线性规划问题与图解法
线性规划(图解法)

D
max Z
可行域
(7.6,2) , )
34.2 = 3X1+5.7X2
X1 + 1.9X2 = 3.8(≥) X1 - 1.9X2 = 3.8 (≤) L0: 0=3X1+5.7X2
oபைடு நூலகம்
x1
图解法
min Z=5X1+4X2 x2
X1 + 1.9X2 = 10.2 (≤)
Page 18
43=5X1+4X2 8=5X1+4X2 此点是唯一最优解 (0,2) , )
图解法
线性规划问题的求解方法 一般有 两种方法 图解法 单纯形法 两个变量、 两个变量、直角坐标 三个变量、 三个变量、立体坐标
Page 1
适用于任意变量、 适用于任意变量、但必需将 一般形式变成标准形式
下面我们分析一下简单的情况—— 下面我们分析一下简单的情况—— 只有两个决策 变量的线性规划问题, 变量的线性规划问题,这时可以通过图解的方法来 求解。图解法具有简单、直观、 求解。图解法具有简单、直观、便于初学者窥探线 性规划基本原理和几何意义等优点。 性规划基本原理和几何意义等优点。
• 有效与无效 紧与松)约束:与最优解相关的约束为有效 有效与无效(紧与松 约束 紧与松 约束: (紧)约束。 紧 约束 约束。 • 最优解:总是在可行域的边界上,一般由可行域的顶 最优解:总是在可行域的边界上, 点表示。 点表示。 • 可行域:由约束平面围起来的凸多边形区域,可行域 可行域:由约束平面围起来的凸多边形区域, 个可行解。 内的每一个点代表一 个可行解。
20
无可行解(即无最优解 无可行解 即无最优解) 即无最优解
10
O
10
第1.2节 线性规划问题的图解法

x1 20 * x 2 100
* * z 1240
27
2 规划问题求解的几种可能结果
2)无穷多最优解
max z 12 x1 8 x2 2 x1 x2 160 1 1 x1 x2 40 3 3 3 x1 2 x2 260 x1 , x2 0
max z 12 x1 10 x2 2 x1 x2 160 1 1 x x2 40 1 3 3 3 x1 2 x2 260 x1 , x2 0
23
x2 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0
max z 12 x1 10 x2 2 x1 x2 160 1 1 x1 x2 40 3 3 3 x1 2 x2 260 x1 , x2 0
工序 花瓶种类 占用材料 (盎司) 艺术加工 (小时) 储存空间 (一单位) 利润值 (元)
大花瓶
1/3x1+1/3x2=40 (60,40)
x1
22
160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 图1 花瓶问题的图解法
图解法的基本步骤:
(4)确定最优解。最优解是可行域中使目标
函数值达到最优的点,当目标函数直线由原点 开始沿法线方向向右上方移动时,z 值开始增 大,一直移到目标函数直线与可行域相切时为 止,切点即为最优解。
18
图解法的基本步骤:
(3)作出目标函数。由于
z 是一个待求的目 标函数值,所以目标函数常用一组平行虚线表 示,离坐标原点越远的虚线表示的目标函数值 越大。
管理运筹学_第二章_线性规划的图解法

线性规划中超过约束最低限的部分,称为剩余量。 记s1,s2为剩余变量,s3为松弛变量,则s1=0, s2=125,
s3=0,加入松弛变量与剩余变量后例2的数学模型变为 标准型: 目标函数: min f =2x1+3x2+0s1+0s2+0s3 约束条件: x1+x2-s1=350, x1-s2=125, 2x1+x2+s3=600, x1, x2, s1,s2,s3≥0.
阴影部分的每 一点都是这个线 性规划的可行解, 而此公共部分是 可行解的集合, 称为可行域。
B
X2=250
100
100
300
x1
B点为最优解, X1+X2=300 坐标为(50, 250), Z=0=50x1+100x2 此时Z=27500。 Z=10000=50x1+100x2 问题的解: 最优生产方案是生产I产品50单位,生产Ⅱ产品250单位,可得 最大利润27500元。
Z=10000=50x1+50x2
线段BC上的所有点都代表了最优解,对应的最优值相 同: 50x1+50x2=15000。
10
3. 无界解,即无最优解的情况。对下述线性规划问题:
目标函数:max z =x1+x2 约束条件:x1 - x2≤1 -3x1+2x2≤6 x1≥0, x2≥0.
x2 -3x1+2x2=6 3
其中ci为第i个决策变量xi在目标函数中的系数, aij为第i个约束条件中第j个决策变量xj的系数, bj(≥0)为第j个约束条件中的常数项。
16
灵敏度分析
灵敏度分析:求得最优解之后,研究线性规划的
线性规划问题的图解法

单纯形法的计算(jìsuàn)步骤
单纯形法的思路(sīlù)
找出一个(yī ɡè)初始可行解
4x1
16
可行(kěxíng)域
单纯形法的进一步讨论(tǎolùn)-人工变量法
第四十三页,共51页。
单纯形法的计算(jìsuàn)步骤
是否最优 故人(gùrén)为添加两个单位向量,得到人工变量单纯形法数学模型:
量作为换出变量。
L
min
bi a ik
a ik
0
第二十九页,共51页。
单纯形法的计算(jìsuàn)步骤
③ 用换入变量(biànliàng)xk替换基变量(biànliàng)中的换出变量 (biànliàng),得到一个新的基。对应新的基可以找出一个新的基可 行解,并相应地可以画出一个新的单纯形表。
: X (1) K和X (2) K
X X (1) (1 ) X (2) (0 1)
则X为顶点(dǐngdiǎn).
(wèntí)
的 几
第四页,共51页。
凸组合(zǔhé):
意线 义性
规 划 问 题 的 几 何
设X(1) ,..., X (k)是n维向量空间中的k个点,
若存在1,..., k ,且0 i 1, i 1,2,..., k,
A
1 域2 3
D
| E|
45
4 x2 16 x1 + 2x2 8
|||| 6789
x1
第九页,共51页。
❖图解法
目标(mùbiāo)函数 Max Z = 2x1 + 3x2
x2 9—
8—
7—
6—
5—
4—
线性规划问题的两种求解方式

线性规划问题的两种求解⽅式线性规划问题的两种求解⽅式线性规划是运筹学中研究较早、发展较快、应⽤⼴泛、⽅法较成熟的⼀个重要分⽀,它是辅助⼈们进⾏科学管理的⼀种数学⽅法。
线性规划所研究的是:在⼀定条件下,合理安排⼈⼒物⼒等资源,使经济效果达到最好。
⼀般地,求线性⽬标函数在线性约束条件下的最⼤值或最⼩值的问题,统称为线性规划问题。
解决线性规划问题常⽤的⽅法是图解法和单纯性法,⽽图解法简单⽅便,但只适⽤于⼆维的线性规划问题,单纯性法的优点是可以适⽤于所有的线性规划问题,缺点是单纯形法中涉及⼤量不同的算法,为了针对不同的线性规划问题,计算量⼤,复杂繁琐。
在这个计算机⾼速发展的阶段,利⽤Excel建⽴电⼦表格模型,并利⽤它提供的“规划求解”⼯具,能轻松快捷地求解线性模型的解。
⽆论利⽤哪种⽅法进⾏求解线性规划问题,⾸先都需要对线性规划问题建⽴数学模型,确定⽬标函数和相应的约束条件,进⽽进⾏求解。
从实际问题中建⽴数学模型⼀般有以下三个步骤;1、根据所求⽬标的影响因素找到决策变量;2、由决策变量和所求⽬标的函数关系确定⽬标函数;3、由决策变量所受的限制条件确定决策变量所要满⾜的约束条件。
以下是分别利⽤单纯形法和Excel表格中的“规划求解”两种⽅法对例题进⾏求解的过程。
例题:某⼯⼚在计划期内要安排⽣产I、II两种产品,已知⽣产单位产品所需的设备台时分别为1台时、2台时,所需原材料A分别为4单位、0单位,所需原材料B分别为0单位、4单位,⼯⼚中设备运转最多台时为8台时,原材料A、B的总量分别为16单位、12单位。
每⽣产出I、II产品所获得的利润为2和3,问I、II两种产品的⽣产数量的哪种组合能使总利润最⼤?这是⼀个典型的产品组合问题,现将问题中的有关数据列表1-1如下:表1-1I II 限量设备 1 2 8台时原材料A 4 0 16单位原材料B 0 4 12单位所获利润 2 3⾸先对例题建⽴数学模型。
问题的决策变量有两个:产品I的⽣产数量和产品II的⽣产数量;⽬标是总利润最⼤;需满⾜的条件是:(1)两种产品使⽤设备的台时<= 台时限量值(2) ⽣产两种产品使⽤原材料A、B的数量<= 限量值(3)产品I、II的⽣产数量均>=0。
线性规划问题的图解法

j
0 0 j c j c i a ij
bi 其中: i a kj 0 a kj
单纯形法的计算步骤
例1.8 用单纯形法求下列线性规划的最优解
max Z 3 x1 4 x 2 2 x1 x 2 40 x1 3 x 2 30 x , x 0 1 2
A
0
E
| 5
| 6
| 7
| 8
| 9
x1
图解法
9— 8—
目标函数 Max Z = 2x1 + 3x2
约束条件 x1 + 2x2 8
4x1 16 4x2 12 x1、 x2 0
x2
7—
6— 5—
4x1 16
C 4 x2 16
4 —B
3— 2— 1—
D
| 1 | 2 | 3 | 4
4—
3— 2— 1— 0
x1
图解法
9— 8—
目标函数 Max Z = 2x1 + 3x2
约束条件 x1 + 2x2 8
4x1 16 4x2 12 x1、 x2 0
x2
7—
6— 5—
4x1 16 4 x2 12 x1 + 2x2 8
4—
3— 2— 1— 0
可行域
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
x2
X1 + 1.9X2 = 11.4 (≤)
8=5X1+4X2 此点是唯一最优解 ( 0, 2)
D
43=5X1+4X2
可行域
第二章线性规划的图解法

➢ 答案:
X2 ➢ 最优解为: x1 =15 ,x2=10 40 ➢ 最优值为:z*=2500×15+1500×10
➢
30
=52500
3x2=75
20
(15,10)
10
O
10
20
30
40
50 X1
3x1+2x2=65
2x1+x2=40
五、线性规划问题解的情况
➢ 例1.5的最优解只有一个,这是线性规划问题 最一般的解的情况,但线性规划问题解的情 况还存在其它特殊的可能:无穷多最优解、 无界解或无可行解。
... am1x1+am2x2 +…+amnxn≤( =, ≥ )bm x1 ,x2 ,… ,xn ≥ ( ≤) 0 或无约束
xj为待定的决策变量; cj为目标函数系数,或价值系数、费用系数; aij为技术系数; bj为资源常数,简称右端项; 其中i=1,2,…m; j=1,2,…n
可以看出,一般LP模型的特点: A、决策变量x1,x2,x3,……xn表示要寻求
O
100 200 300
X1
3、无界解的情况
➢若将例1.5的线性规划模型中约束条件1、2的 不等式符号改变,则线性规划模型变为:
➢ 目标函数:Max z= 50x1+100 x2 约束条件:x1+x2 ≥ 300 2x1+x2 ≥ 400 x2≤250 x1 ≥0, x2 ≥0
B、定义决策变量;
C、用决策变量的线性函数形式写出所要追求 的目标,即目标函数;
D、用一组决策变量的等式或不等式来表示在 解决问题过程中所必须遵循的约束条件。
三、线性规划的数学模型
1、LP模型的一般形式 目标函数:
线性规划问题的图解法

20 40
.
即B点坐标为20 ,40,代入目标函数可得最优值Smax 50 20 30 40 2 200 .
线性规划问题的图解法
例2
解
1. 求可行域(如图7 - 2所示)
(1)建立直角坐标系Ox1x2 . (2)满足条件 x1 x2 2 的所有点均落在直线 x2 2 x1 的右下半平面内; (3)满足条件 x1 x2 2 的所有点均落在直线 x2 2 x1 的右上半平面内. 由约束条件可知,无界区域ABCD是其可行域 .
3 截距最大的点即为最优解,其对应的S值就是最优值 .因此,我们可以把过原点且斜率 5的直
3 线作为参照直线,然后在可行域里进行平移,直到找到最优解 .
显然,斜率为 5的直线在可行域里平移时过B点的纵截距最大,求B点的坐标,联立 3
方程
x2 x2
Hale Waihona Puke 80 2x1 40,解得
x1 x2
图7-2
线性规划问题的图解法
2. 求最优解 把目标函数 S x1 2x2 中的S看作参数,当S 0时,目标函数S x1 2x2是一条过原点 的直线,在坐标系内画出这样的直线(用虚线表示),然后再将该直线向可行域内平移 . 在平移
时,7-2中B点是满足该约束条件的S最小值,其坐标为2 ,0,于是得到该线性规划问题的最
于是从约束条件知,由l1 ,l2 ,l3以及x1轴围成的区域 ABCD是该线性规划问题的可行域,如图7-1所示 .
图7-1
线性规划问题的图解法
2.求最优解 可行域的点满足约束条件,但并非使得目标函数 max S 50x1 30x2 取得最大值的解, 且该目标函数对应的图象也是一条直线,其斜率为 5,可行域里能使该直线与y轴的纵
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 用图解法求解下述线性规划问题
min z x1 1.5x2
s.t.
x1 x1
3x2 x2
3 2
x1 , x2 0
1. x1=2, x2=4 ,最大利润 180元; 2. x1=1.5, x2=0.5, min z =2.25.
小结
1. 线性规划问题的模型特征
2 通过图解法了解如何求解线性规划问题及其 解的情况
x3+ x4+ x5+ x6+ x7 280 x1, x2, x3, x4, x5 , x6, x7 0
符号约束
决策变量 目标函数
线性规划问题及其数学模型
2 定义
定义 1 线性函数 (Linear Function)
定义 2 线性等式(Linear Equality),线性 不等式(Linear Inequality)
定义 3
决策变量 (≥,≤ 0 或 无约束)
线性规划
(Linear Programming, LP)
目标函数 (max 或 min) 约束条件 (LE 或 LI)
线性的 表达式
线性规划问题及其数学模型
3 线性规划的一般形式
max / min z c1x1 c2x2 cn xn
a11x1 a12x2 a1n xn ( 或 ) b1
线性规划问题及其数学模型
1 问题的提出
例1 --- 生产组织问题
资源I 资源II 资源III
产品 A (件) 2
1
1
产品 B (件) 1
1
0
可供资源 100 80
40
利润 (元) 3 2
问:如何安排生产计划才能使该厂获得最大利润?
线性规划问题及其数学模型
解: 定义
决策变量
x1:产品 A 的产量 x2:产品 B 的产量
❖ 特殊情形
x2
max z x1 2x2
x1 2x2 6 (1)
s
.t.
3
x1
x1
,
x
2
2x2 x2 0
12 2
(2) (3)
0
无穷多最优解
(2) (3)
x1
(1)
线性规划的图解法
max z x1 x2
s.t.
x1 x1
2x2 2 x2 1
(1) (2)
x1 , x2 0
s.t.a21
x1
a22 x2
a2n
xn
(
或
) b2
am1x1 am2x2 amnxn ( 或 ) bm
x1, x2, , xn (或 )0
线性规划问题及其数学模型
简写为
价值系数
n
max /min z cj xj
技术系数
j 1
右端项/限额系数
s.t.
n j 1
aij
x
所需 人数
280 150 240 250
190
310
280
为了保证销售人员充分休息,销售人员每周工作
5天,休息2天。问商场人力资源部应如何安排每天的 上班人数,使商场总的营业员最少。
线性规划问题及其数学模型
解: 定义 xi:第i天 开始上班的人数, i =1, 2, …, 7.
min z =x1+ x2+ x3+ x4+ x5+ x6+ x7
2x1 x2 100 (1)
s.t.
x1 x2 80 x1 40
(2) (3)
x1 , x2 0
最优解: x* (20, 60)T .
最优值: z* 180.
x2
(0, 80)D
0
等值线
唯一最优解
(3)
G(20, 60)
F (40, 20)
E (40, 0)
(2)
x1
(1)
线性规划的图解法
j
(
或
) bi
(i 1, 2,
, m)
x j 0
( j 1, 2, , n)
约束条件
线性规划的图解法
可行解
--- 满足线性规划所有约束条件的点
可行域 ---可行解的集合
最优解 ---使目标函数达到最大值(或最小值)的可行解
线性规划的图解法
例2 仍以例1来解释
max z 3x1 2x2
max z 3x1 2x2
2x1 x2 100
s.t.Biblioteka x1 x2 80 x1 40
x1 , x2 0
目标函数 资源 I 约束 资源 II 约束 资源 III 约束 符号约束
线性规划问题及其数学模型
例2 ---人力资源问题
某个大型商场对销售人员的需求经统计如下表
星期 日 一 二 三 四 五 六
x2
(1)
0
无界解
(2)
x1
线性规划的图解法
x2
min z 3x1 2x2
(2)
s
.
t.
2xx1 1
x2 3x2
1
6
(1) (2)
(1)
x1 , x2 0
0
无可行解
x1
线性规划的图解法
LP 解的 情况
唯一最优解 无穷多最优解 有最优解
无界解 无可行解
无最优解
线性规划的图解法
练习
1. 某工厂要在计划期内生产桌子和椅子。已知每张桌子需用4 单位的木材,每把椅子需用3单位的木材;生产一张桌子可 获利40元,一把椅子为25元。市场要求生产椅子的数量至 少是生产桌子的两倍 。如果仅有20个单位的木材可供使用, 试为该工厂确定一种最佳生产方案(用图解法求解)。
x1+ x4+ x5 + x6 +x7 280
每天
x1+ x2+ x5+ x6+ x7 150
所需
x1+ x2 +x3 + x6+ x7 240
人数
x1+ x2+ x3+ x4+ x7 250 x1+ x2+ x3 + x4+ x5190 x2+ x3+ x4 + x5 + x6 310
限制 条件