解含有两个决策变量的线性规划问题,并从中受到启发,再去解决一般的线性规划问题。

例3 求解线性规划max Z=0.7x1+0.9x2约束于⎪⎪⎩⎪⎪⎨⎧≥≤+≤≤0,1278212121x x x x x x 解:1.先在平面直角坐标系x1Ox2里画出上述线性规划的可行域R。

事实上在约束条件中,每个线性等式代表平面上一条直线,这直线将坐标平面分成两部分,于是每个线性不等式代表一个半平面。

本例中五个线性不等式代表的五个半平面的交,就是可行域R,它是一个凸多边形,这个凸多边形有五个顶点,它们分是O(0,0),A(0,7),B(5, 7),C(8,4),D(8,0),如图2-1。

图2-12.求解线性规划,就是要在上述凸多边形R中找一点12(,)x x ,使目标函数0.7x1+0.9x2取最大值。

对任意固定的常数C,直线0.7x1+0.9x2=C上的每点都有相同的目标函数值C,故该直线也称为“等值线”。

当C变化时,得出一族相互平行的等值线,这些等值线中有一部分与可行域相交。

我们要在凸多边形即可行域R中找这样的点,使它所在的等值线具有最大值C。

当C<0时,直线120.70.9x x C +=与R不相交;当C=0时,直线120.70.9x x C +=与R有唯一交点,即顶点(0,0);当C由0增大时,等值线平行向右上方移动,与R相交于一线段;当C增至一定程度时,等值线与可行域R只有唯一交点,即顶点(5,7),这时C=9 8;若C继续增大,等值线与R将不再有交点。

由此可见,顶点(5,7)是使R中目标函数达到最大值的点,于是线性规划有唯一解7,5*2*1==x x 这时Z*=max Z=9.8若将例3中求目标函数的最大值改为求最小值,即求min w=0.7x1+0.9x2约束条件不变。

这时,令直线族120.70.9x x C +=中的C不断减小,等值线将向左下方平行移动。

管理运筹学_第二章_线性规划的图解法

管理运筹学_第二章_线性规划的图解法

A
1×250=250千克.
原料B 0 1 250千克
约束条件中没使用的资源或能力称之为松弛量。
用Si表示松弛量,对最优解 x1=50,x2=250来说:
约束条件
松弛变量的值
设备台时数
s1=0
原料A
s2=50
原料B
s3=0
8
线性规划标准型
加了松弛变量后例1的数学模型可写成:
目标函数:max z=50x1+100x2+0s1+0s2+0s3,
约束条件: x1+x2+s1=300,
2x1+x2+s2=400,
x2+s3=250, x1,x2,s1,s2,s3≥0
如何把模型化为 标准型?
三个特征:
一、约束条件为等式;
二、约束条件右端常数项非负;
三、所有变量非负。
称为线性规划的标准形式。
9
线性规划问题解的情况:
1.若有最优解,一定能在可行域的顶点取得。
a21x1+a22x2+…+a2nxn=b2, ………………………… am1x1+am2x2+…+am nxn=bm. x1, x2,…,xn≥0.
其中ci为第i个决策变量xi在目标函数中的系数, aij为第i个约束条件中第j个决策变量xj的系数, bj(≥0)为第j个约束条件中的常数项。
16
灵敏度分析
C 100
1设备台时获利500/10=50
元。 x1
O 100 D300 X1+X2=300
X1+X2=310
你知道对偶价格吗?
21
对偶价格的概念

线性规划问题的图解法

线性规划问题的图解法
第二十四页,共51页。
单纯形法的计算(jìsuàn)步骤
单纯形法的思路(sīlù)
找出一个(yī ɡè)初始可行解
4x1
16
可行(kěxíng)域
单纯形法的进一步讨论(tǎolùn)-人工变量法
第四十三页,共51页。
单纯形法的计算(jìsuàn)步骤
是否最优 故人(gùrén)为添加两个单位向量,得到人工变量单纯形法数学模型:
量作为换出变量。
L
min
bi a ik
a ik
0
第二十九页,共51页。
单纯形法的计算(jìsuàn)步骤
③ 用换入变量(biànliàng)xk替换基变量(biànliàng)中的换出变量 (biànliàng),得到一个新的基。对应新的基可以找出一个新的基可 行解,并相应地可以画出一个新的单纯形表。
: X (1) K和X (2) K
X X (1) (1 ) X (2) (0 1)
则X为顶点(dǐngdiǎn).
(wèntí)
的 几
第四页,共51页。
凸组合(zǔhé):
意线 义性
规 划 问 题 的 几 何
设X(1) ,..., X (k)是n维向量空间中的k个点,
若存在1,..., k ,且0 i 1, i 1,2,..., k,
A
1 域2 3
D
| E|
45
4 x2 16 x1 + 2x2 8
|||| 6789
x1
第九页,共51页。
❖图解法
目标(mùbiāo)函数 Max Z = 2x1 + 3x2
x2 9—
8—
7—
6—
5—
4—

7.2 线性规划

7.2 线性规划

7.2.1 线性规划简介
1. 基本概念
未知数 x j 称为决策变量; 目标函数经常记为 z 或 w,称为目标变量; 目标函数的变量系数 c j 称为价值系数; 约束条件的变量系数 aij 称为工艺系数; 约束条件右端的常数 bi 称为资源限量; 约束条件前的记号 “s.t.” “subject to” 是 的缩写, 意即“受约束于”.
7.2.1 线性规划简介
1. 基本概念
没有可行解的线性规划模型称为不可行 (infeasible). 不可行的线性规划模型没有最优解. 如果最大(小)化线性规划模型的目标函数可以 在可行域取得任意大(小)的值,则称为无界 (unbounded). 无界的线性规划模型也没有最优解. 由于严格不等式约束有可能导致线性规划模型 虽然具有非空的可行域,但是目标函数却不存在最大 (小)值(例如 max z=x, s.t. x<1) ,所以不考虑严格 不等式约束.
x1 2 x2 6 之间,最优解就保持在点 C(但是最优值
会有所改变).
7
6 6x 1+4x 2=24 5 5x 1+4x 2=21 4 4x 1+5x 2=19.5 3
x2
2
E
D C
最 优 解 : x 1=3, x 2=1.5 x 1+2x 2=6 B
1
F A 0
0
1
2
3 x1
4
5
6
7
图7.5 例7.2.1的价值系数的灵敏度分析
7.2.1 线性规划简介
3. 灵敏度分析
在线性规划模型(7.2.1)中,可以考虑以下的灵敏 度分析问题: (1)价值系数 c j 的变化对最优解的影响. 事实 上,价值系数能够在一定的范围内变化而不引起最优 解的改变(但最优值会变化).

线性规划的图解法

线性规划的图解法
价值系数向量或 目标函数系数向量
a11 a 21 A a m1
a12 a 22 am2
a1n a2n a mn
x1 x2 X x n
决策变量向量
b1 b2 b b模型的一般形式(推广)

设决策变量 x1 ,x2 ,… ,xn 目标函数:max(min)z = c1x1+c2x2+…+cnxn 约束条件 s.t.:a11 x1 + a12 x2 + … + a1n xn ≤(=, ≥)b1 a21 x1 + a22 x2 + … + a2n xn ≤(=, ≥)b2 …… am1 x1 + am2 x2 + … + amn xn ≤(=, ≥)bm x1 ,x2 ,… ,xn ≥0
主要内容
问题的提出(建模)
线性规划模型的标准化
图解法
灵敏度分析
线性规划(Linear Programming)
规划问题:生产和经营管理中经常提出如何合理安 排,使人力、物力等各种资源得到充分利用,获得 最大的效益。
线性规划是运筹学的一个重要分支。它是现代科学管 理的重要手段之一,是帮助管理者作出最优决策的一 个有效的方法。
线性规划问题的数学模型

例 如图所示,如何截取x使铁皮所围成 的容积最大?
x
v a 2 x x
2
a
dv 0 dx
2(a 2 x ) x (2) (a 2 x )2 0
a x 6
2.1 问题的提出(建模)

例1:某工厂在计划期内要安排Ⅰ、Ⅱ两种产 品的生产,生产单位产品所需的设备台时及 A、B 两种原材料的消耗以及资源的限制,如 下表所示,问:工厂应分别生产多少单位Ⅰ、 Ⅱ产品才能使工厂获利最多?

任务二图解法求解线性规划问题

任务二图解法求解线性规划问题

任务二 图解法求解线性规划问题情境导入:我们上一个任务成功的将一个实际问题转化为数学语言,用数学模型表达了出来,但是该问题到底该怎么解决呢?我们又该如何对该数学模型进行求解呢?任务:掌握图解法求解两个决策变量的线性规划问题的思路,了解线性规划问题解的性质 任务引入:现在我们要想办法求解例1的数学模型MaxZ=2x 1+3x 2⎢⎢⎢⎢⎣⎡≥⋅≤≤≤+012416482..212121x x x x x x t s 一、任务分析图解法是指求解仅含两个变量的线性规划问题的一种方法。

是求解线性规划的一种几何解法。

只含两个变量的线性规划问题,由约束条件确定的可行域可以在二维平面上表示出来,按照一定规则,在可行域上移动目标函数的等值线,从而得到线性规划问题的最优解。

这里的可行域是凸区域,最优解必在可行域的某个顶点上达到。

[1]图解法仅适用于仅含有两个变量的线性规划问题的求解,因而图解法的实际用途并不广泛。

针对线性规划几何解还有一些重要的性质,这里不加证明叙述如下:1. 若线性规划可行域非空,则可行域必定是一个凸集,即集合中任意两点连线上的一切点仍然在该集合巾,这样的凸集表现为一个凸多边形,在空间上为一个凸几何体。

2.若线性规划优解存在,则最优解或最优解之一肯定能够在可行域(凸集)的某个极点找到。

3.线性规划的可行域若有界,则一定有最优解。

4.线性规划几何解存在四种情况:唯一最优解、无穷多最优解、无有限最优解、无可行解。

以上结论是非常有用的,特别是结论2非常明确地告诉我们,线性规划的最优解不可能在可行域的内点取得,而只能在凸集的某一个顶点(特殊情况为在凸集的某一条边界上)上达到。

因此,求解线性规划问题可转化为如何在可行域的顶点上求出使目标函数值达到最优的点的问题。

由于可行域的顶点个数是有限的,因此在求解线性规划模型的最优解时,只要在可行域的有限个顶点范围内一一寻找即可,这样就极大地降低了线性规划问题的复杂程度,将减少大量的工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档